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Abstract Oxygen isotope ratios in tree rings (δ18OTR) from northern Bolivia record local precipitation δ18O
and correlate strongly with Amazon basin-wide rainfall. While this is encouraging evidence that δ18OTR can be
used for paleoclimate reconstructions, it remains unclear whether variation in δ18OTR is truly driven by
within-basin processes, thus recording Amazon climate directly, or if the isotope signal may already be
imprinted on incoming vapor, perhaps reflecting a pan-tropical climate signal. We use atmospheric back
trajectories combined with satellite observations of precipitation, together with water vapor transport
analysis to show that δ18OTR in Bolivia are indeed controlled by basin-intrinsic processes, with rainout over
the basin the most important factor. Furthermore, interannual variation in basin-wide precipitation and
atmospheric circulation are both shown to affect δ18OTR. These findings suggest δ

18OTR can be reliably used
to reconstruct Amazon precipitation and have implications for the interpretation of other paleoproxy records
from the Amazon basin.

1. Introduction

Relationships between oxygen isotopes (δ18O) and environmental variables have often been the basis for
paleoclimate reconstructions, but relying on empirical correlations alone without an understanding of the
underlying mechanisms may lead to misinterpretations of proxy records [McCarroll and Loader, 2004]. In
the Amazon, δ18O in paleoarchives (including speleothems, lake and marine sediments, and ice cores [e.g.,
Kanner et al., 2013; Maslin and Burns, 2000; Moquet et al., 2016; Thompson et al., 2013; Vuille et al., 2012,
and references therein] offer valuable insights for climate in the absence of quality instrumental data. In addi-
tion to these, δ18O in annual tree rings (δ18OTR) have been identified as a useful tool for precipitation recon-
structions [Baker et al., 2015; Ballantyne et al., 2011; Brienen et al., 2012]. The δ18OTR reflect soil water δ

18O,
modified, to a greater or lesser extent, by plant physiological influences, including leaf-water enrichment
at the site of evaporation, back-diffusion of this enriched water to the rest of the leaf (the Péclet effect),
and biological fractionation during metabolic processes [Barbour et al., 2004; Roden et al., 2000]. Local climate
can affect plant physiology, and thus δ18OTR [Kahmen et al., 2011], although Brienen et al. [2012] found that
δ18OTR from the warm, humid rainforest of northern Bolivia recorded local precipitation δ18O (δ18OP), with
limited evidence of a local climate influence, possibly because leaf-water isotopic enrichment is low when
relative humidity is high [Cernusak et al., 2016]. Instead, δ18OTR were found to correlate with precipitation over
the whole Amazon basin during the last century [Brienen et al., 2012]. The authors hypothesize that this rela-
tionship is driven by rainout of heavy isotopes during moisture transport over the Amazon basin, although
δ18OTR were also found to correlate with the El Niño–Southern Oscillation (ENSO), possibly indicating an alter-
native proximal driver of interannual variation. Similar relationships with ENSO have been reported for δ18OTR

records elsewhere in the tropics, including Ecuador [Volland et al., 2016], Central America [Anchukaitis and
Evans, 2010], northern Australia [Boysen et al., 2014], and several sites in Southeast Asia [Poussart et al.,
2004; Sano et al., 2012; Schollaen et al., 2014; Xu et al., 2011, 2013, 2015]. This leaves some doubt over the
extent to which interannual variation in δ18OTR in Bolivia is driven by processes within the Amazon basin
or is more representative of processes occurring at the pan-tropical scale. This is important to clarify if such
isotope data are to be reliably used to reconstruct climate and potentially validate output from general
circulation models (GCMs) in the Amazon [Henderson-Sellers et al., 2002].

