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SUMMARY 

Multi-lineage neuronal, astrocytic and oligodendrocytic potential is considered a 

neural stem cell (NSC) trait. However, hippocampal NSCs generate neurons and 

astrocytes but not oligodendrocytes in vivo and how this is regulated is unknown. Here 

we show that the RNAseIII Drosha is an intrinsic regulator of stem cell maintenance 

and differentiation in the adult mouse hippocampus. Inactivation of Drosha results in 

exhaustion of the NSC pool, premature arrest of neurogenesis, and induction of 

oligodendrocyte fate commitment. Drosha silences Nuclear Factor IB (NFIB) in 

hippocampal NSCs by targeting a double-stranded hairpin in the NFIB mRNA, thereby 

repressing its expression in a Dicer and miRNA-independent manner. We show that 

NFIB is required and sufficient for oligodendrocyte fate and knockdown of NFIB 

rescues neurogenesis by Drosha-deficient hippocampal NSCs. Our findings reveal a 

novel mechanism for stem cell maintenance and oligodendrocyte fate restriction in the 

adult hippocampus. 

  



 3 

INTRODUCTION 

Somatic stem cells can generate progeny throughout life but their fates are usually 

restricted and they generate specific cell-types in their respective tissue. Active adult 

NSCs are present in two regions of the brain: the subventricular zone (SVZ) of the 

lateral ventricles and the subgranule zone of the hippocampal dentate gyrus (DG) (Ihrie 

and Alvarez-Buylla, 2011; Kriegstein and Alvarez-Buylla, 2009). Although both SVZ 

and DG NSCs are multipotent, they generate specific neuron-types. SVZ NSCs become 

fate restricted during embryonic development and generate multiple interneuron 

populations from topological locations in the lateral ventricle wall (Merkle et al., 2007). 

DG NSCs produce only granule neurons which contribute to cognition, and loss or 

dormancy of stem cells during aging can result in psychological disorders and disease 

(Kronenberg et al., 2003; Petrus et al., 2009; Santarelli et al., 2003; Steiner et al., 2008). 

Whereas SVZ NSCs make a significant number of oligodendrocytes (Hack et al., 2004; 

Menn et al., 2006), new oligodendrocytes are normally not produced in the adult DG 

(Bonaguidi et al., 2011; Encinas et al., 2011; Lugert et al., 2010). In vitro, DG NSCs 

also rarely produce oligodendrocytes, although oligodendrocytic differentiation can be 

induced by their co-culture with neurons and in vivo by inactivation of the 

Neurofibromin 1 gene or reprogramming with the transcription factor Ascl1 (Braun et 

al., 2015; Jessberger et al., 2008; Song et al., 2002; Suh et al., 2007; Sun et al., 2015). 

This suggests an intrinsic and niche-independent fate restriction of DG NSCs that 

prevents oligodendrocyte formation. How DG NSC potency and particularly 

oligodendrocytic fate are restricted remains unclear. 

Drosha is part of the miRNA microprocessor (Ha and Kim, 2014). However, Drosha 

can also cleave and directly destabilize mRNAs encoding proteins that regulate cell fate 

decisions (Chong et al., 2010; Han et al., 2009; Knuckles et al., 2012; Macias et al., 
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2012). During embryonic development, Drosha maintains embryonic NSCs in an 

undifferentiated, multipotent state by targeting and cleaving the mRNA of the proneural 

factor Ngn2 (Knuckles et al., 2012). This non-canonical function of Drosha does not 

require Dicer or miRNAs, and is a rapid mechanism for fate regulation. 

Here, we examined how Drosha is involved in the regulation of DG NSC fate. We 

found that Drosha controls DG NSC maintenance and cell fate acquisition through a 

non-canonical regulation of the transcription factor Nuclear Factor IB (NFIB). We show 

that NFIB is required for the oligodendrocytic commitment by DG NSCs and propose 

that Drosha promotes neurogenesis and inhibits oligodendrocyte fate acquisition in the 

hippocampus by repressing NFIB. 
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RESULTS 

Drosha deletion from adult DG NSCs impairs neurogenesis 

NSCs in the DG of the adult mouse are Notch-dependent and express the Notch 

target Hes5 (Lugert et al., 2010, 2012). Drosha is expressed by most cells in the DG 

including GFAP+ and Hes5+ radial NSCs (Figure S1A and S1B). To address the 

functions of Drosha in neurogenic DG NSCs, we treated Hes5::CreERT2 mice carrying 

floxed Drosha (Drosha cKO) or wild type Drosha (ctrl) alleles with Tamoxifen (TAM), 

and followed cell fate by lineage tracing (Rosa26-CAG::EGFP) (Figure 1A and S1A) 

(Lugert et al., 2012). Twenty-one days after TAM administration, Hes5+ NSCs and their 

progeny were Drosha-deficient and generated fewer cells compared to controls (Figure 

S1B-D). Furthermore, the number of radial GFAP+, Sox2+ and mitotic (PCNA+) 

NSC/progenitors and neuroblasts (DCX+) was reduced in Drosha cKO animals (Figure 

1B-F and S1E). Decreased neurogenesis persisted in Drosha cKO animals at 100 days 

and the reduction in newborn neurons (GFP+NeuN+) was accompanied by an increase in 

S100+ parenchymal astrocytes compared to controls (Figure 1G-I and S1F-J). In 

addition, GFAP+ putative radial NSCs were lost in Drosha cKO animals (Figure 1G and 

1J and 1K). Together these data suggest that Drosha is required for NSC maintenance 

and promotes neurogenesis in the DG at the expense of gliogenesis. 

Quiescent DG NSCs activate, proliferate and produce neuroblasts in response to 

seizures (Huttmann et al., 2003; Sierra et al., 2015; Steiner et al., 2008). We addressed 

whether NSC-like progenitors remain in the Drosha cKO and can still respond to 

activating stimuli. We administered epileptogenic kainic acid (KA) to induce seizures in 

Hes5::CreERT2 Drosha cKO and control mice 21 days after TAM-induction (Figure 

S1K). Whereas KA induced proliferation and an increase in neuroblasts in control 

animals (Figure S1L and S1M), neither proliferation (PCNA+) nor neuroblast (DCX+) 
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production was increased following KA-treatment of Drosha cKO mice (Figure S1L 

and S1N). This suggests that Drosha cKO diminishes the DG NSC pool and 

compromises progenitor reactivation. 

Drosha cKO induces oligodendrocyte commitment of NSCs 

To examine whether Drosha controls neurogenesis by acting on quiescent NSCs, we 

ablated Drosha specifically in radial GFAP+ NSCs by stereotactic infection with 

adenoviruses expressing Cre-recombinase under the control of the gfap promoter 

(adeno-gfap::Cre) (Figure S2A) (Merkle et al., 2007). Six days post-infection (dpi), 

most GFP labeled, adeno-gfap::Cre infected cells in the subgranular zone in control 

mice were GFAP+ putative radial NSCs (Figure S2B-D). Twenty-one dpi, adeno-

gfap::Cre infected NSCs had generated mitotic (PCNA+) progenitors and neuroblasts 

(DCX+) in control animals but Sox2+ and PCNA+ progenitors were almost absent and 

newly formed neuroblasts were reduced in Drosha cKO animals (Figure 2A-E). 

Therefore, Drosha cKO DG NSCs lose stem cell potential demonstrating that Drosha is 

essential for NSCs maintenance and neurogenesis. 

DG NSCs normally generate glutamatergic granule neurons and astrocytes but not 

oligodendrocytes (Bonaguidi et al., 2011). Following adeno-gfap::Cre mediated Drosha 

cKO, a significant number of the newborn cells expressed Olig2 and Sox10, markers of 

oligodendrocyte progenitor cells (OPCs) (Figure 2D-G). Similarly, we observed newly 

generated Sox10+, Olig2+ and NG2+ OPCs in Hes5::CreERT2 Drosha cKO animals 

(Figure S2E-G). Thus, Drosha cKO induces a fate switch in DG NSCs to 

oligodendrocytes. 

We performed clonal analysis of Hes5::CreERT2 Drosha cKO NSC fate. Two days 

after low-dose TAM-induction, labeled NSCs were sparse in the DG (mean distance 

between clones = 184.3 ± 17.2µm; Figure S2H and S2I). Twenty-one days post-TAM, 6 
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of the 41 clones examined in Drosha cKO animals contained OPCs but none in the 

controls (Figure 2H, 2I, S2J and S2K). Interestingly, one clone contained neuroblasts, 

astrocytes and oligodendrocytes indicating tri-lineage potential of Drosha cKO NSC in 

vivo (Figure 2H). 

We addressed whether Drosha controls oligodendrocyte production from mitotic GFAP- 

stem/progenitor cells. We infected dividing cells in the DG with a Cre-expressing 

retrovirus. We did not see oligodendrocyte formation in the Drosha cKO after retro-Cre 

virus infection and active progenitors continued to generate neuroblasts (Figure S2L and 

S2M). These data suggest that Drosha-deletion induces a fate shift in the quiescent NSC 

pool to oligodendrocyte production but not in active NSC/progenitors. 

