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Summary 

Electron energy loss spectroscopy (EELS) has become a standard tool for identification and 

sometimes also quantification of elements in materials science. This is important for 

understanding the chemical and/or structural composition of processed materials. In EELS, 

the background is often modelled using an inverse power-law function. Core-loss ionization 

edges are superimposed on top of the dominating background, making it difficult to 

quantify their intensities. The inverse power-law has to be modelled for each pre-edge 

region of the ionization edges in the spectrum individually rather than for the entire 

spectrum. To achieve this, the pre-requisite is that one knows all core-losses possibly 

present. The aim of this study is to automatically detect core-loss edges, model the 

background and extract quantitative elemental maps and profiles of EELS, based on several 

EELS spectrum images (EELS SI) without any prior knowledge of the material. The algorithm 

provides elemental maps and concentration profiles by making smart decisions in selecting 

pre-edge regions and integration ranges. The results of the quantification for a 

semiconductor thin film heterostructure show high chemical sensitivity, reasonable group 

III/V intensity ratios but also quantification issues when narrow integration windows are 

used without deconvolution. 

Introduction 

Electron energy-loss spectroscopy (EELS) can be used for identification and quantification of 

light elements present in a material at near atomic or even atomic resolution. An EEL 

spectrum consists of a zero-loss peak, band-edge transitions, plasmon and ionization edges 

on top of a background which decays almost exponentially with energy for high energy-

losses. The ionization core-losses superimposed on this can be extracted using statistical 

tools (Egerton, 1975, 2011b). However, the inverse power-law fails to model EELS in the 

low-loss region (van Puymbroeck et al, 1992). The conventional method of quantification by 

manually selecting a pre-edge region to extract ionization edges is exhaustive and leads to 

inconsistency for thousands of spectra. State of the art software tools like Hyperspy (de la 

Peña et al., 2015) and Gatan Digital Micrograph (Gatan, 2015) remove such inconsistency 

partly by applying quantification routines to entire EELS SI data sets. Similarly, a model-

based approach to EELS quantification has been presented (Verbeeck & Van Aert, 2004). 
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These authors later discussed standard-less quantification of EELS, which provided better 

results (Verbeeck & Bertoni, 2008). None of these software packages, however, detects an 

ionization edge and quantifies it automatically without any human intervention: Hyperspy 

can perform an independent component analysis (de la Pena, 2011) but the physical 

interpretation of the statistically significant components in terms of element-specific core 

losses still needs to be provided by the user for any type of multivariate statistical analysis 

(Walther and Trebbia, 1996). Digital Micrograph scripts such as Oxide Wizard (Yedra et al., 

2014) typically work on the basis of the user first assigning regions of interest and 

identifying edges manually, which the algorithm can then track and quantify in similar 

spectra of larger data sets. The aim of this study is to subtract the EELS background and 

provide elemental maps and profiles of thousands of spectra or an extended SI without any 

prior knowledge of the ionization edges. 

Description of the program 

The process can be explained in two parts: ionization core-loss edge detection and 

background subtraction for detected individual ionization edges. The quantification of EELS 

used in our approach is by the standard integration method (Egerton, 1978). To quantify a 

spectrum there are a lot of challenges in terms of artifacts, noise and gain correction 

problems of the charged couple device (CCD) camera. Hence, a pre-treatment of spectra is 

necessary before the process of edge detection and background subtraction. If the 

background is exponentially decaying, there is no ionization edge and the signal-to-noise-

ratio (SNR) is high, then the gradient of the spectrum should be negative everywhere. As the 

spectrum is pre-processed, positive gradients indicate the presence of core-loss edges. A 

look-up table is used to accurately identify the corresponding core-losses of the elements. 

An inverse power-law is used to fit a curve in the pre-edge region to subtract the 

background. The extracted core-loss edges are used for further quantification using 

integration after background subtraction. All programming was performed in Matlab using 

the current version, R2015b. 

Data pre-processing 

The noise in a spectrum arises due to a combination of low electron count numbers and 

read-out noise of the CCD camera (Ishizuka, 1993). The objective is to detect the core-loss 

edges after the acquisition of the spectrum image in the presence of noise. The noise in the 

spectra is a mixture of Poisson noise (or shot noise) and Gaussian noise (de la Pena, 2010). 