Contrasting interpretations of δ18O in Andean ice cores (δ18OICE) suggest that the drivers of variation in δ18OP

in the Amazon region are still not fully understood. It has been proposed that tropical ice cores record
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changes in temperature, as they do at higher latitudes [Thompson et al., 1995, 2000, 2006], but analyses using
Rayleigh fractionation models instead suggest that ice cores primarily reflect changes in regional hydrology
[Grootes et al., 1989; Hoffmann, 2003b; Pierrehumbert, 1999; Samuels-Crow et al., 2014]. Rayleigh models pre-
dict the depletion of water vapor isotopes during moisture transport across the Amazon basin as heavy iso-
topes are preferentially removed during precipitation events [Dansgaard, 1964; Salati et al., 1979]. A recent
Rayleigh-based model including the influence of South American cold-air incursions (typically associated
with positive precipitation anomalies in the western Amazon basin [Hurley et al., 2015]) was able to simulate
~74% of the daily variability in Andean snowfall δ18O [Hurley et al., 2016]. However, studies have also shown
that Rayleigh models could be an oversimplification in tropical South America, not least due to large-scale
water recycling by vegetation [Brown et al., 2008; Salati et al., 1979; Sturm et al., 2007]. This is because tran-
spiration at steady state is a nonfractionating process, which returns heavy isotopes to the atmosphere
and accounts for the weak continental gradient in δ18OP over the Amazon [Insel et al., 2013; Salati et al.,
1979]. Transpiration therefore needs to be considered in an assessment of the controls on Amazon δ18OP.

Several recent studies have used trajectory modeling as a tool to develop a better understanding of Amazon
water vapor transport. Trajectory analysis can be used to identify moisture origins and detect changes in
atmospheric transport/circulation that might influence δ18OP [Drumond et al., 2014; Fiorella et al., 2015;
Insel et al., 2013; Spracklen et al., 2012; van der Ent et al., 2010]. Trajectories have also been used in conjunction
with GCMs [Sturm et al., 2007] and satellite isotope data [Brown et al., 2008] to track isotope changes during
atmospheric transport. Furthermore, transport analysis has previously been used to identify climate controls
on water isotopes in precipitation in the western Amazon [Villacís et al., 2008; Vimeux et al., 2005]. In both of
these studies upstream rainout was identified as the most important factor in determining the isotopic com-
position of precipitation, with local environmental variables having little or no effect on the signal. However,
these studies, which spanned 5 years and 22months, respectively, specifically looked at controls on seasonal
isotope variability and were too short to thoroughly investigate controls on isotope variation at interannual
time scales.

Here we aim to resolve the ambiguity surrounding the interpretation of tree ring δ18O records from the
Amazon, and thus strengthen the use of these, and other δ18O proxy records, in paleoclimate reconstructions
and for possible use in validating climate models. Existing records of δ18OP in the region (e.g., in the Global
Network of Isotopes in Precipitation database) are often short and discontinuous, preventing a detailed
assessment of climate controls at interannual time scales. The δ18OTR record that we use here is continuous
and annual and can therefore be calibrated against modern climate data and used to identify mechanisms
driving interannual variability. To achieve this we use air mass back trajectories combined with satellite obser-
vations of precipitation and leaf area index (LAI), which is a good proxy for evapotranspiration in the tropics
[Spracklen et al., 2012], and fields from the ERA-Interim reanalysis (which combines model data with observa-
tions) to investigate the causal drivers of interannual variation in δ18OTR over a 32 year period.

2. Data and Methodology

This study uses a δ18OTR chronology developed from nine trees from Selva Negra, Bolivia (10°5′S, 66°18′W;
160m above sea level), which has been shown to record local precipitation δ18O [see Baker et al., 2015;
Brienen et al., 2012]. We used two approaches to identify the influence of Amazon basin processes on the
observed δ18OTR signal: (1) trajectory modeling to reconstruct air mass histories and (2) large-scale water
vapor transport analysis.

