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Abstract�We present a method of calculating the measurement 

variance-covariance matrix of a spectroscopic sample�s complex 

refractive index from time-domain statistics in order to estimate 

uncertainty of a measurement. We compare this method to a 

numerical analysis and previously derived methodology, and show 

that our time-based estimate is both accurate and adaptable to 

complex extraction models. 

I. INTRODUCTION 

 

stimating the measurement uncertainty in spectroscopic 

measurements allows us to quantify our confidence in the 

resulting spectra. Statistical sample estimates can often be 

formed numerically from multiple observations of the sample�s 

complex refractive index, ñ. To form these observations, 

multiple numerical fittings of a sample�s ñ to measurements are 

required � this is often computationally intractable. A 

variance-covariance (VC) matrix is a combined measurement 

of uncertainty and correlation between samples (in either the 

time or frequency-domain), from which both can be calculated. 

We have developed a method for estimating the VC matrices of 

ñ from the time-domain covariance, and showed that this 

method is accurate compared to a statistical sample estimate. 

Our results demonstrate that data points across a THz time-

domain trace cannot be assumed mutually independent, as in 

[1], when estimating measurement uncertainty. 

II. PROPAGATION OF COVARIANCE MATRICES 

In this paper we model spectroscopic data as a vector of 

complex multivariate variables,	࢞, (in this case samples in 

either time or frequency) sampled from a normal distribution ܰ 

with mean ࢞ߤ and VC matrix ȭ࢞, and relation matrix Ȟ[2] ࢞. ȭ࢞ 

can be viewed as a sum of the underlying real and imaginary 

VC matrices, while Ȟ࢞ can be viewed as the difference. In the 

case where ࢞ is real, these matrices are equal. Therefore Ȟ࢞ is 

required for a complete recovery of the VC matrices of and 

cross covariance matrices between, the underlying real and 

imaginary parts of [2] ࢞: 

ሻ࢞ோሺߑ  ൌ 	 ͳʹ ܴሺ࢞ߑ 	  ሻ࢞ூሺߑ ሻ࢞߁	 ൌ 	 ͳʹ ܴሺ࢞ߑ െ ሻ࢞ሻூሺ࢞ோሺߑ ሻ࢞߁	 ൌ 	 ͳʹ ࢞ߑሺܫ 	 ሻ࢞ሻோሺ࢞ூሺߑ ሻ࢞߁	 ൌ 	 ͳʹ ࢞߁ሺܫ െ  ሻ࢞ߑ	

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

We note that using a singular complex variable is different to 

the approach taken in Ref. [1], which treats the real and 

imaginary parts of a variable separately. By treating complex 

variables as singular, we do not have to consider the internal 

relation between real and imaginary parts, making our analysis 

simpler. For variables, represented as ࢟, which are a function of ࢞, the relations for both ȭ࢟ and Ȟ࢟ are [3]: 

 ȭ࢟ ൌ ࢟ற Ȟܣ࢞ȭܣ ൌ  ᇱ (5)ܣ࢞Ȟܣ

(6) 

Where ܣ represents a linear operation matrix or, in the case 

of non-linear operation, a Jacobian matrix which relates ࢟ to ࢞, 

and the operations denoted by Ԣ	 and � are the transpose and 

conjugate transpose respectively.  

We thus derive the appropriate matrix for each of the 

processing functions: the Discrete Fourier Transform (DFT), 

calculation of the transfer function and fitting of a model to the 

transfer function. The DFT can be represented by matrix 

multiplication, the operation matrix can be calculated by the 

DFT of an identity matrix, ܫ. This gives a matrix, ܣிሺൌܶܨܦሺܫሻሻ, which can be used in Eq. 5 and 6: 

 To calculate the transfer function of a sample, we divide the 

sample DFT by the reference DFT. When calculating the 

uncertainty in the transfer function, we use a summation of the 

sample (S) and reference (R) contributions, calculated using 

different derivations of A: 

 ȭு ൌ ௌறܣௌȭௌܣ  	 ோறܣோȭோܣ  Ȟு ൌ ௌᇱܣௌȞௌܣ  	 ோᇱܣோȞோܣ  

(7) 

(8) 

The transfer function is a linear function of the sample DFT, 

and thus ܣௌ is a diagonal matrix, with the inverse of the mean 

reference DFT along its diagonal. To calculate ܣோ, we take the 

derivative of the transfer function with respect to the reference 

DFT, to obtain a diagonal Jacobian matrix. 

