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Abstract

We characterise the magnetic state of highly-textured, sputter deposited erbium for a film of

thickness 6 nm. Using polarised neutron reflectometry it is found the film has a high degree of

magnetic disorder, and we present some evidence that the films’ local magnetic state is consistent

with bulk-like spiral magnetism. This, combined with complementary characterisation techniques,

show that thin film erbium is a strong candidate material for incorporation into device structures.
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INTRODUCTION

The most important magnetic interaction in Er (like other heavy rare earth (RE) metals),

is the isotropic Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. This results

in a minimised free energy when the ferromagnetism consists of sheets perpendicular to the

c-axis, with the moments rotating through a certain angle from one sheet to the next.

Competing with this are a magnetoelastic contribution and the crystalline anisotropy in

the hcp structure, which favour magnetic interaction either along or perpendicular to the

c-axis. In Er, the crystalline anisotropy results in a complex temperature dependance, with

an initial ordering of moments parallel to the c-axis, followed at lower temperatures by a

canting out-of the c-plane; this creates a rich magnetic phase diagram [1–9].

Bulk Er has three distinct magnetic transitions. Within the three magnetic phases there

are many other reproducible (but metastable) commensurate states. On cooling below the

high-temperature paramagnetic phase (≈ 85 K) Er first gains a sinusoidal, c-axis modulated

(CAM) antiferromagnetic phase with a wavelength of about 7 atomic layers (which is labelled

by the magnetic wave vector τc = 2/7, in units of reciprocal lattice parameter, c∗). As the

temperature is lowered the magnetic wave vector of the CAM peaks at ≈ 52 K. Below this

temperature Er enters an ‘intermediate’ canted helical phase where the in-plane moments

begin to order creating what has been referred to by Cowley et al. as an antiferromagnetic

“wobbling cycloid” [1]. The magnetic repeat distance increases with decreasing temperature,

through a number of stable commensurate phases, to 8 atomic layers (τc = 1/4). These states

exhibit a ferrimagnetic moment. Finally, below 18 K a conical c-axis ferromagnetic phase

is formed with a wavevector (τc = 5/21). We have been able to confirm that many of

the magnetic states of bulk Er are reproducible in sputter deposited epitaxial thin films of

thickness 200 nm [9].

In order to become device relevant in the field of spintronics, as a spin transfer torque

(STT) material (as theoretically postulated by [10]) it is of key importance that Er retains

its spiral magnetisation upon reduction of thickness below 10 nm. For the emerging field of

superconducting spintronics, Er is a strong candidate material to be the necessary source

of inhomogeneous ferromagnetism [11, 12]. In our previous work on 50 and 200 nm thick

Er films, neutron diffraction was used to study magnetic Bragg peaks generated by the

repeating magnetic structure. These gave direct information about the magnetic state of
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the films. On reduction of the Er thickness to 6 nm, the magnetic Bragg peak was too weak

to be detected. For this thinner sample, we used polarised neutron reflectometry to extract

depth dependent magnetisation profiles presented in this work.

METHODS

The Er film was deposited using DC sputtering in a system with substrate heaters. At

the highest temperature, the base pressure of the system was ≈ 10−7 mbar. This pressure

improves as the system temperature is lowered. The sample was grown on 0.65 mm thick

c-plane Al2O3 substrate. 10 nm of Nb was deposited at a nominal temperature of 700◦C,

after which the system was cooled to 500◦C and 6 nm of Er and then a 5 nm-thick Lu

capping layer were deposited. Growth was performed in an Ar atmosphere with a typical

Ar flow of 55 sccm and pressure of 2-3 mbar, at a substrate–sample distance of 70 mm, and

at a typical growth rate of 0.1 nm s−1. Growth rates were calibrated by fitting to Keissig

fringes obtained by X-ray reflectometry to Nb films, and bilayers of Nb/Lu and trilayers

of Nb/Er/Lu. The Nb was grown first as it has been shown to be an effective buffer layer

for the growth of rare-earth metals [13]. The Nb/Er interface is known to be sharp due to

the lack of alloying and intermixing between Nb and Er [14]. It was found that traditional

capping metals (Ta, Nb, etc) tended to form islands on the surface of the Er layer, and did

not protect the layer from oxidisation. Lu has good lattice matching with Er, and was found

to grow as a continuous layer on top of Er. It was therefore a much more effective capping

material and protects the Er from oxidisation.