To assess the relationship between δ18OTR and air mass history we used a Lagrangian atmospheric transport
model to calculate kinematic back trajectories. ERA-Interim reanalysis wind fields were retrieved from the
European Centre for Medium-Range Weather Forecasts (http://www.ecmwf.int/en/research/climate-reanaly-
sis/era-interim) to drive the model, with trajectory position output every 6 h. We calculated 10 day back
trajectories arriving daily (12.00 UT) 2 km above the surface (800 hPa) at Selva Negra for the period of
1998–2011. This height is likely to be within the bounds of low-level moisture advection and close to the
height of precipitation onset [Andreae et al., 2004]. There are uncertainties associated with trajectories as they
are inherently simplistic, and may struggle to capture all of the complexities of tropical atmospheric circula-
tion, particularly subgrid-scale convective transport processes [Stohl, 1998]. Here we use three-dimensional
trajectories which have been shown to be more accurate than other calculation methods [Stohl and
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Seibert, 1998]. Altitude sensitivity analysis confirms our results to be robust within 1–4 km above the surface
(Figure S2 in the supporting information).

Trajectories were used to reconstruct air mass histories, including precipitation and exposure to vegetation.
Precipitation data come from the Tropical Rainfall Measuring Mission (TRMM) 3B42 v7 product, which
combines data from TRMM and other satellites [Huffman et al., 2007]. We summed precipitation along each
back trajectory for 10 days or until it reached the coast (whichever of these came first). This was done by accu-
mulating precipitation at the trajectory latitude (lat) and longitude (lon) for every 6 h time step (t) and then
averaging these values across a number of trajectories (n) to find mean accumulated precipitation

(∑Precip), according to the equation:
P-40

t¼0
Precip latn tð Þ; lonn tð Þð ÞΔ tð Þ . Trajectories were averaged across

different time periods (3months, wet season (October–April) and dry season (May–September)) to extract
the relative influence of

P
Precip on δ18OTR for different periods of the year. The analysis was limited to those

trajectories arriving on days with rain>0mm at Selva Negra, as these are the air mass histories that contribute
to the δ18OTR signal. LAI data from the Moderate Resolution Imaging Spectroradiometer [Myneni et al., 2002]
were used to calculate accumulated LAI (

P
LAI) using the samemethodology. The influences of other climatic

variables, including temperature, were also analyzed (see Method S1 in the supporting information).

In our second approach we used ERA-Interim data to conduct an analysis of large-scale moisture transport
into and out of the Amazon basin. Wind fields from 0 to 4 km above the surface were averaged and used
to identify the dominant atmospheric transport patterns for the wet season (October–April) and define basin
inflow and basin outflow transects (Figure 3a). Column-integrated northward and eastward water vapor
fluxes were used to estimate average wet season moisture flow across these transects for the period of
1979–2010/2011. Wind and moisture transport anomalies were calculated for years with high and low
δ18OTR values to qualitatively characterize differences in circulation. A more detailed discussion of the meth-
odology can be found in the supporting information [Bruijnzeel et al., 2011; Callède et al., 2008; Huffman, 1997;
LeGrande and Schmidt, 2006;Majoube, 1971; Samanta et al., 2011; Smith et al., 2006; Sternberg, 2009; Sternberg
and DeNiro, 1983; Yan et al., 2016].

3. Results

The mean climatology for our tree ring sampling site, Selva Negra, is shown in Figure 1a, based on data from
the Climatic Research Unit. Temperature is fairly constant throughout the year but precipitation is highly sea-
sonal, and there is a distinct dry season (precipitation <100mmmonth�1) from May to September. The tree
species used to construct the δ18OTR chronology (Cedrela odorata) grows primarily during the wet season,
with growth usually beginning in September/October and ending in April/May [Brienen and Zuidema,
2005; Dünisch et al., 2003]. Air mass histories from this period are therefore likely to have most influence
on δ18OTR. Seasonal variation in δ18OP is also shown in Figure 1. The lowest values are reached toward the
end of the wet season, with a 2month lag between peak rainfall and minimum δ18OP. The highest δ18OP

values are in the driest months, sometimes exceeding 0‰. Atmospheric transport is predominantly from
the north and northwest during the wet season (Figure 1b), while dry season trajectories are more easterly.