Dicer regulates miRNA maturation downstream of Drosha. To investigate whether 

Drosha regulates oligodendrocyte commitment of NSCs via miRNAs, we deleted Dicer 

(Dicer cKO) from radial DG NSCs with the adeno-gfap::Cre virus (Figure S2A). Dicer 

cKO did not affect the number of Sox2+ progenitors (data not shown) and caused a 

minor decrease in neuroblasts consistent with the role of Dicer in neuronal survival and 

maturation (Figure 2G, S2N and S2O) (Davis et al., 2008). Unlike Drosha cKO, Dicer 

cKO did not induce oligodendrocytic differentiation of DG NSCs (ctrl vs. Dicer cKO P 

= 0.56, Figure 2F and 2G). Therefore, Drosha but not Dicer inhibits oligodendrocyte 

differentiation of adult DG NSCs in vivo indicating that the mechanism of induced fate 

switching caused by the loss of Drosha does not primarily involve miRNAs. 

Drosha cKO DG NSCs produce oligodendrocytes in vitro 

To investigate the mechanisms of Drosha-regulated NSC fate acquisition, we 

generated a self-renewing DG NSC culture system that recapitulates in vivo features of 

neurogenesis including expression of the progenitor markers Sox2 and BLBP (Figure 

S2P). Upon growth factor removal (-FGF2/-EGF), DG NSCs differentiated into neurons 
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and astrocytes but not oligodendrocytes indicating conserved intrinsic cell fate 

restriction (Figure S2Q and not shown) (Bonaguidi et al., 2011; Lugert et al., 2010). We 

cultured DG NSCs from adult Droshafl/fl , Dicerfl/fl  and Droshawt/wtDicerwt/wt (control) 

animals that carried the Rosa26-CAG::EGFP Cre-reporter. Following adeno-Cre viral 

transduction, we investigate the effects of Drosha and Dicer cKO (Figure S2R and S2S). 

Two dpi, BLBP+ progenitors were reduced in the Drosha cKO compared to control and 

Dicer cKO cultures similar to the reduction in progenitors after Drosha ablation in vivo 

(Figure 2J-M). Both differentiated Drosha cKO and Dicer cKO NSCs generated fewer 

neurons in vitro (Figure 2M and S2T-V). However, we observed an increase in 

apoptotic cells (cleaved-Caspase3+) in the Dicer cKO cultures compared to Drosha cKO 

and control confirming that Dicer is crucial for neuronal survival, and providing an 

explanation for the reduction in neurons in its absence (Figure S2W). Drosha cKO 

induced an increase in NG2+ OPCs in the cultures and this at the expense of neuron and 

astrocyte production (Figure 2K, 2M and S2X). Dicer cKO induced a slight but not 

significant increase in NG2+ OPCs in the cultures (ctrl vs. Dicer cKO P = 0.27, Figure 

2L and 2M). Hence, DG NSCs retain a cell intrinsic bias against oligodendrocyte 

differentiation in vitro and Drosha controls this fate decision. We sorted Drosha cKO, 

Dicer cKO and control DG NSCs 48 hours after adeno-Cre virus infection in vitro and 

determined the expression profiles of 381 miRNAs by microarray. 260 miRNAs were 

detected in control DG NSCs (mean Ct values below 32) and their levels were not 

significantly changed 48 hours after Drosha cKO (R2= 0.81; Figure S2Y) even though 

the phenotypes were well established by this time. Dicer cKO resulted in moderate 

changes in miRNA levels after 48 hours (R2= 0.66; Figure S2Z), although Dicer cKO 

NSCs did not display an obvious phenotype at this time. Hence, Drosha cKO did not 

cause major global changes in miRNA levels and any changes were less than in Dicer 
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cKO DG NSCs. These data support that the mechanism of Drosha suppression of 

oligodendrocyte production by DG NSCs is independent of Dicer and miRNAs. 

Drosha binds and cleaves the NFIB mRNA regulating expression 

Drosha can bind and cleave hairpin loops in mRNAs (Chong et al., 2010; Han et al., 

2009; Knuckles et al., 2012; Macias et al., 2012). In silico analysis (Evofold) (Pedersen 

et al., 2006) revealed two evolutionarily conserved hairpins in the mRNA of NFIB, a 

short 20 bases hairpin in the 5’ untranslated region (hereafter refer to as 5’ UTR HP) 

and a longer hairpin of 83 bases in the 3’ untranslated region (hereafter refer to as 3’ 

UTR HP) (Figure 3A). NFIB plays roles in the development of glial cells and myelin 

tracts (Barry et al., 2008; Deneen et al., 2006; Harris et al., 2015; Kang et al., 2012; 

Steele-Perkins et al., 2005). To examine whether Drosha binds directly to NFIB mRNA 

in DG NSCs, we performed cross-linked immunoprecipitation (CLIP) for endogenous 

Drosha protein and examined the bound RNAs (Figure S3A and S3B). NFIB mRNA 

CLIPed with Drosha from DG NSCs as did the known target DGCR8 mRNA (Figure 

3B and S3B) (Han et al., 2009; Knuckles et al., 2012). 

In order to address whether either of the two NFIB mRNA hairpins convey Drosha 

association, we placed the 5’ UTR HP and 3’ UTR HP into the SV40 3’ UTR 

downstream of the Renilla Luciferase (rLuc) coding region of the psiCheck reporter 

vector (Figure 3C). We expressed 5’ UTR HP and 3’ UTR HP containing rLuc mRNAs 

in N2a cells and performed CLIP to address binding by Drosha. Both the 5’ UTR HP 

and 3’ UTR HP of NFIB bound to Drosha more efficiently than the SV40 3’ UTR 

sequence alone (Figure 3D). These data suggest that both NFIB mRNA hairpins are 

bound by Drosha. 

We evaluated whether Drosha cleaves the NFIB hairpins by in vitro processing 

assays (Figure 3E) (Lee and Kim, 2007). Incubation of in vitro transcribed NFIB 3’ 
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UTR RNA with purified Flag-tagged Drosha resulted in cleavage and generation of 

RNA fragments (Figure 3F). NFIB 5’ UTR HP was not cleaved in vitro suggesting that, 

although bound, its not processed by Drosha (Figure S3C). We assessed whether 

fragmented NFIB mRNAs were present in DG NSCs in vivo by 5ƍ rapid amplification of 

cDNA ends (5’RACE). Multiple NFIB mRNAs fragmented in the vicinity of the 3’ 

UTR HP were detected in wild-type NSCs (Figure S3D). Fragmented NFIB transcripts 

were not detected in Drosha cKO NSCs supporting that NFIB mRNA fragmentation at 

the 3’ UTR HP is dependent on Drosha (Figure S3D). Sequencing and mapping of 48 

independent clones of the NFIB 5’RACE fragments supported the in vitro processing 

analysis (Figure 3F and S3D). The multiple fragmented RNA species suggest that either 

Drosha processing of the 3’ UTR HP is not as accurate as its processing of a pri-miRNA 

RNA or additional ribonucleases may be associated with the Drosha complex and these 

cleave the RNAs further. We analyze changes in NFIB RNA fragmentation in sorted 

NSCs following Drosha cKO compared to control by qRT-PCR over the 3’ UTR HP. 

Drosha cKO increased the relative levels of non-cleaved NFIB transcripts confirming 

the Drosha-dependent destabilization of NFIB RNAs in vivo (Figure 3G). 

To evaluate whether Drosha affects translation of NFIB 3’ UTR HP mRNAs, we 

performed Luciferase assays in cultured adult DG NSCs (Figure S3E). Drosha cKO 

increased Luciferase activity of an NFIB 3’ UTR HP containing synthetic mRNA 

(Figure S3F). Surprisingly, Dicer cKO also increased translation of the NFIB 3’ UTR 

HP containing Luciferase mRNA by an unknown mechanism indicating that under these 

experimental conditions Dicer can also regulate NFIB 3’ UTR HP containing mRNAs. 

Drosha interaction with hairpins in mRNAs can result in destabilization of the 

transcripts (Han et al., 2009; Knuckles et al., 2012). We isolated Hes5::CreERT2 Drosha 

cKO and Hes5::CreERT2 control (Droshawt/wt) DG NSCs by fluorescence-activated cell 
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sorting (FACS) based on GFP expression from the Cre-activated Rosa26-CAG::EGFP 

locus following acute induction with TAM (Figure S3G). Drosha mRNA levels were 

reduced in Drosha cKO cells compared to controls (Figure S3G). Interestingly, NFIB 

mRNA levels were increased in Drosha cKO NSCs suggesting that Drosha suppresses 

NFIB mRNA expression in DG NSCs in vivo (Figure S3G). As cultured DG NSCs 

retain Drosha function and blockade of oligodendrocyte differentiation, we speculated 

that Drosha-dependent regulation of NFIB should also be present in vitro. We infected 

DG NSCs in vitro with adeno-Cre virus and isolated Drosha cKO and control NSCs by 

FACS 2 dpi (Figure S3H). NFIB and Sox10 mRNA levels were increased in cultured 

Drosha cKO but not in Dicer cKO NSCs (Figure S3H). Therefore, Drosha regulates 

NFIB mRNA levels in DG NSCs in vivo and in vitro. 