Magnetisation loops were measured using an 6 T SQUID magnetometer. Polarised neu-

tron reflectometry (PNR) was performed on the PolRef beamline at the ISIS neutron and

muon source. X-ray diffraction (XRD) and reflectometry (XRR) were performed on a Rigaku

SmartLab diffractometer at the ISIS R53 characterisation lab. X-ray and polarised neutron

reflectometry data were analysed using the GenX software [15].
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FIG. 1. X-ray diffraction of the textured Er thin film, with the main structural peaks indicated.

RESULTS

X-ray Diffraction

Structural characterisation was performed using XRD, and can be seen in Figure 1. The

sample shows strong structural Bragg peaks, identified in the figure, and there is no evidence

for Er2O3 formation. The grain size perpendicular to the plane of the film is then estimated

using the Scherrer equation [16] for each layer. As neutron reflectivity is not sensitive to

in-plane structural coherence, only grains perpendicular to normal are considered. The

Nb (100) buffer layer has grain size of 8 nm and the Er (002) phase has 6 nm grain size,

indicating very high structural coherence for both layers. The Lu layer shows some degree

of texture, however is likely to also form a layer of LuO on the film surface. As its role is

only to protect the Er from oxidation the morphology of this film is not of importance and

hence not optimised in this study.

For the Er films in heteroepitaxial growth, lattice mismatching between Nb and Er will

translate a Bragg peak from the ideal angle. Non-uniform strain can cause the peak to

broaden and may be mistaken for a reduction in grain size. As the out-of-plane grain size

approximately matches the film thickness, it is assumed this is not the case, and that any

strain in the Er layer is uniform. The Er grows epitaxially on the most densely packed Nb

(110) plane, in the Nishiyama-Wasserman orientation. The in-plane axis of hcp Er [101̄0]

is aligned with bcc Nb [1̄10] with 3:4 supercell commensuration in their nearest-neighbour
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Layer Density (f.u./Å3) Thickness (Å) σ (Å)

LuO 0.030 12 6

Lu 0.033 35 2

Er 0.030 67 5

Nb 0.055 84 3

Al2O3 0.065 ∞ 3

TABLE I. Material parameters extracted from the fit in fig. 2. The error in the extracted values

is approximately 10%.

distances along these axes [13]. While direct measurement of the in-plane lattice parameters

where not available for this work, using our previous work as a guide [9], in-plane strain on

the Er [101̄0] from the Nb [1̄10] (which is in turn strained by the Al2O3 substrate) could

be as large as -1.8 %. In the c-axis, the measured lattice spacing of 5.71 ± 0.02 Å is quite

different than the expected 5.585 Å, indicating a strain of +2.24 %. This c-axis extension

is consistent with an in-plane contraction and can be reduced, towards the bulk value, by

increasing Er film thickness [9]. The addition of a Y buffer layer between the Nb and Er

can cause the opposite effect, a contraction in the measured c-axis lattice parameter [17].

X-ray Reflectometry

The nominal as-grown structure was Al2O3 (substrate) / Nb (10 nm) / Er (6 nm) /

Lu (5 nm). The XRR data and model fit from this representative sample can be seen in

Figure 2. The approach to modelling the XRR was to keep the model no more complicated

than needed and to concentrate on correctly fitting data in the Q range accessible by PNR.

The addition of many further layers to the model (in an effort to improve the fit to the data)

risks producing an unphysical representation of the sample.

The extracted parameters are shown in Table I. There is good agreement between the

modelled values and the nominal structure when only one additional layer is introduced to

account for expected post growth oxidation of the capping layer. The interfacial roughness

is small for all layers. Of particular note for this work is the low interfacial roughness (σ)

between the Nb layer and the adjacent Er layer, indicating a lack of intermixing.
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FIG. 2. (a) Low-angle X-ray reflectometry and corresponding fit. (b) The SLD (in units of classical

electron radius (re) per Å
3) with depth from the fit in (a). The returned fit parameters are given

in Table I.
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FIG. 3. Magnetic hysteresis loops measured in and out-of the sample plane. Loops were acquired

at a temperature of 5 K.