A 3month moving window correlation analysis between interannual precipitation and interannual δ18OTR

reveals significant relationships between
P

Precip and δ18OTR throughout the wet seasonmonths, coinciding
with the main growing period of C. odorata (Figure 2a). Correlations are consistently negative, so larger
upstream precipitation corresponds with smaller δ18OTR values and vice versa. The strongest 3month corre-
lation occurs in November–January (r=�0.84, p< 0.001; 1998–2010/2011) when precipitation is reaching its
annual peak (Figure 1a). When trajectories from the dry and wet seasons are considered separately only
P

PrecipWET is significantly related to δ18OTR. This close relationship is shown in Figure 2b. Although the time
series is relatively short (13 years) the relationship is highly significant (r=�0.85, p< 0.001) with>70% of the
interannual variation in δ18OTR explained by ∑PrecipWET. This provides a clear indication that the mechanism
driving variation in δ18OTR on interannual time scales is rainout during moisture transport over the
Amazon basin.

To determine whether the correlation between δ18OTR and ∑PrecipWET is driven by interannual variation in
the position and speed of the transport pathway or interannual variation in the precipitation amount over
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the basin we conducted two sensitivity experiments where we systematically controlled for variation in
precipitation and trajectory position in the calculation of

P
PrecipWET. Experiment 1 used climatological

precipitation (i.e., not interannually varying) from the observed trajectories, and experiment 2 used observed
precipitation data from trajectory paths kept constant from year to year (see Method S1). Significant relation-
ships between

P
PrecipWET and δ18OTR were found in both of these experimental scenarios, suggesting that

interannual variation in Amazon basin precipitation and variation in atmospheric circulation are both impor-
tant in driving the relationship (Table S1 in the supporting information).

The effects of other air mass history attributes on δ18OTR were also investigated. A positive relationship
between δ18OTR and

P
LAI (which is directly associated with evapotranspiration [see Spracklen et al., 2012])

was anticipated since evaporative recycling might be expected to return isotopically heavy water back to
the atmosphere and thus reduce continental rainout [Salati et al., 1979]. In fact, δ18OTR and

P
LAI were found

to anticorrelate during the wet season (Figure S1). This may be due to the positive correlation between
P

LAI
and

P
Precip across all wet season trajectories from 2000 to 2011 (r= 0.31, p< 0.001, n=1981). Further ana-

lysis showed that
P

LAI also correlated strongly with trajectory time spent over land (r=0.82, p< 0.001,

Figure 1. (a) Climate diagram for Selva Negra, Bolivia (10°5′S, 66°18′W). Temperature and precipitation data are from
65–67.5°W, 9–11.5°S CRU TS3.21, 1960–2010. Monthly δ18OP data are averaged from four stations in the GNIP database.
The error bars represent the maximum and minimum observations in each month across all sites. (b) Daily trajectories
arriving at 800 hPa on days with precipitation >0mm at Selva Negra (black circle) during the 2010/2011 wet season
(October–April). (c) Same as in Figure 1b but for the 2010 dry season (May–September). Trajectories are plotted over a
topographical map of South America (Shuttle Radar Topographic Mission data).
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n= 1981); thus, the relationship between
P

LAI and δ18OTR arises because
P

LAI is a proxy for travel time, and
longer times provide more opportunity for fractionation processes such as rainout to occur. The effects can
be teased apart by controlling for the effect of

P
Precip on δ18OTR and

P
LAI, resulting in mostly nonsignifi-

cant relationships between
P

LAI and δ18OTR (Figure S1). We also looked at the influence of temperature
during atmospheric transport. Temperature data were from ERA-Interim and specific to the horizontal and
vertical positions at each trajectory time step. Mean back trajectory temperature was found to have no
significant relationship with δ18OTR.