Drosha cKO-induced oligodendrocytic differentiation depends on NFIB 

We addressed whether NFIB is sufficient to drive oligodendrogenesis from adult DG 

NSCs. Overexpressed NFIB increased Sox10+ and NG2+ OPCs in DG NSC cultures and 

had a negative impact on neurogenesis (Figure 4A and S4A-E). Therefore, expression 

of NFIB is sufficient to induce programming of DG NSCs to oligodendrocytes. We 

addressed whether NFIB is required for the Drosha cKO induced oligodendrocyte 

differentiation of NSCs. We ablated Drosha from DG NSCs in vitro with adeno-Cre 

viruses and simultaneously prevented NFIB mRNA accumulation by knockdown using 

specific esiRNAs (Figure 4B). Twenty-four hours after esiRNA transfection, NFIB 

mRNAs were undetectable in DG NSCs compared to cells transfected with a control 

rLuc esiRNA (Figure S4F). Neither esiRNA rLuc nor esiRNA NFIB expression 

affected the differentiation of control DG NSCs (Figure 4C, 4D, S4G and S4H). As 

expected, most Drosha cKO NSCs transfected with the esiRNA rLuc differentiated into 

NG2+ OPCs (Figure 4C and 4E). In contrast, NFIB knockdown reduced NFIB 
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expression and decreased oligodendrocytic differentiation of Drosha cKO cells (Figure 

4C and 4F). Like their control counterparts, NFIB knockdown Drosha cKO NSCs 

adopted a neuronal fate or remained as progenitors (Figure 4G and 4H). Thus, Drosha 

negatively regulates DG NSC differentiation towards an oligodendrocytic fate by 

suppressing NFIB mRNA levels (Figure S4I). Upon Drosha cKO, inhibition of NFIB is 

released and an oligodendrocytic differentiation program is activated (Figure S4J). 
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DISCUSSION 

Adult NSC identity is orchestrated by complex regulatory gene networks and 

neurogenic niche microenvironments. Post-transcriptional modifications add an 

additional level of regulation to NSC maintenance and differentiation. Growing 

evidence suggest that miRNA-independent functions of the microprocessor are 

conserved mechanisms that regulate several cellular processes in the nervous system 

and other tissues (Chong et al., 2010; Han et al., 2009; Karginov et al., 2010; Knuckles 

et al., 2012; Macias et al., 2012). 

Here we show that Drosha plays a central role in regulating progenitors of the adult 

DG by sustaining NSC potential. Upon Drosha ablation, DG NSCs are depleted and 

gliogenesis increases at the expense of neurogenesis. By comparing Drosha cKO and 

Dicer cKO mice, we identified the transcription factor NFIB as a target of Drosha and 

showed that the blockade of NFIB expression is necessary for inhibiting 

oligodendrocyte formation and enabling neurogenesis in the adult DG. Therefore, 

Drosha regulates DG neurogenesis and gliogenesis at least partially through a miRNA 

and Dicer-independent, cell-intrinsic fate program. 

CLIP experiments revealed that the microprocessor targets different RNA classes, 

including pri-miRNAs, small nucleolar RNA, long non-coding RNA and mRNAs 

(Macias et al., 2012). The microprocessor interactome has been defined in human 

embryonic stem cells and indicates the importance of cell-type and biological context 

(Seong et al., 2014). However, it is clear that several mRNAs are processed by the 

microprocessor resulting in their destabilization (Chong et al., 2010; Johanson et al., 

2015; Knuckles et al., 2012). The non-canonical functions of the microprocessor 

represent a rapid and efficient way to influence gene expression. Our understanding of 

the mechanisms underlying these alternative functions of Drosha and the 
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microprocessor need further investigation. The Drosha-DGCR8 complex is required for 

miRNA biogenesis, but it is possible that other protein-protein interactions underlie the 

alternate functions of Drosha (Macias et al., 2015). 

DG NSCs are fate committed to glutamatergic granule neuron and astrocytic fates in 

vivo (Bonaguidi et al., 2011; Lugert et al., 2010). How this intrinsic fate restriction is 

controlled remained unclear. In vitro studies showed that DG NSCs are only able to 

generate oligodendrocytes under specific conditions including co-culture with neurons 

(Song et al., 2002; Suh et al., 2007). Furthermore, reprogramming of adult DG NSCs by 

Ascl1 overexpression leads to a shift in fate from neuronal to oligodendrocyte 

differentiation (Braun et al., 2015; Jessberger et al., 2008) A potential link between 

Drosha and Ascl1 remains to be shown, however, Ascl1 mRNA was not CLIPed with 

Drosha from DG NSCs (data not shown). 

Clonal lineage tracing of DG NSCs in vivo showed symmetric and asymmetric 

neuron and astrocytic fates (Bonaguidi et al., 2011). Drosha cKO NSCs exited the stem 

cell pool and the cell cycle and generated few progeny. However, at the population and 

single cell levels DG NSCs retain the potential to generate all three cell-lineages of the 

brain but Drosha mediates the intrinsic restriction of oligodendrocyte differentiation 

potential. 

NFI transcription factors can activate and repress gene transcription depending on 

the gene and cellular context (Chang et al., 2013; Gronostajski, 2000; Messina et al., 

2010). NFIB influences stem cell maintenance and differentiation in several tissues 

including in the SVZ as part of a cross-regulatory network together with Pax6/Brg1 

(Chang et al., 2013; Ninkovic et al., 2013). In addition, NFIB can repress Notch 

signaling in embryonic hippocampal NSCs by repressing Hes1 promoter activity (Piper 

et al., 2010). Therefore, we speculate that induction of NFIB expression might lead to 
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inhibition of stem cell genes and block of Notch signaling resulting in exhaustion of the 

DG NSC pool and differentiation. Moreover, we also show for the first time that NFIB 

has a central function in regulating oligodendrocyte fate commitment in the adult DG. It 

remains to be shown which genes are regulated downstream of NFIB. Although we 

cannot exclude that NFIB acts as a transcriptional repressor of genes required for 

neuronal differentiation and therefore indirectly promotes gliogenesis, NG2 is up 

regulated in response to Drosha cKO in an NFIB-dependent manner. Interestingly, 

Cspg4 (the gene encoding NG2) has NFI binding motifs that are bound by NFIB 

suggesting a direct regulation in DG NSCs (Chang et al., 2013). We believe this is the 

first demonstration of a non-canonical Drosha-mediated regulation of adult stem cell 

fate through a niche-independent intrinsic pathway. In the future, it will be important to 

understand the targets of this post-transcriptional pathway and whether stem cells are 

able to modulate Drosha activity to control cell fate in order to satisfy demand. 
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FIGURE LEGENDS 

Figure 1. Drosha deletion from adult DG NSCs impairs neurogenesis in vivo. 

(A) TAM-induction regime and genotypes of Hes5::CreERT2 mice. 

(B and C) GFP+Sox2+ NSCs (yellow arrowheads) in the DG of control (B) and 

Drosha cKO (C) animals at d21. 

(D and E) Proliferating cells (PCNA+: white arrowheads) and DCX+ neuroblasts in 

control (D) and Drosha cKO (E) animals at d21. 

(F) Quantification of GFP+Sox2+S100- NSCs, proliferating GFP+PCNA+ 

progenitors and newly generated neuroblasts GFP+DCX+ in Drosha cKO and control 

animals at d21 (control n = 5, Drosha cKO n = 5. Two-sided Student’s t-test: *P<0.05, 

**P<0.01). 

(G) Quantification of radial GFP+GFAP+ NSCs and DCX+ neuroblasts in Drosha 

cKO and control animals at d100 (control n = 5, Drosha cKO n = 5. Two-sided 

Student’s t-test: **P<0.01, ***P<0.001). 

(H and I) GFP+DCX+ neuroblasts in control (H) and Drosha cKO (I) animals at d100.  

(J and K) GFP+GFAP+ cells in control (J) and Drosha cKO (K) animals at d100 

(arrows in J; GFAP+ radial process). 

Data are mean ± SEM. Scale bars 20 m in B-E, J and K, and 50 µm in H and I. See 

also Figure S1 and Table S1. 

Figure 2. Drosha deletion from DG NSCs induces oligodendrocyte fate 

commitment. 

(A and B) GFP+Sox2+progenitors and GFP+PCNA+ mitotic cells in control (A) and 

Drosha cKO (B) animals at d21 post-adeno-gfap::Cre virus infection. 
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(C and D) GFP+DCX+ neuroblasts and GFP+Olig2+ oligodendrocytes in control (C) 

and Drosha cKO (D) animals at d21. 

(E) Quantification of GFP+Sox2+, GFP+PCNA+ progenitors and GFP+Olig2+ 

oligodendrocytes in control and Drosha cKO d21 after adeno-gfap::Cre virus infection 

(control n = 3, Drosha cKO n = 3. Two-sided Student’s t-test: *P<0.05, **P<0.01). 

(F) GFP+Sox10+ oligodendrocytes in Drosha cKO and Dicer cKO animals. 

(G) Quantification of GFP+DCX+ neuroblasts and GFP+Sox10+ oligodendrocytes 

upon Drosha cKO and Dicer cKO (control n = 3, Drosha cKO n = 3, Dicer cKO n = 3. 

ANOVA with Bonferroni post-hoc test: *P<0.05, **P<0.01). 