Magnetic Characterisation

In thin film Er of this thickness range, previous characterisation work has shown that

the conical magnetic state of bulk crystals is largely suppressed, placing the film in the

intermediate canted helical state [9].

Both in and out-of-plane magnetisation hysteresis loops for the Er film at 5 K can be

seen in Figure 3. Although normalised in the figure for clarity, the magnetisations at 6 T,

M6T , differ in each configuration. The in-plane M6T = 2900±200 emu/cm3 is comparable
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to the theoretical maximum Ms = 2700 emu/cm3 (within errors). This is much larger than

the out-of-plane M6T = 1500±100 emu/cm3.

This is strong evidence that, for this thickness range, the long-ranged ordering is per-

turbed at the interfaces, making the film more susceptible to in-plane fields capable of

unwinding the helical state, causing saturation completely along this direction. This is

likely due to the dominance of surfaces disrupting the long ranged RKKY interaction. The

weakening of RKKY at the surface makes surface moments easier to rotate [18, 19]. This in

turn causes the nearest neighbours to align with the field also, until the spiral has completely

unwound and the sample is saturated.

The field needed to saturate the film out-of-plane is beyond 6 T (the largest available

field). This difficulty in saturating the film out-of-plane is dominated by the difficulty in

reversing the canting angle and has been shown in previous work to be up to 14 T [1].

It is interesting to note that in both loops the squareness ratio is low, with only a small

fraction of M6T retained at remanence. The expected canted helical state would result in a

small net out-of-plane component at remanence. In-plane remanence results from incomplete

helices. Upon relaxing the field this suggests that the sample returns to its initial (as grown)

phase or a nearly compensated non-collinear state. The in-plane loop shows a wasp-waisted

feature, which can imply some coupling between magnetic phases with different coercivity.

This is consistent with the anisotropy of the surface moments being weaker than the bulk.

The key aspect for the interpretation of the PNR is twofold. Firstly, that the Er re-

tains a bulk like moment above 9 µB/atom and secondly, that this large moment is mostly

compensated to give a low net average remanent moment.

This behaviour is quite different to its neighbour in the periodic table holmium, which in

thin films saturates in-plane at fields of typically only 300 mT, after which the squareness

of its hysteresis loop suggest a long-ranged ferromagnetic ordering takes over and spiral

magnetism does not reform [18, 20]. This difference is most likely due to the c-axis crystalline

anisotropy in the hcp structure being more important, or certainly being retained to a greater

extent, in thin film Er.
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FIG. 4. Polarised neutron reflectometry curves from the 6nm Er film. The two neutron spin states

are shown (u,d) along with the corresponding fit described in the text. Curves were acquired at a

temperature of 5 K in a 10 mT field.

Polarised Neutron Reflectometry

By measuring the neutron reflectivity as a function of the wavevector transfer and neutron

spin eigenstate, PNR allows the scattering length density (SLD) to be obtained. Careful

fitting to the two obtained reflectivity curves in PNR allows the extraction of depth depen-

dent magnetisation. Structural information can also be extracted, but in this work the XRR

model was imported as a starting point for the fit. PNR has been widely employed in the

successful characterisation of spintronic materials [21].

Figure 4 shows the obtained PNR curves for the sample with the corresponding fit to each

spin state. The structural properties were imported from the XRR fit and the magnetisation

of each layer was a fitting parameter. Despite the in-plane saturation moment of the sample

being high (consistent with bulk), there appears to be very little splitting between the two

spin states in the PNR data. This is also seen in the spin asymmetry (Figure 5 (a)) which

is the difference between the two spin states normalised to their sum.