To complement the analysis above, and to overcome the limitations of a short temporal record of remote
sensing data, a basin-scale analysis of water vapor transport was carried out using ERA-Interim reanalysis data
from 1979 to 2011 (Figures 3, S5, and S6). Figure 3d shows a strong negative relationship between net wet
season moisture balance (water vapor inflow-water vapor outflow) and both Selva Negra δ18OTR (r=�0.76,
p< 0.001, n=32) and the δ18OTR record from Brienen et al. [2012] (r=�0.73, p< 0.001, n=23). The difference
between water vapor inflow and outflow should be approximately equal to net rainout and indeed correlates
strongly with Amazon annual river discharge measured at Óbidos (r=0.80, p< 0.001, n= 32; Figure S4). These
results further support the idea that tree rings from the southern Amazon capture large-scale patterns of pre-
cipitation and moisture recycling. When inflow and outflow are considered separately it becomes clear that
the relationship between δ18OTR and basin moisture balance is entirely driven by variation in the amount of
outflowing water vapor as δ18OTR correlates strongly with moisture outflow and only weakly with inflow
(r= 0.80, p< 0.001 versus r=�0.35, p< 0.05; Selva Negra record). This is consistent with the results from
our trajectory analysis, since variation in outflowwill be directly affected by variation in rainout over the basin.

Figure 2. (a) Three-month moving correlation coefficients between δ18OTR and mean accumulated TRMM precipitation
(
P

Precip; trajectories from 1998 to 2010/2011). The pink and blue boxes show the dry and wet seasons, respectively.
The bars at the right side of the plot show the mean correlation coefficients for the dry season (May–September) and wet
season (October–April). The broken horizontal lines mark the significance threshold (p< 0.05). (b) Interannual variation in
∑PrecipWET and δ18OTR from 1998 to 2010. The shading indicates the 95% confidence intervals. Pearson’s r is �0.85
(p< 0.001). Note that the scale for δ18OTR has been reversed.
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Compared with the variation in the outflow, moisture inflow shows relatively low interannual variation (5.8
versus 14.7%), which may further explain why δ18OTR correlates poorly with inflow. These findings confirm
that convection and moisture removal over the basin drive interannual variability in δ18OTR.

4. Discussion

Amazon climate is characterized by highly seasonal precipitation, with moisture transported in from the tro-
pical Atlantic and thenmoving westward and southward over the basin (Figures 1, 3a, and S3). The significant
anticorrelations between δ18OTR and ∑PrecipWET (Figure 2b), and between δ

18OTR and basinmoisture balance
(Figure 3d), demonstrate a clear link between the amount of moisture removed from the atmosphere during
transport across the basin and isotopic variability. The analysis provides a mechanistic link to explain why tree
rings at the far end of the Amazon basin can record precipitation over a region approximately 6M km2

[Brienen et al., 2012]. The preferential removal of heavy isotopes during each precipitation event during

Figure 3. (a) Map of mean wet season (October–April, 1979–2010/2011) wind vectors 0–4 km above the surface and the transects used to calculate water vapor
inflow to, and outflow from, the Amazon basin (shaded in grey). (b) Map of wet season wind and sea level pressure anomalies in 1997/1998 (a high δ18OTR year).
(c) Same as in Figure 3b but for 2008/2009 (a low δ18OTR year). (d) Interannual variation in net wet season water vapor import (inflow-outflow) and δ18OTR from two
sites in northern Bolivia (see Baker et al. [2015] for a detailed comparison of these records). The shading indicates the 95% confidence intervals. Correlation
coefficients between δ18OTR and inflow-outflow are given (p< 0.001). Note that the scale for δ18OTR has been reversed. All climate data are from the ERA-Interim
reanalysis.
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moisture transport depletes the water vapor remaining in the atmosphere according to the Rayleigh model
[Dansgaard, 1964], and thus, years with more rainout correspond with more depleted values in the δ18OTR

record. This large-scale control on the isotope signal can account for the excellent coherence between
δ18OTR records from sites >300 km apart [Baker et al., 2015]. Our results are also in agreement with studies
examining the climatic drivers of isotope variability in South American precipitation on shorter time scales
[Villacís et al., 2008; Vimeux et al., 2005]. Correlation coefficients are strongest during the wettest months
(Figure 2a), which is in line with previous findings from regional circulation models [Sturm et al., 2007]. It is
worth observing that the severe droughts of 2005 and 2010 are not distinguishable in our isotope record
as these were predominantly dry season phenomena [Espinoza et al., 2011; Marengo et al., 2011].