(H) Tripotent clone derived from a single Drosha cKO NSC. A - astrocyte, N - 

neuron, O - oligodendrocyte and R - radial NSC. 

(I) Quantification of clone composition in control and Drosha cKO (control clones n 

= 28, Drosha cKO clones n =41. Two-sided Student’s t-test: *P<0.05, ***P<0.001). 

(J-L) GFP+BLBP+ and GFP+NG2+ expression in cultured control (J), Drosha cKO 

(K) and Dicer cKO (L) NSCs 2 dpi with adeno-Cre virus. 

(M) Quantification of neural lineage marker expression by adeno-Cre infected 

(GFP+) control, Drosha cKO and Dicer cKO NSCs 2 dpi (n = 4. Kruskal-Wallis with 

Dunn post-hoc test: *P<0.05, **P<0.01). 

Data are mean ± SEM. Scale bars 20 µm. See also Figure S2 and Table S2-S3. 

Figure 3. Drosha binds and cleaves NFIB mRNA in DG NSCs. 

(A) Evolutionary conserved hairpins 5’ UTR HP (blue) and 3’ UTR HP (red) in the 

NFIB mRNA sequence. 
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(B) Drosha CLIP-quantitative RT-PCR of NFIB mRNA from DG NSCs. DGCR8 

and Six3 mRNAs were used as positive and negative control CLIP targets, respectively. 

(replicates n = 3. Mann-Whitney Test: *P<0.05). 

(C) Scheme of the psiCheck Renilla Luciferase constructs (rLuc) containing the 

NFIB 5’ UTR HP or 3’ UTR HP sequence in the SV40 untranslated region. 

(D) Quantitative RT-PCR analysis of rLuc mRNA pulled-down with Drosha from 

psiCheck-NFIB 5’ UTR HP and psiCheck-NFIB 3’ UTR HP transfected N2a cells 

relative to the pull-down from psiCheck-rLuc transfected cells (replicates n = 3. Two-

sided Student’s t-test: *P<0.05, **P<0.01). 

(E) Scheme of the in vitro processing procedure. 

(F) Capillary electrophoresis electropherograms of NFIB 3’ UTR HP RNA (probe) 

incubated with the beads alone (ctrl), incubated with mock IP sample or flag-tagged 

Drosha IP (Drosha FLAG IP). Arrow points to degraded 3’ UTR HP probe. Loading 

marker (LM) and probe (P) are indicated. 

(G) Quantitative RT-PCR analysis of the NFIB 3’ UTR HP in control and Drosha 

cKO NSCs two days after adeno-Cre infection. 

Data are mean ± SEM. 

 

Figure 4. NFIB knockdown rescues Drosha cKO-induced oligodendrocyte 

differentiation. 

(A) Quantification of lineage marker expression by NFIB overexpressing DG NSCs 

after 5-day differentiation (replicates n = 3. Mann-Whitney test: *P<0.05, ***P<0.001). 

(B) Experimental paradigm of the nucleofection experiments. 
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(C) Quantification of adeno-Cre virus infected (GFP+) mCherry+NG2+ OPCs in 

Drosha cKO and control NSCs nucleofected with control rLuc esiRNA or NFIB 

esiRNA. 

(D-F) mCherry+, GFP+ and NG2+ cells in adeno-Cre virus infected control NSC 

cultures nucleofected with the control esiRNA, Drosha cKO NSCs nucleofected with 

the control esiRNA (E) and Drosha cKO NSCs nucleofected with the NFIB esiRNA 

(F). 

(G) Quantification of adeno-Cre virus infected (GFP+) mCherry+tub+ neurons from 

Drosha cKO and control NSCs nucleofected with rLuc esiRNA or NFIB esiRNA. 

(H) Quantification of adeno-Cre virus infected (GFP+) mCherry+BLBP+ progenitors 

from Drosha cKO and control NSCs nucleofected with control rLuc esiRNA or NFIB 

esiRNA.  

Data are mean ± SEM. Biological replicates n = 3. Kruskal-Wallis with Dunn post-

hoc test: *P<0.05, **P<0.01. Scale bars 20 µm  
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EXPERIMENTAL PROCEDURES 

Animal husbandry 

The mice used have been described previously (Supplemental Experimental 

Procedures). Mice were maintained on a 12-hour day-night cycle with free access to 

food and water under specific pathogen-free conditions and according to Swiss Federal 

regulations. All procedures were approved by the Basel Cantonal Veterinary office 

(license numbers 2537 and 2538). 

Hippocampal NSC cultures, adenoviral infection and nucleofection 

DG NSCs were isolated from 8-week old mice as described previously (Lugert et 

al., 2010). DG NSCs were infected with an adeno-Cre adenovirus at a multiplicity of 

infection of 100 and fixed after 24 or 48 hours. DG NSC cultures were nucleofected 

using a mouse neural stem cell kit (Lonza) (Supplemental Experimental Procedures). 

Fluorescence activated cell sorting 

After TAM induction, NSCs were isolated from Hes5CreERT2Rosa26-

CAG::EGFPfl/+  and Hes5::CreERT2Droshafl/fl Rosa26-CAG::EGFPfl/+ using a 

FACSariaIII (BD Biosciences) (Supplemental Experimental Procedures). 

RNA isolation, quantitative RT-PCR and analysis of miRNA expression 

Total RNA was isolated from cultured or sorted DG NSCs using Trizol reagent (Life 

Technologies). Analysis of gene expression was performed as described in the 

Supplemental Experimental Procedures. miRNAs were isolated using mirVANA kit 

(ThermoFisher) following the miRNA enrichment procedure and quantified by TaqMan 

arrays (Life Technologies) (Supplemental Experimental Procedures). 

In vitro processing of NFIB HP RNAs 
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In vitro processing was performed on 5’ and 3’ UTR NFIB HP RNAs as described 

previously with minor adaptations (Supplemental Experimental Procedures) (Lee and 

Kim, 2007). 

5’ Rapid amplification of cDNA ends (5’ RACE) 

5’ RACE experiments were performed on 3g of total RNA of control and Drosha 

cKO NSCs following manufacture’s instructions (Invitrogen) (Supplemental 

Experimental Procedures). 

Luciferase Assay 

DG NSCs were transduced with an adeno-Cre adenovirus at a multiplicity of 

infection of 100 with or without subsequent nucleofection 2 days later with the 

psiCheck2 containing the 3’ UTR HP or 5’ UTR HP or control psiCheck2 vectors 

(Supplemental Experimental Procedures). 

Quantification and statistics 

Randomly selected, stained cells were analyzed with fixed photomultiplier settings 

on a Zeiss LSM510 confocal and Apotome2 microscope. For clonal analysis the entire 

hippocampus was sectioned and reconstructed as described previously (Bonaguidi et al., 

2011) (Supplemental Experimental Procedures). Percentages were converted by arcsine 

transformation. Statistical comparisons were conducted by two-tailed unpaired 

Student’s t-test, Mann-Whitney test, one-way ANOVA, or Kruskal-Wallis with Dunn 

post-hoc test as indicated. Statistical significance was assessed using GraphPad Prism 

software (GraphPad Software Inc.). Significance was established at P<0.05. 
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Figure S1, Related to Figure 1 

 

Figure S1. Drosha cKO from Hes5::CreER
T2

 expressing NSCs impairs neurogenesis in the DG. (A) 

Overview of the Hes5::CreER
T2

, Rosa26-CAG::EGFP and floxed Drosha alleles and Cre-mediated gene 

rearrangements (Chong et al., 2008; Harfe et al., 2005; Lugert et al., 2012). TAM treatment induces 

Drosha cKO and constitutive expression of GFP from the Rosa26-CAG::EGFP reporter allele in 

Hes5::CreER
T2

-expressing cells and their progeny. (B) Twenty-one days after TAM induction, GFP
+
 

Hes5-derived cells in control animals express Drosha (white arrowheads) and these include radial 

GFP
+
GFAP

+
 NSCs (yellow arrowheads). (C) Twenty-one days after TAM induction, GFP

+
 Hes5-derived 

cells do not express Drosha in the Drosha cKO (white arrowheads) including Hes5-derived radial 

GFP
+
GFAP

+
 (yellow arrowheads). (D) Quantification of Hes5-derived (GFP

+
) cells at d21 and d100 post-

TAM induction in control and Drosha cKO animals (control n = 5, Drosha cKO n = 5. Two-sided 

Supplemental Figures & Text



 

 

Student’s t-test, *P<0.05, ***P<0.001). (E) Quantification of radial GFP
+
GFAP

+
 cells at d21 post-TAM 

induction in control and Drosha cKO animals (control n = 5, Drosha cKO n = 5. Two-sided Student’s t-

test, *P<0.05). (F and G) NeuN
+
 mature neurons in control and Drosha cKO animals at d100 post-TAM 

induction. Inset and magnification on the right show an oligodendrocyte in Drosha cKO animals at d100 

post-TAM induction. (H) Quantification of GFP
+
S100β

+
 astrocytes and GFP

+
NeuN

+ 
newborn neurons at 

d100 post-TAM induction in control and Drosha cKO animals (control n = 5, Drosha cKO n = 5. Two-

sided Student’s t-test, *P<0.05). (I and J) S100β
+
 mature astrocytes in the Drosha cKO compared to 

control animals at d100. (K) TAM induction and kainic acid (KA) treatment regime to study the 

activation of Drosha cKO progenitors after epileptic seizures. TAM was administered once per day for 5 

consecutive days. KA was administered systemically 21 days after TAM induction and the mice analyzed 

4 days later at d25. (L) Quantification of proliferative GFP
+
PCNA

+
 progenitors and GFP

+
DCX

+
 

neuroblasts on d4 after KA treatment in control and Drosha cKO animals. (M and N) PCNA
+
 and DCX

+
 

cells in control and Drosha cKO animals on d4 after KA treatment (control n = 3, Drosha cKO n = 4. 