The sample was field cooled to a temperature 5 K in a 10 mT in-plane field needed to guide

the neutrons. At this field and temperature, Er is expected to be in a highly non-collinear

or spiral magnetic phase. It is not expected field cooling in such a small applied field will

have an impact on the magnetic state of the Er. As fields much larger than the maximum

available field on the beamline would be needed to change the magnetic state of the Er, the

10 mT applied field was maintained for the measurement. Atomic scale anti-ferromagnetism

is too short a lengthscale for neutron reflectivity to probe, and as such is seen as net zero

8



Magnetic Moment (μ
B
/atom)

-3 0 3
0

5

10

15

20

-0.4 0.0 0.4
0

5

10

15

20

D
e
p
th

 (
n
m

)

Nb

Lu

Er

Nb

Lu

Er

Model 1 Model 2

(b) (c)

S
p

in
 A

sy
m

m
e

tr
y

Q (Å
-1

)
0.01 0.1

-0.4

-0.2

0.0

0.2

0.4

 Data set
 Model 1
 Model 2

(a)

FIG. 5. (a) Spin asymmetry for the PNR data in Figure 4 with two models (see text) for the

magnetism in the Er layer. The magnetic depth profile for model 1 is plotted in (b) and model 2

in (c).

moment. In Er, however, the spiral repeat distance (equivalent to the anti-ferromagnetic

lengthscale) is several atomic layers long; this is still too short for full depth dependence,

but allows some insight. The Er (as with most RE ferromagnets) is likely to contain chiral

magnetic domains [22, 23]. The measurement technique employed in this work, however,

will not be sensitive to the chirality of the domains.

Two fitting techniques are employed on the data. The first technique treats the magnetic

moment inside the Er layer as being constant with depth, and will return the average moment

inside the Er (model 1). The second technique allows the moment to be a depth dependent

free parameter (model 2). In both cases, positive magnetisation corresponds to moments

pointing in the direction of applied field. For a saturated, ordered, ferromagnet both fitting

techniques would return that the magnetisation of the entire layer is positive.

The spin asymmetry and results of the two fitting techniques are presented in Figure 5.

The differences between the two models are too subtle to observe in the reflectivity data,

and even in the spin asymmetry there are only very small differences at low Q. Notably at

higher Q (> 0.08Å−1) the models begin to separate, with model 2 providing a closer fit in

this region.

Model 1 (shown in Figure 5 (b)) returns a constant magnetic moment inside the sample

of -0.3 µB/atom. This is far lower then the moment possessed by the individual Er atoms

(over 9 µB/atom). The returned moment is also negative. This solution is therefore likely
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a returned ‘average’ magnetisation due to an inhomogeneous magnetic state within the Er

layer.

Model 2 (shown in Figure 5 (c)) returns a small total moment, but a large, oscillating,

depth dependent internal moment. The oscillation between positive and negative magneti-

sation values returned from this fitting technique is a good approximation for spiral mag-

netisation inside the Er layer. The average moment of this model (returned by integration)

is -0.26± 0.05 µB/atom, consistent with the returned moment for model 1.

This model appears to have given some additional insight into the local magnetic state. It

returns a magnetic spiral with repeat distance of ≈ 2.5 nm. This corresponds to a magnetic

repeat distance of 4.3 atomic layers. Examining the expected bulk phases of Er, this is not

consistent with any known commensurate state.

In order to interpret which of the two models provides the most insight into the actual

magnetic state of the sample, one needs to consider the magnetometry. This showed the

thin Er layer retained a high moment per atom in addition to a low net average remanent

moment. Both models predict the latter, but only the spiral model predicts the former and

is hence a candidate for the non-collinear state of the system. Even if the returned model

does not match the exact magnetic state of the sample, the PNR shows evidence that the

magnetisation of this sample is highly disordered.

CONCLUSIONS

In summary, we have found from the PNR technique that the internal magnetic state

of the 6 nm thick Er film is highly inhomogeneous. From magnetic measurements the

application of a 6 T field in-plane can ‘unwind’ the inhomogeneity and the film reaches its

bulk magnetisation. Relaxing the field causes the film to return to the inhomogeneous state,

with only very small remanent magnetisation. Fitting the PNR data shows that the Er is in a

highly non-collinear magnetic state, with an average moment of just -0.3 µB/atom compared

to a bulk moment > 9 µB/atom. This is consistent with the Er film retaining a magnetic

spiral state, though this state cannot be conclusively proven. The fact that the magnetic

state is highly disordered shows Er as a promising candidate material for incorporation into

spintronic, and superconducting spintronic, device structures in the future.
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