Interannual variation in basin-wide precipitation and interannual variation in transport route are both shown
to be important factors affecting variation in δ18OTR in the Amazon (Table S1). This confirms that within-basin
processes determine the isotope signal in north Bolivia. Circulation changes have been highlighted before as
a potential source of variation in South American δ18OP. First, variation in the contribution of moisture from
isotopically distinct sources has been suggested as an important control on δ18OP at interglacial [Cruz et al.,
2005; Pierrehumbert, 1999] but also interannual [Insel et al., 2013; cf. Vuille et al., 2003] time scales. However,
spatial variation in ocean surface δ18O (δ18OSW) in the main moisture source region for the Amazon is <1‰
(Figure S7), and thus, variation in trajectory origin is unlikely to explain much of the 4–6‰ variability in
δ18OTR. Alternatively, different transport pathways may be associated with different amounts of rainout
(e.g., due to differences in topography, path length over land, and climate), and thus, interannual variation
in circulation may drive interannual variation in δ18OP [Fiorella et al., 2015]. Wind and moisture transport
anomalies suggest that it is this second source of variability that is important at our sample site and over
the time scale of our study (Figures 3, S5, and S6). Although there is substantial spatial variability in circulation
between years, high δ18OTR years show a clear pattern of strengthened winds and enhanced moisture
outflow from the southwest corner of the Amazon basin, along the path of the South American low-level
jet. Conversely, in low δ18OTR years the anomalies are reversed, with weaker wind flow and less moisture
transported out of the basin. These circulation changes in the south of the basin explain why interannual
variation in outflowing moisture is strongly related to δ18OTR. Furthermore, this analysis can explain why
δ18OTR from Bolivia correlates strongly with ENSO [Brienen et al., 2012]: during a positive (negative) ENSO
phase such as 1997/1998, (2008/2009) circulation changes accelerate (decelerate) transport out of
the Amazon basin, thus leading to lower (higher) basin precipitation and higher (lower) δ18OTR values
(Figure 3). This shows how a pan-tropical climate phenomenon like ENSO influences basin-scale processes,
which in turn control interannual variation in δ18OTR. This ENSO influence on δ18OTR has been reported at
other sites in the tropics due to ENSO’s far-reaching impact on precipitation [e.g., Anchukaitis and Evans,
2010; Poussart et al., 2004; Sano et al., 2012; Schollaen et al., 2014; Volland et al., 2016; Xu et al., 2015].

We find a negative relationship between δ18OTR and air mass exposure to vegetation during the wet season,
driven by a positive correlation between

P
LAI and

P
Precip. We had anticipated δ18OTR to positively corre-

late with
P

LAI, which is a proxy for evapotranspiration [Spracklen et al., 2012], since evapotranspiration
reduces the effective rainout by returning heavy isotopes to the atmosphere. Indeed, previous studies report
a low continental gradient in δ18OP over the Amazon due to large-scale water recycling offsetting the rainout
of heavy isotopes [Insel et al., 2013; Salati et al., 1979]. However,

P
Precip and

P
LAI are not in fact

independent:
P

LAI is a function of travel time over land, which influences the degree of fractionation likely
to have occurred along the trajectory. The negative correlations between δ18OTR and

P
LAI largely disappear

when controlling for the effect of
P

Precip, although a significant negative relationship persists during
November–January (Figure S1). This result illustrates that disentangling confounding influences on δ18OTR

can sometimes prove a challenge.