One-way ANOVA with Bonferroni post-hoc test: *P<0.05, ***P<0.001). Data are mean ± SEM. Scale 

bars represent 20 µm in (B), (C), (F), (G), (I) and (J) and represent 100 µm in (M) and (N).  
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Figure S2. Adult hippocampal NSCs produce oligodendrocytes upon Drosha deletion in vivo and in 

vitro. (A) Experimental paradigm of adeno-gfap::Cre stereotactic intracranial injection and gene deletion 

from GFAP
+
 radial NSCs and analysis at d6 and d21. (B) GFP expression from the recombined Rosa26-

CAG::EGFP allele following adeno-gfap::Cre injection into the DG of Rosa26-CAG::EGFP
fl/+

 mice. (C) 

GFP and GFAP expression at 6 dpi. (D) Quantification of GFP
+
GFAP

+
 and GFP

+
DCX

+
 at 6 dpi. (E) 

Quantification of GFP
+
Olig2

+
NG2

+
 cells in the DG of Drosha cKO (Hes5::CreER

T2
Drosha

fl/fl
Rosa26-

CAG::EGFP
fl/+

) and control (Hes5::CreER
T2

Rosa26-CAG::EGFP
fl/+

) animals (control n = 3, Drosha 

cKO n = 3. Two-sided Student’s t-test: **P<0.01). (F) Quantification of GFP
+
Olig2

+
 and GFP

+
NG2

+
 

cells in Drosha cKO (Hes5::CreER
T2

Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

) DG NSCs and control 

(Hes5::CreER
T2

Rosa26-CAG::EGFP
fl/+

) animals (control n = 3, Drosha cKO n = 3. Two-sided Student’s 

t-test: *P<0.05, **P<0.01). (G) NG2
+
 and Olig2

+
 oligodendrocytes in the DG of Drosha cKO 

(Hes5::CreER
T2

Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

) at d21 post-TAM induction (arrowheads). (H) Clonal 

analysis of GFP expression following low dose TAM administration of Hes5::CreER
T2

Rosa26-

CAG::EGFP
fl/+ 

mice after 2 days. (I) Quantification of the distance to the nearest GFP
+
 cell 2 days after 

low dose TAM induction (n = 2 animals). (J) GFP, DCX and GFAP expression following low dose TAM 

administration of Hes5::CreER
T2

Rosa26-CAG::EGFP
fl/+

 animals after 21 days. A - astrocyte, N - neuron, 

R - radial glia. The cells of each cell-type in the clone are numbered in the image. (K) GFP, Olig2 and 

GFAP expression following low dose TAM induction of Drosha cKO at d21. A - astrocyte and O - 

oligodendrocyte. The cells of each cell-type in the clone are numbered in the image. (L) GFP, DCX and 

Olig2 expression d15 after retro-Cre virus infection of the DG of Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

 

animals. (M) Quantification of GFP
+
DCX and GFP

+
Olig2 cells d15 after retro-Cre virus infection of the 

DG of Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

 animals. (N and O) GFP and DCX expression after adeno-

gfap::Cre-mediated Dicer cKO (Hes5::CreER
T2

Dicer
fl/fl

Rosa26-CAG::EGFP
fl/+

) and infected control 

(Hes5::CreER
T2

Rosa26-CAG::EGFP
fl/+

) mice. (P) Expression and quantification of BLBP
+
 and βtub

+
 

cells derived from NSCs grown in the presence of mitogens (FGF2 and EGF). (Q) βtub expression by 

cultured DG NSCs upon differentiation induced by mitogen removal and quantification of Sox2, βtub and 

Sox10 expressing cells (Biological replicates n = 2). (R) Experimental paradigm for gene ablation from 

cultured adult DG NSCs with adeno-Cre viruses. (S) Western-blot and quantification of Drosha and Dicer 

protein expression 72 hours after adeno-Cre virus mediated Drosha cKO and Dicer cKO, respectively. (T-

V) βtub expression after adeno-Cre virus mediated Drosha cKO and Dicer cKO compared to control. (W) 

Quantification of GFP
+
cleavedCASP3

+
 cells in cultured control, Drosha cKO and Dicer cKO NSCs d4 

post adeno-Cre virus infection (Biological replicates n = 4. Kruskal-Wallis with Dunn post-hoc test: 

*P<0.05). (X) Cells expressing the oligodendrocyte marker Sox10 by Drosha cKO cells 2 days after 

adeno-Cre virus infection. (Y) ΔCT plots of relative miRNA expression profiles of control (y–axis) 

versus Drosha cKO (x–axis) DG NSC cultures 48 hours post adeno-Cre infection. Correlation 

coefficients R
2
 = 0.81. (Z) ΔCT plots of relative miRNA expression profiles of control (y–axis) versus 

Dicer cKO (x–axis) DG NSC cultures 48 hours post adeno-Cre infection. Correlation coefficients R
2
 = 

0.66. Data are mean ± SEM. Scale bars represent 200 µm in (B), 100 µm in (H), (P) and (Q), 20 µm in 

(C), (G), (J), (K), (L), (N), (O), (T), (U), (V) and (X).  
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Figure S3. Drosha binds and regulates NFIB mRNA.  (A) Scheme of the crosslinked 

immunoprecipitation (CLIP) procedure. (B) Western-blot for Drosha protein after immunoprecipitation. 

Rabbit IgG and bead-only (no AB) IPs were performed as negative controls. Drosha CLIP-quantitative 

RT-PCR for NFIB and DGCR8 (positive control) mRNAs. Six3 mRNA was used as a negative control 

mRNA in the CLIP experiments. (C) Fragment analyzer electropherograms of NFIB 5’UTR HP RNA 

probe, control incubated with the beads alone (ctrl) as degradation control, with mock IP, or with flag-

tagged Drosha IP (Drosha FLAG IP). Loading marker – LM, full-length probe - P. (D) 5’RACE of NFIB 

3’UTR mRNA in wild-type NSCs. Agarose gel of 5’RACE products of control and Drosha cKO NSCs. 

The diagram represents cleaved fragments identified by Sanger sequencing. Green and black bars identify 

respectively fragments within and distal to the hairpin sequence. Bin size corresponds to 5 nucleotides. 

(E) Scheme of luciferase assay. Rosa26-CAG::EGFP
fl/+

 (control), Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

 and 

Dicer
fl/fl

Rosa26-CAG::EGFP
fl/+

 DG NSCs were infected with adeno-Cre viruses and subsequently 

transfected with psiCheck-NFIB 5’UTR HP or psiCheck-NFIB 3’UTR HP vectors before quantifying 

luciferase activity. (F) Relative luciferase activity of the psiCheck2 NFIB 5’UTR HP and 3’UTR HP 

vectors in control, Drosha cKO and Dicer cKO DG NSCs (Biological replicates n = 3. One-sided 

Student’s t-test: *P<0.05, **P<0.01). (G) TAM induction regime for fluorescence activated cell sorting 

(FACS) of Hes5::CreER
T2

-derived cells. TAM was administered to mice once per day for 5 consecutive 

days before FACS for GFP
+
 cells at 1 day (d1) after induction. The GFP

+
 population was gated on the 

basis of the GFP-negative population. Quantitative RT-PCR analysis of Drosha and NFIB mRNA levels 

in the FACSorted GFP
+
 cells from the Drosha cKO (control n = 12, Drosha cKO n = 19. Two-sided 

Student’s t-test: *P<0.05). (H) Scheme of the in vitro deletion assay. Quantitative RT-PCR analysis of 

NFIB and Sox10 expression by Drosha cKO and Dicer cKO NSCs 48 hours after adeno-Cre infection 

(Biological replicates n = 3. Two-sided Student’s t-test: *P<0.05). Data are mean ± SEM. 

  



 

 

Figure S4, Related to Figure 4 

 

Figure S4. Drosha inhibits oligodendrocyte generation from DG NSCs through NFIB knockdown. 