௦ܣ  ൌ ݀݅ܽ݃ ൬ ͳܨோ൰ (9) 

ோܣ  ൌ ݀݅ܽ݃ ቆെܨௌܨோଶ ቇ (10) 

 To calculate ñ, we numerically fit a non-linear model to the 

transfer function, ܪ. This model cannot be easily rewritten so 

that ñ is a function of ܪ, which makes calculating the Jacobian 

matrix of ñ with respect to ܪ intractable. Instead, we use the 

inverse of the Jacobian matrix of ܪ with respect to ñ: 

ñܣ  ൌ ݀݅ܽ݃ ൬݀݀ܪñ൰ିଵ
 (11) 

 We consider two different models, the first a non-resonant 

model and the second, a model with a finite number of Fabry�

Pérot resonances within the sample. In the first case, we use the 

model [4]: 

ܪ  ൌ Ͷ	ñሺñ  ͳሻଶ ݁ି	ఠ	 ሺñିଵሻ
 (12) 

With the differential being: ݀ܪ݀ñ ൌ Ͷ݁ି ఠ  ሺñିଵሻܿሺñ  ͳሻଷ ൫ܿሺͳ െ ñሻ െ ݆݈ñ߱ሺñ  ͳሻ൯ (13) 
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 In the second case, we add a term for ܯ reflections within 

the sample [4]: 

ெܪ  ൌ 	 ܪ  ൬ͳ െ ññ  ͳ ݁ିఠñ ൰ଶఋఋୀெ
ఋୀ  (14) 

 With the differential being: 

ெ݀ñܪ݀  ൌ 	 ݀ñܪ݀  ൬ͳ െ ññ  ͳ ݁ିఠñ ൰ଶఋఋୀெ
ఋୀ 	

ܪ 	൬ ʹሺñଶ െ ͳሻ െ ݆݈߱ܿ ൰		  ߜʹ ൬ͳ െ ññ  ͳ ݁ିఠñ ൰ଶఋఋୀெ
ఋୀ  

(15) 

 Where ߱ǡ ݈ and ܿ are the angular frequency, thickness and 

free space velocity of light respectively. As both of these are 

diagonal matrices, the inverses are trivial to calculate.  

III. RESULTS 

We experimentally verified our estimation method using a 0.5-

mm-thick z-cut quartz sample. To calculate ñ of the sample we 

took 20 reference (air) and 20 sample measurements. We then 

extracted ñ under two different conditions; the first using the 

averages of the time measurements, which gave one mean value 

of ñ, and the second considering the different permutations of 

reference and sample measurements, to give 400 different 

calculations of ñ. The first condition was used when estimating 

the VC matrix from the time-domain, while the second was 

used to numerically calculate the statistical samples VC matrix 

post extraction. In Fig. 1 we have given estimates for the 

uncertainty of the real refractive index, n, and extinction 

coefficient, ț, which were both derived from ȭñ. These 

estimates are based on fitting of a transfer function model that 

does not account for Fabry�Pérot resonances within the sample, 

this leads to etalons present in n and ț. For comparison, we have 

included an estimate based on ref [1], which treats time samples 

as independent measurements. 

Fig. 1: A) Measurements of n (top of A) and ț (bottom of A), overlapping shaded areas indicates standard 

error B) Estimates of variance of n (top of B) and ț (bottom of B, dotted): red � estimate of uncertainty 

based on [1], green � estimate based on time domain, blue � numerical estimate of error.  

We find that our estimate from the time-domain data 

accurately tracks the numerical estimate across a wide 

bandwidth. By comparison, the method presented in ref [1] is 

less accurate, primarily because time samples are assumed 

independent. Our measurement has very low uncertainty until 

we reach the dynamic range of the instrument at ~7 THz; this 

can be seen in Fig. 1A, where the shaded error diverges, and in 

Fig. 1B, where the variance distinctly increases. This is also the 

point at which our approximation fails and the time estimate 

diverges from the numerical estimate. 

Etalons are present in ñ from resonances within the sample, 

and these can be resolved by fitting an appropriate transfer 

model, which will dramatically alter the uncertainty.  

 
Fig 2: A) Measurements of n (top of A) and ț (bottom of A), overlapping shaded areas indicates standard 

error, calculated using a resonant model B) Estimates of variance of n (top of B) and ț (bottom of B), 

calculated using a resonant model: red � estimate based on time domain, blue � numerical estimate of 

error.  

In Fig. 2 we have estimated the uncertainty using a finite 

resonant model [4]. We find that our method accurately tracks 

the numerical estimate to about 6 THz, where the numerical 

estimate tends to converge to the non-resonant estimate in 

Fig. 1, this is owing to the sample resonance being weak at these 

frequencies. Our approximation does not include this, and 

likely fails at higher frequencies because of this. Etalons appear 

in the uncertainty of ñ owing to time uncertainty. Time 

uncertainty will create a similar effect to varying the thickness 

of the sample, producing etalon variation in the extracted ñ as 

described in ref [4]. 

IV.  SUMMARY 

We have demonstrated a rigorous method to estimate the 

uncertainty in refractive index ñ from THz time domain 

measurements. This estimate can be adapted to finite resonance 

models and is significantly more accurate than methods that 

neglect sample correlation. 
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