The findings in this study have implications for the interpretation of paleoproxies in the Amazon beyond
δ18OTR. Specifically, they add support to the growing evidence base that δ18O recorded in, e.g., tropical ice
cores and speleothems, seem to largely reflect hydroclimate variability and not temperature variability
[Grootes et al., 1989; Hoffmann, 2003a, 2003b; Hurley et al., 2016; Hurley et al., 2015; Moquet et al., 2016;
Pierrehumbert, 1999; Samuels-Crow et al., 2014; Vimeux et al., 2005], although it must be noted that the time
scales of these studies vary from interglacial scales to just a few years. However, others have argued against
trying to disentangle the effects of precipitation and temperature on δ18O due to the strong correlation
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between these variables at interannual time scales in the tropics [e.g., Vuille et al., 2003]. To complete our ana-
lysis we used a simple Rayleigh-based model to simulate interannual variation in δ18OTR (Method S1). The
Rayleigh model predicts isotopic composition as a function of the fraction (f) of water vapor remaining in
the atmosphere. Outputs from our trajectory analysis were used to calculate f keeping all temperature-
dependent parameters constant from year to year. Figure S8 shows the evolution of water vapor isotopes
along a sample trajectory and the Rayleigh-predicted δ18OTR value in each year. Our simulated δ18OTR values
match well with observations (r=0.91, p< 0.001, 2000–2010, root-mean-square error≈ 1.6‰) but were twice
as variable (range = 8.8 versus 4.3‰). This analysis shows that the factors controlling Amazon δ18OTR are well
understood. To some degree the same factors are likely to influence δ18OICE records from the Andes, as sug-
gested by the relationships between lowland δ18OTR and δ18OICE from Quelccaya and Huascarán over recent
times (r= 0.77 and 0.68, respectively [Brienen et al., 2012]). A direct correlation between a composite δ18OICE

record and Amazon River discharge measured at Óbidos shows that Amazon precipitation can explain about
50% of the variation in δ18OICE from 1950 to 1984 (Method S1). The shift of ~6‰ in δ18OICE since the Last
Glacial Maximum (LGM) [Thompson et al., 2000] is comparable to between-year differences of <5.5‰ (e.g.,
1997 versus 2008) seen within one decade of our δ18OTR record, which can be almost entirely explained by
changes in Amazonmoisture balance. It is therefore feasible that variation in Amazon hydrology could account
for most of the change in δ18OICE since the LGM (i.e., a decrease in rainout since the LGM causing an increase in
δ18OICE), without needing to invoke large shifts in temperature [Pierrehumbert, 1999]. However, it should be
noted that during the LGM δ18OSW would have been ~1‰ higher due to the difference in global ice volume,
although spatial gradients in tropical δ18OSW were similar to the present day [Holloway et al., 2016].

The results presented here show that basin rainout is the most important mechanism driving interannual
variability in Amazon δ18OTR over the duration of our tree ring records, although other factors may be impor-
tant at longer time scales. For example, occasional very depleted δ18OP values have been reported from rain
events in the wet season at eastern coastal sites [Matsui et al., 1983; Salati et al., 1979], thought to be caused
by a southward shift of the Intertropical Convergence Zone (ITCZ) reducing the initial isotope value of incom-
ing moisture. In a review of South American monsoon history inferred from stable isotopes, Vuille et al. [2012]
suggest that latitudinal shifts in the ITCZ may be influential at the scale of several decades to centuries. In
addition, sea surface temperature anomalies in the Pacific and Atlantic Oceans are well known to affect
Amazon climate [Marengo and Espinoza, 2015; Richey et al., 1989; Yoon and Zeng, 2010], and are therefore
likely to influence δ18OTR indirectly, by causing more or less precipitation and driving changes in circulation
[Thompson et al., 2013; Vuille et al., 2003]. Longer δ18OTR records than that presented in this paper could
possibly shed more light on these decadal-scale influences.

5. Summary

Trajectory modeling and large-scale water vapor transport analysis have been used to identify climatic
controls on interannual variation in δ18OTR. The most important single control on δ18OTR is rainout during
moisture transport over the Amazon basin. Interannual variation in atmospheric circulation is another
important influence, providing further evidence that within-basin processes regulate δ18OTR. These results
provide a mechanistic link to explain why a δ18OTR chronology from a single site at the end of the basin
can be good proxy for precipitation over the entire Amazon region, with wider implications for the interpre-
tation of other paleoproxies in the Amazon.
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