(A) Gain of NFIB function experiments in cultured DG NSCs. pCMV-NFIB or empty pCMV expression 

vectors were nucleofected into cultured adult DG NSCs. (B) Western-blot analysis of transfected DG 

NSCs blotted for the HA-tagged NFIB (HA1, HA2 are experimental duplicates) compared to empty 

pCMV vector (CMV) and pCMV-GFP vector (GFP) only transfected cells. (C-D) βtub expression by 

pCMV (ctrl: C) and pCMV-NFIB (NFIB: D) transfected DG NSCs after 5 days of differentiation. (E) 



 

 

Sox10 and NG2 expression by NFIB overexpressing DG NSCs after 5 days of differentiation. (F) 

Quantitative RT-PCR analysis of N2a cells transfected with the control esiRNA (rLuc) and esiRNA 

targeting NFIB. NFIB mRNA is not detectable 24 and 48 hours after esiRNA NFIB transfection 

(Biological replicates n = 3. Mann-Whitney test: ***P<0.001). (G) Expression of the oligodendrocyte 

marker NG2 by control NSCs nucleofected with NFIB esiRNA. (H) Quantification of adeno-Cre infected 

(GFP
+
), nucleofected mCherry

+
, GFAP

+
 astrocytes in Drosha cKO and control NSCs nucleofected with 

control esiRNA (rLuc) or NFIB esiRNAs (Biological replicates n = 3. Kruskal-Wallis with Dunn post-

hoc test: *P<0.05). (I) Under physiological conditions, adult DG NSCs express the RNAseIII Drosha that 

targets NFIB mRNA and inhibits NFIB protein expression. DG Hes5
+
 NSCs (type-1) produce DCX

+
 

neuroblasts via intermediate progenitors (IP) that mature into NeuN
+
 granule neurons, but do not generate 

oligodendrocytes. (J) After Drosha deletion from adult DG NSCs, NFIB mRNA is up regulated. NFIB 

expression drives NSCs into oligodendrocyte differentiation at the expense of neuron production. RBP, 

RNA binding protein. Scale bars represent 20 µm in (C), (D), (E) and (G). Data are mean ± SEM. 

  



 

 

Table S1, Related to Figure 1 and S1 

 

 

Table S1: Density of GFP
+
 marker expressing cells in the adult DG in vivo. Table showing the density 

of GFP
+
 cells expressing specific markers at d21 and d100 post-TAM induction and the density of GFP

+
 

cells expressing DCX and PCNA d21 after kainic acid (KA) administration in control and Drosha cKO 

animals. Values are mean ± SEM.  

  Mean ± SEM (GFP+ cells/mm
2
) 5d Tamoxifen + 21d chase  

 GFP+      Sox2+S100β- PCNA+ DCX+ radial GFAP+ 

Control 838.7 ± 65.3 398.0 ± 26.1 168.2 ± 17.8 444.3 ± 64.6 371.7 ±  65.5  

Drosha cKO 577.5 ± 46.4  209.0 ± 34.1 60.5 ± 16.1 269.5 ± 34.3 119.4 ± 30.9 

P-values  
(two-sided t-test) 

0.03 (*) 

 

0.01 (*) 0.002 (**) 0.04 (*) 0.02 (*) 

  

           Mean ± SEM (GFP+ cells/mm
2
) 5d Tamoxifen + 100d chase 

 

 

 GFP+ Sox2+S100β+ NeuN+  DCX+ radial GFAP+ 

Control  969.0 ± 52.4 6.4 ± 0.4 455.7 ± 57.5 284.9 ± 19.1 174.2 ± 47.7 

Drosha cKO 625.3 ± 23.9 29.8 ± 1.8 177.3 ± 51.2 84.9 ± 19.4 43.2 ± 17.8 

P-values 
(two-sided t-test) 

0.003 (**) 0.002 (***) 0.02 (*) 0.0004 (***) 0.004 (**) 

  

           Mean ± SEM (GFP+ cells/mm
2
) 5d Tamoxifen + 21d chase + KA 

 

 GFP+ DCX+ PCNA+ 

Control  955.6 ± 53.8 590.3 ± 7.7 257.4 ± 5.4 

Drosha cKO 530.0 ± 40.4  121.4 ± 15.8      68.2 ± 10.9 

P-values (one-

way ANOVA) 

0.003 (**)  0.00004 (***)    0.0003 (***) 



 

 

Table S2, Related to Figure 2 

 

 Mean ± SEM (GFP+ cells/mm
2
) 

adeno-gfap::Cre + 21dpi 
  

 DCX+ Sox10+ 

Control       427.8 ± 85.1 5.3 ± 2.1 

Drosha cKO 141.8 ± 34.5 127.8 ± 39.7 

Dicer cKO 247.9 ± 40.7 32.1 ± 6.4 

P-values (one-way ANOVA + Bonferroni Post-

Hoc) ctrl vs. Drosha cKO 

P-values (one-way ANOVA + Bonferroni Post-

Hoc) ctrl vs. Dicer cKO 

0.03 (*) 

 

0.2 (ns) 

0.0062 (**) 

 

0.5 (ns) 

 Sox2+ PCNA+ 

Control 991.3 ± 80.4 259.2 ± 26.0 

Drosha cKO 450.3 ± 116.7 39.3 ± 22.1 

P-values (two-sided t-test) 0.01 (**) 0.003 (**) 

 

Table S2: Density of GFP
+
 marker expressing cells in the adult DG in vivo following adeno-

gfap::Cre adenoviral infection. Table showing the density of GFP
+
 cells expressing specific markers 

d21 after adeno-gfap::Cre adenovirus infection in control and Drosha cKO animals. Values are mean ± 

SEM, ns – not significant. 

  



 

 

Table S3, Related to Figure 2 

 

 Mean ± SEM (% GFP+ cells)  

adeno-Cre + 2 dpi 

 

 

 BLBP+ NG2+ βtub+ GFAP+ aCASP3+ 

Control  47.7 ± 6.7 0 ± 0 46.3 ± 5.1 18.6 ± 3.4 1.6 ± 0.8 

Drosha cKO  17.4 ± 5.1 37.7 ± 7.2 22.1 ± 2.2 1.6 ± 1.2 2.4 ± 1.4  

Dicer cKO 42.4 ± 5.7 4.7 ± 2.2 23.4 ± 3.6 16.6 ±1.3 4.7 ± 0.9 

P-values (Kruskal-Wallis 

test) Ctrl vs. Drosha 

 

0.03 (*) 

 

 

0.001 (**) 

 

 

0.0029 (**) 

 

 

0.0011 (**) 

 

 

0.99 (ns) 

 

P-values (Kruskal-Wallis test) 

Ctrl vs. Dicer cKO 
0.99 (ns) 0.27 (ns) 0.0037 (**) 0.99 (ns) 0.04 (*) 

 

Table S3: Distribution of GFP
+
 marker expressing cells in adult DG NSCs in vitro following adeno-

Cre-mediated recombination. Table showing the distribution of GFP
+
 cells expressing specific markers 

2 days after adeno-Cre adenoviral infection of control, Drosha cKO and Dicer cKO DG NSCs in vitro. 

Values are mean ± SEM, ns – not significant. 

  



 

 

Table S4, Related to Figure 4 and Figure S4 

 

 Mean ± SEM  

(% mCherry+GFP+ cells) 

adeno-Cre + 2 dpi 
 

 NG2+ BLBP+ βtub+ GFAP+ 

Control + esiRNA rLuc 2.2 ± 1.8 47.8 ± 3.7 46.9 ± 4.4 14.7 ± 1.5 

Drosha cKO + esiRNA rLuc 64.4 ± 10 24.6 ± 2.8 25.6 ± 2.9 6.7 ± 0.8 

Control + esiRNA NFIB 4.7 ± 4.7 52.4 ± 7 46.5 ± 1.9 13.3 ± 0.8 

Drosha cKO + esiRNA NFIB 23.1 ± 2.6 48.1 ± 4.5 45.7 ± 4.9 6.3 ± 1.3 

P-values (Kruskal-Wallis test) 0.001 (**) 0.006 (**) 0.005 (**) 0.003 (**) 

 

Table S4: Distribution of GFP and mCherry expressing cells in adult DG NSCs following NFIB 

knockdown in vitro. Table showing the distribution of GFP
+
 marker expressing cells after NFIB 

knockdown and 2 days after adeno-Cre adenoviral infection of control and Drosha cKO DG NSCs in 

vitro. Values are mean ± SEM. 



 

 

Supplemental Experimental Procedures 

Transgenic animals 

Hes5::CreER
T2

, Rosa26-CAG::EGFP, Drosha
fl/fl

, Dicer
fl/fl

 mice have been described elsewhere (Chong et 

al., 2008; Harfe et al., 2005; Lugert et al., 2012; Tchorz et al., 2012). All mice were maintained on a 

C57BL6 background and were 8-10 weeks old at the onset of the experiments. CreER
T2

-recombinase 

activity from the Hes5CreER
T2

 locus was induced by Tamoxifen administration (Sigma; 2 mg/injection in 

corn oil) injected as a single dose intraperitoneal daily for five consecutive days. For in vivo clonal 

analysis animals received one single injection of Tamoxifen (48 mg/kg in corn oil).  

Tissue preparation and immunohistochemistry 

Mice were deeply anesthetized by injection of a ketamine/xylazine/acepromazine solution (150 mg, 7.5 

and 0.6 mg per kg body weight, respectively). Animals were perfused with ice-cold 0.9% saline followed 

by 4% paraformaldehyde in 0.1M phosphate buffer. Brains were isolated and post-fixed overnight in 4% 

paraformaldehyde in 0.1M phosphate buffer, and then cryoprotected with 30% sucrose in phosphate 

buffer at 4°C overnight. Brains were embedded and frozen in OCT (TissueTEK) and sectioned as 30 µm 

floating sections by cryostat (Leica). Free-floating coronal sections were stored at -20°C in antifreeze 

solution until use. For clonal analysis, coronal brain sections (45 µm) through the entire dentate gyrus 

were maintained in series. 