The ionization cross-section decreases with increasing energy loss. As the signal-to-noise-

ratio (SNR) decreases with energy-loss, the intensity of high-loss ionization edges becomes 

comparable to the noise level. This emphasises the necessity of pre-processing signals 

before calculating the gradient of the spectra. An averaging filter is always inefficient (Boyle 

& Thomas, 1988; Davies, 1997; Justusson, 1981) as it does not consider the type of noise 

and spikes (or pulses) are not completely removed (Figure 1). The number of spectral 

channels selected as filter width, w, influences the residual noise after smoothing but will 

also suppress the core-loss signal to some degree, in particular for sharp edges. An 

averaging filter gives good noise suppression when multiple spectra are averaged, providing 

a collective representative spectrum with reduced noise. Principle component analysis (PCA) 

is a form of multivariate analysis, using orthogonal eigenfunctions (Fukunaga, 1990; Jolliffe, 
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2002; Pearson, 1901; Manly, 2004). A multivariate analysis tool (simply called PCA function 

in Matlab R2015b) has been used to analyse datasets in an unsupervised manner. The 

dataset in this case is the SI. The components of the PCA are spectral components ranked in 

order of significance. The lower order components with high variance represent all the 

components needed to describe most features of the spectrum apart from the noise (low 

variance). Hence, PCA can in principle be used for denoising the spectrum, and a Poisson-

weighted PCA algorithm that properly accounts for the variance in shot noise has been used 

to reduce noise in Time-of-Flight Secondary Ion Mass Spectrum images (Keenan and Kotula, 

2004). If the noise is Poissonian however, a morphological filter such as a median filter is the 

most effective way of improving the SNR, as shown in Figure 1. In 2-D (images), a median 

filter has been proven to be best filter in case of ‘salt and pepper noise’, which corresponds 

to Poisson noise in images (Lim, 1990; Pratt, 2007). Here, it preserves the shape of the 

spectrum. Figure 1 shows the performance of different filters in terms of removing artificial 

spikes in a spectrum with a delayed In M-edge from InGaAs. As the SNR is decreasing with 

energy almost exponentially, a median filter is chosen as defined in equation (1). 

�� = exp�medianln�����   (1) 

where S is the spectrum, w is a window over which the median filter is applied. In the 

following, all spectra were median filtered first to help identify the core-loss edges, then the 

quantification routines for background fit, extrapolation and signal integration were applied 

to the unfiltered spectra. Filtering will not remove noise due to CCD gain inconsistencies. 

This can lead to false positive identification of apparent ionization edges. 

 

Insert Figure 1 about here 

Detection of ionization core-loss edges 

For automation of background subtraction, a novel approach of core-loss edge detection is 

proposed. The gradient of the EELS SI in the direction of energy-loss is determined by 

equation (2). 

∇�� = 	
���

��
��     (2) 

where ∇�� is the gradient of the SI (data cube) with regard to spatial ��, �� directions and 

energy-loss direction	��. The gradient of EELS has to be negative for ranges beyond multiple 

plasmon losses and without any core-losses. The only points that are positive must be due 

to the presence of noise or ionization edges. If the EELS SI is de-noised, the probability of 

positive gradient being noise is low, although clearly dependent on the type of denoising 

method used. The angle (�) between the EELS and horizontal energy axis is determined by 

equation (3) and can be plotted, as shown for an example spectrum of silicon with carbon in 

Figure 2. 

Insert Figure 2 about here 

� = arctan"��� ��    (3) 

Only positive angles are considered further as negative values are due to the background of 

EELS. A cluster of positive angles is formed if a core-loss edge is present. Positive angle 

values without a cluster are due to noise. Clusters are detected by counting the positive 
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angular data points that are comparable to the size of a window. The flow chart for the 

process implemented in Matlab is shown in Figure 3. 

 

Insert Figure 3 about here 

 

The size of the window is chosen such that it should be comparable to the sharpness of the 

onset of typical edges (a few eV for sharp hydrogenic and up to 10eV for delayed edges). 

Similarly, the window size should not be too small (<5 channels), to avoid false positives due 

to noise. Typically, the window sizes selected are between 5 to 20 channels wide (the 

default is w=15), and clusters are identified as intervals of that given width wherein at least 

2/3 of all channels have angular values θ>0. 

 

Due to near edge structures or/and chemical shifts the edges detected may not be at the 

exact location of the ionization onset predicted for free atoms. It may also happen that 2 or 

3 consecutive windows might detect positive angles. To refine the results from ionization 

edge identification, a look-up table is used containing onset values of all major ionization 

edges (Ahn et al, 1983; Egerton, 2011b). The shape of the edges is also considered during 

quantification, as discussed later. The exact edge onset is identified from the predicted 

edges (clusters) by finding the nearest ionization edge in the look-up table, as shown in 

equation (4): 

 

�#$%& = �'() ‖�+,-./01234‖5�
  (4) 

where En is the list of all n ionization edges from the look up table, Clusteri is the list of all 

predicted ionization edge onsets (numbered consecutively by index). The ionization edge 

detection and correction can be visualized as shown in Figure 4. 