Sections were incubated overnight at room temperature, with the primary antibody diluted in blocking 

solution of 1.5% normal donkey serum (Jackson ImmunoResearch), 0.5% Triton X-100 in phosphate-

buffered saline. For clonal analysis, sections where incubated for 48 hours at 4°C, with primary antibody 

in blocking solution of 1.5% normal donkey serum (Jackson ImmunoResearch), 2% Triton X-100 in 

phosphate-buffered saline. Antibodies used: AN2 (1:5, gift of Prof. M. Trotter), activated cleavedCASP3 

(Cell Signalling, rabbit, 1:500), BLBP (Chemicon, rabbit, 1:500), βtubulinIII (Sigma, mouse, 1:500), 

DCX (Santa Cruz, goat, 1:500), Drosha (Abcam, rabbit, 1:100), dsRed (Clonetech, rabbit, 1:500), GFAP 

(Sigma, mouse, 1:1000; Santa Cruz, goat, 1:500), GFP (AbD Serotec, sheep, 1:250; Invitrogen, rabbit, 

1:700; AvesLabs, chicken, 1:500), NeuN (Millipore, mouse, 1:1000), NG2 (Chemicon, rabbit, 1:500), 

Olig2 (Millipore, rabbit, 1:500), PCNA (DAKO, mouse, 1:1000), S100β (Sigma, mouse, 1:200), Sox2 

(Santa Cruz, goat, 1:500), Sox10 (Santa Cruz, goat, 1:500). 

Sections were washed in phosphate-buffered saline and incubated at room temperature for 2 hours with 

the corresponding secondary antibodies in blocking solution. For clonal analysis sections where incubated 

for 24 hours at 4°C with the corresponding secondary antibody in blocking solution.  Secondary 

antibodies and detection: Alexa488/Cy3/Alexa555/Alexa594/Alexa647/Alexa649 conjugated anti-

chicken, mouse, goat, rabbit, rat and sheep immunoglobulin (1:500, Jackson Immunoresearch). Sections 

were then washed and counter-stained with DAPI (1 µg/ml). For PCNA and Drosha detection, antigens 

were recovered at 80 °C for 20 minutes in sodium citrate solution (10 mM, pH7.4). Stained sections were 

mounted on Superfrost glass slides (Thermo Scientific), embedded in mounting medium containing 

diazabicyclo-octane (DABCO; Sigma) as an anti-fading agent and visualized using a Zeiss LSM510 

confocal microscope, Leica SP5 confocal microscope or Zeiss Apotome2 microscope. 

Adeno-gfap::Cre adenoviral and retro-Cre retrovirus infections in the adult DG 

Adult (8-10 week old) mice (Rosa26-CAG::EGFP
fl/+

, Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

, Dicer
fl/fl

Rosa26-

CAG::EGFP
fl/+

) were anesthetized in a constant flow of Isofluorane (3%) in oxygen and positioned in a 

stereotaxic apparatus (David Kopf instruments). Mice were injected with Temgesic subcutaneous (0.05 

mg/kg body weight). The skull was exposed by an incision in the scalp and a small hole (1 mm) drilled 

through the skull. One µl of adeno-gfap::Cre adenovirus (titer 1x10
12

 infectious particles per ml) or 

retrovirus-Cre (titer 2.7x10
7
, Braun et al., 2015) was injected in the DG using a sharpened borosilicate 

glass capillaries at the stereotaxic coordinates -2 mm anteroposterior, 1.5 mm lateral to Bregma and -2.0 

mm below the surface of the skull. Mice were killed 6, 15 or 21 days after virus infection. Brain tissue 

was processed and analyzed by immunohistochemistry as described above. 

Induction of epileptic seizures  

Seizures were induced as described previously (Lugert et al., 2010), kainic acid (KA, Tocris Bioscience) 

was administered intraperitoneal at 30 mg/kg body weight. Seizures developed within 45 minutes after 

injection and spontaneously stopped within 2-3 hours. The mice were sacrificed 4 days after KA injection 

and the brains processed for immunohistochemical analysis as described above. 

Hippocampal neural stem cell cultures 

Brains of 8-week old Rosa26-CAG::EGFP
fl/+

, Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

, Dicer
fl/fl

Rosa26-

CAG::EGFP
fl/+

 mice were isolated in L15 Medium (GIBCO) and sectioned live at 300 µm using a 



 

 

McIllwains tissue chopper. The DG was micro-dissected from the rest of the hippocampus under a 

dissection binocular microscope avoiding contamination with tissue from the molecular layer, cerebral 

cortex and subventricular zone, digested in a Papain based solution and mechanically dissociated as 

described previously (Lugert et al., 2010). Cells were plated in 48-well dishes (Costar) coated with 100 

µg/ml Poly-L-Lysine (Sigma) and 1 µg/ml Laminin (Sigma) in neural progenitor culture medium: 

DMEM:F12 (Gibco, Invitrogen), 2% B27 (Gibco, Invitrogen), FGF2 20 ng/ml (R&D Systems), EGF 20 

ng/ml (R&D Systems). DG NSCs were differentiated by growth factor removal and continued culture. 

Cells were fixed for 10 minutes in 4% paraformaldehyde in 0.1M phosphate buffer and processed as 

described above. 

Adeno-Cre adenovirus infection and AMAXA nucleofection in vitro 

Rosa26-CAG::EGFP
fl/+

, Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

, Dicer
fl/fl

Rosa26-CAG::EGFP
fl/+ 

DG NSCs 

were transduced with an adeno-Cre adenovirus (titer 1x10
11

 infectious particles per ml) in growth factor 

free medium and plated at a density of 5x10
4
 cells/cm

2
 on poly-L-Lysine/Laminin coated coverslips. 48 

hours later, the cells were fixed in 4% paraformaldehyde in 0.1M phosphate buffer and process as 

described above. For western-blot experiments, Rosa26-CAG::EGFP
fl/+

, Drosha
fl/fl

Rosa26-

CAG::EGFP
fl/+

, Dicer
fl/fl

Rosa26-CAG::EGFP
fl/+ 

DG NSCs were transduced with an adeno-Cre 

adenovirus (titer 1x10
11

 infectious particles per ml) and collected in lysis buffer after 72 hours and 

processed for western-blot (see below)  

Rosa26-CAG::EGFP
fl/+

 and Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

 adult DG NSC cultures were nucleofected 

according to the mouse neural stem cell kit instructions (Lonza). Briefly, DG NSCs were dissociated with 

trypsin and resuspended in the nucleofector solution to a final concentration of 10
6
 cells/100µl. Cell 

suspensions were combined with either 100 pmol endoribonuclease-prepared siRNAs (esiNA) against 

NFIB or Renilla luciferase (Sigma). pCAG::mCherry was added at a ratio 1:3 to identify transfected 

NSCs. For overexpression, DG NSCs were combined with either pCMV (empty) or pCMV-HA-NFIB 

(kindly provided by Prof. Heiner Schrewe) vectors and pmaxGFP. NSCs were nucleofected with a 

Nucleofector 2b device (program A-033). NSCs were immediately transfer to neural progenitor culture 

medium and plated at the density of 5x10
4
 cells/cm

2
 on poly-L-Lysine/Laminin coated coverslips. 24 

hours later, DG NSCs were transduced with an adeno-Cre adenovirus (titer 1x10
11

 infectious particles per 

ml) in growth factor free medium and fixed 2 dpi. For overexpression, DG NSCs were fixed 2 days post-

nucleofection. 

Fluorescence activated cell sorting  

Hes5::CreER
T2

Rosa26-CAG::EGFP
fl/+

 and Hes5::CreER
T2

Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

 animals 

were induced with TAM for five consecutive days and brains collected 1 day after the last injection. 

NSCs were isolated as described above. Cells were washed with L15 medium (Gibco, Invitrogen), 

filtered through a 40 µm cell sieve (Miltenyi Biotec) and sorted by forward and side-scatter for live cells 

(control) and gated for GFP-negative (wild type levels) or GFP
+
 populations with a FACSaria III (BD 

Biosciences). DAPI (5 mg/ml) was added to discriminate living NSCs. GFP
+
 cells were used for RNA 

isolation and gene expression analysis (see below). 

RNA Isolation and quantitative RT-PCR 

Total RNA was isolated using the Trizol method (Life Technologies) and resuspended in water. RNA was 

treated with RNase-free DNase I (Roche) to remove genomic DNA contamination. First-strand cDNA 

was generated using BioScript (Bioline) and random hexamer primers followed by quantitative PCR 

using SensiMix SYBR kit (Bioline). Expression analysis of genes of interest was performed on a Rotor-

Gene Q (Qiagen). Primers for quantitative RT-PCR were:  

NFIB (Forward: CAGGAGCAAGATTCTGGAC; Reverse: GGGTGTTCTGGATACTCTCAC); 

NFIB 3’UTR HP (Forward: TAAGTCCTTCAGCCCTTGGA ; Reverse: 

CTGAGGAGGCTGCAGCTAAG) 

Sox10 (Forward: AGCTCTGGAGGTTGCTGAAC; Reverse: GCCGAGGTTGGTACTTGTAGTC); 

Drosha Exon9-10 (Forward: GACGACGACAGCACCTGTT; Reverse: 

GATAAATGCTGTGGCGGATT); 

DGCR8 (Forward: GGAGCTAGATGAAGAAGGAACAGG; Reverse: 

GTAAAGCGTCCACATCATTGTCAA); 

Six3 (Forward: TCAGCAGAGTCACCGTCCAC; Reverse: TGGAGGTTACCGAGAGGATCG) 

βactin (Forward: AGGTGACAGCATTGCTTCTG; Reverse: GGGAGACCAAAGCCTTCATA) 

Analysis of miRNA expression 

Total RNA was isolated from adeno-Cre adenovirus infected Rosa26-CAG::EGFP
fl/+

, Drosha
fl/fl

Rosa26-

CAG::EGFP
fl/+

, Dicer
fl/fl

Rosa26-CAG::EGFP
fl/+

 DG NSCs at 2 dpi using the mirVANA isolation kit 

following the miRNA enrichment procedure. miRNA profiling was performed on TaqMan arrays (Life 



 

 

Technologies) with 500 ng of purified RNA according to manufacturer’s instructions. Expression analysis 

was performed using the comparative cycle threshold (Ct) values. 

 

Crosslinking and immunoprecipitation  

N2a cells (ATCC) were transfected using Transfectin Lipid Reagent (BioRad) according to 

manufacturer’s instructions with p3X-FLAG-CMV (Sigma) or pCK-Drosha-WT-FLAG (Han et al., 

2009; Knuckles et al., 2012) together with psiCheck2 vectors containing the NFIB hairpins. The 

transfected cells were trypsinized and collected after 48 hours. The mouse NFIB 5’ and 3’ untranslated 

regions of 200bp fragments containing the hairpins were amplified by PCR and cloned into the NotI site 

of psiCheck2 vector (Promega). The cells were cross-linked with 0.5% paraformaldehyde in PBS for 10 

minutes, the reaction was quenched by adding Glycine to a final concentration of 140 mM and the cells 

were lysed by sonication (10 pulses for 10 seconds). Immunoprecipitation was performed for 2 hours at 

4°C using anti-Flag M2 Affinity Gel (Sigma-Aldrich). After washing with lysis buffer, the complexes 

were reverse cross-linked at 70°C for 1 hour. RNA was extracted using Trizol reagent (Invitrogen) 

according to the manufacturer´s instructions and processed as described above. 

Primers: psiCheck2 (Forward: TGATCGGAATGGGTAAGTCC; Reverse: 

GGCCTTGATCTTGTCTTGGT). 

Luciferase Assay 

Rosa26-CAG::EGFP
fl/+

, Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

 and Dicer
fl/fl

Rosa26 CAG::EGFP
fl/+

 DG NSCs 

were transduced with adeno-Cre or adeno-GFP adenoviruses (see Adeno-Cre infection). 48 hours later, 

the NSCs were nucleofected with the psiCheck2 containing the 3’UTR or 5’UTR NFIB hairpins (see 

Crosslinking and Immunoprecipitation) using the AD1 Primary Cell 4D-Nucleofector Y Kit (Lonza) and 

program EH158. 24 hours post-nucleofection, luciferase activity was measured in a Centro LB 960 

Microplate Luminometer (Berthold) using the Dual-Luciferase Reporter Assay System (Promega). 

Endogenous CLIP in DG NSCs 

A confluent 10 cm dish of DG NSCs was cross-linked at 254 nm at 300 mJ/cm
2
 in a BioLink UV-

Crosslinker. Cells were lysed with RIPA buffer (0.1M sodium phosphate pH 7.2, 150 mM sodium 

chloride, 0.1% SDS, 1% sodium deoxycholate, 1% NP-40) containing complete protease inhibitor 

cocktail (Roche) and afterwards treated with RNase-free DNase I (Roche). Immunoprecipitation was 

performed with Protein G Sepharose 4 Fast Flow (GE Healthcare Life Science). Rabbit anti-Drosha 

Antibody (1:200; D28B1; Cell Signaling) was coupled to the beads for 1 hour at RT, beads were washed 

three times with RIPA and immunoprecipitation was performed for 2 hours at 4°C. After washing the 

beads with RIPA buffer, the proteins were digested with 4 mg/ml recombinant PCR grade Proteinase K 

(Roche) for 1 hour at 37°C with shaking at 1000 rpm. First-strand cDNA synthesis and quantitative RT-

PCR was performed as above. 

Immunoprecipitation and Western-blot  

Beads from the endogenous Drosha immunoprecipitation were resuspended in Lämmli-Buffer containing 

2-mercaptoethanol, boiled for 5 minutes and collected at 12000 x g for 20 seconds. Protein samples were 

separated on 10% SDS-polyacrylamide gels and transferred to Immobilon-P membranes (Millipore). 

Primary antibody rabbit anti-Drosha (1:1000; D28B1, Cell Signaling), as secondary antibody HRP-

conjugated anti-rabbit IgG (1:10000; Jackson ImmunoResearch). Detection was by chemiluminescence 

(ECL, GE Healthcare). To determine Drosha and Dicer protein expression, Rosa26-CAG::EGFP
fl/+

, 

Drosha
fl/fl

Rosa26-CAG::EGFP
fl/+

, Dicer
fl/fl

Rosa26-CAG::EGFP
fl/+ 

DG NSCs were transduced with 

adeno-Cre adenovirus. 24 or 72 hours after infection, the cells were lysed in RIPA Buffer. The lysates 

were incubated 30 minutes on ice and clarified by centrifugation at 13,000 rpm for 20 minutes. Cell 

pellets were resuspended in Lämmli-Buffer 3X. Equal amount of protein were separated by 8% SDS-

polyacrylamide gel and transferred to Immobilon-P membranes (Millipore). Primary antibodies: anti-HA 

tag (1:1000; mouse, Covance), anti-Dicer (1:300; rabbit, Sigma), anti-Drosha (1:1000; rabbit, Cell 

Signaling) and anti-GAPDH (6C5) (1:10000; mouse, Calbiochem). Secondary antibodies HRP-

conjugated anti-rabbit IgG (1:10000; Jackson ImmunoResearch) and HRP-conjugated anti-mouse IgG 

(1:10000; Jackson ImmunoResearch). Detection was by chemiluminescence (ECL, GE Healthcare) and 

quantification by densitometry using ImageJ software (National Institutes of Health, USA). 

In vitro processing 

In vitro processing experiments were performed as described previously with some adaptations (Lee and 

Kim, 2007). Briefly, N2a cells were transfected with pCMV Drosha-Flag or pCMV (empty) vectors. One 

day after transfection, total cell extracts were prepared in lysis buffer (20mM Tris-HCl, pH 7.8, 100mM 

KCl, 0.2mM EDTA, 20% (v/v) glycerol, 1mM PMSF) by sonication followed by RNaseA (Sigma) and 

DNaseI (Roche) treatment and centrifugation at 13400 g for 15 minutes. Total extracts were used for 



 

 

immunoprecipitation in lysis buffer using Dynabead protein G (Life Technologies) coupled to mouse 

anti-Flag antibody (1:100, Sigma). 30 µl of the processing reaction were prepared and contained: 15 µl of 

beads from Drosha-Flag immunoprecipitated or uncoupled bead fraction, 6.4 mM MgCl2, 0.75 µl RNase 

Inhibitor (Invitrogen) and 0.5-1 µg RNA probe containing the 5’ UTR or 3’UTR NFIB hairpins 

transcribed with T7 RNA polymerase (NEB). The reaction was carried out at 25°C for 30 minutes. RNA 

was extracted using phenol/chloroform and subsequently analyzed on a fragment analyzer using the 

DNF-472 kit (AATI) and the Low Range ssRNA ladder (NEB). 

 

5’ RACE 

5’ RACE experiments were performed on control and Drosha cKO embryonic NSCs according to 

5’RACE System for rapid amplification of cDNA ends version 2.0 kit instructions (Invitrogen). 3 µg of 

total RNA of control and Drosha cKO NSCs were used. Nested PCR products were cloned into pGEM-T 

easy vector (Promega) and sequenced by Sanger sequencing (Microsynth). Fragments were aligned to 

NFIB sequence using DNASTAR Lasergene. 

NFIB RT Primer: AGATCTGTCAATACGAGAA 

NFIB 1 Primer: GTTTTCCTAGCCTACCTGGCATT 

NFIB nested Primer: TGCCTCTTTGTCTCTACGATGC 

In vivo clonal analysis 

Confocal images were used to confirm GFP
+
 cell identity according to immunohistological and 

morphological properties. Whole hippocampi were serially imaged. For 3D reconstruction, optical stacks 

from the entire DG were serially aligned using Reconstruct 1.1.0 software (Fiala, 2005). Reconstructed 

hippocampi were analyzed with Imaris Software (Bitplane) with the spot detection tool and manually 

refined to mark single NSC in the DG. Single cell coordinates were obtained and analyzed using an in-

house MATLAB script (The MathWorks, Inc.) in order to get the distance to the nearest GFP
+
 cell 

neighbor (mean: 184.3 ± 17.2 µm, at 2 days after Tamoxifen injection). 
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