 

Insert Figure 4 about here 

Histograms of the detected edges in three different EELS SI of a cross-sectioned multi-

junction solar cell are shown in Figure 5. While edge onset identification may fail in 

individual spectra due to noise the histograms clearly show that the identification of the 

edges is unambiguous when thousands of spectra from all locations in SI are considered. 

The efficiency of the edge detection is also dependent on the quality of the gain correction 

of the CCD. Long exposures of the zero-loss peak might yield artifacts in successively 

acquired spectra due to gain changes induced by over exposures. This could potentially lead 

to false positive detection of ionization edges in EELS acquired with energy offsets. Such 

artifacts can, however, be identified by varying the energy offset as they remain fixed at 

that channel (usually around # 100) where the zero-loss peak had been before. 

 

Insert Figure 5: about here 

Curve-fitting  

The presence of the zero-loss peak and plasmon losses in low loss spectra makes it difficult 

to model the background for energies below about 100eV. The inverse power-law is used to 
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model the background in pre-edge regions for individual ionization core-loss edges above 

this threshold. This may be justified in our case as Table 1 demonstrates we have generally 

used high dispersions for lower energy losses and lower dispersions at higher offsets so that 

wide regions with low energy losses, wherein the shape of the core-loss background often 

departs significantly from the slope expected from a simple inverse power-law function 

(Leapman, 2005), have been avoided. A linear model of ionization edges superimposed on a 

background modelled by an inverse power-law at higher losses is considered as shown in 

equation (5). 

�6%789:; = <�,3 + ∑ �&?&,A&,A  (5) 

where A and r are the inverse power-law curve fitting parameters for energy-loss (E), � is the 

intensity and σ the ionization the cross-section for the j
th

 shell of i
th

 element in the 

spectrum. 

The pre-edge regions for the background modelling should be selected as large as possible 

to minimize systematic errors. A larger pre-edge region provides more data points for 

modelling of the background and chemical shifts that could shift the edge onset by up to 

~8eV are less prone to influence the background modelling. Due to the possible presence of 

near edge structure, the pre-edge region should ideally end well before the edge onset. 

Hence the pre-edge region is selected dynamically by the algorithm over all the core-loss 

edges and across the EELS SI. The pre-edge region extends typically from half the distance 

between two consecutive core-loss edges to a few channels before the nominal edge onset. 

Standard integration methods are used for the quantification of background subtracted EEL 

spectra (Egerton, 1978). If the integration window exceeded the experimental energy-loss 

axis limit then the edge would be omitted (in the semiconductor multilayer example 

presented later, the integration window for the P L3 edge was manually reduced to 37.4eV 

to avoid this). The selection of integration window and the systematic and statistical errors 

influencing quantification have been discussed by Leapman (2005). Two core-loss edges 

close to each other will be partially overlapping and are not accurately quantifiable by this 

integration method. The accuracy of the quantification also depends on the shape of the 

ionization edges. If the onset of an ionization edge is delayed, small integration windows 

give high statistical errors. Hence the initially specified integration window (∆) is applied 

only to hydrogenic edges. In case of delayed edge onsets, the spectrum is integrated up to 

the next ionization edge onset, providing better statistics for delayed maximum edge shapes 

but at the cost of slightly higher systematic errors. EELS is usually performed with a 

spectrometer entrance aperture, and the integration of the spectrum intensity is a function 

of collection angle (β) and integration window (∆) (Egerton, 2011b). The values of partial 

cross-sections are evaluated from the SIGMAK3, SIGMAL3 and SIGPAR Matlab routines 

written by Egerton (2011a). The overall process of core-loss edge selection and background 

subtraction is shown in the form of a block diagram in Figure 6. 

Insert Figure 6 about here 

Experimental 

Four EELS SI using different energy offsets and dispersions were acquired from the same 

area of a cross-sectioned semiconductor heterostructure designed to be used for multi-

junction solar cells. On top of a germanium substrate (not shown due to limited field of 
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view) several GaAs-based layers of different thicknesses had been deposited. The SIs have 

been acquired in a JEOL 2010F field emission transmission electron microscope operated in 

STEM mode at 197kV and equipped with a Gatan Imaging Filter (GIF200) with parameters as 

shown in Table 1. Figure 7(a) is an annular dark-field (ADF) overview image of the 

heterostructure obtained with 55-170 mrad collection angle in which the spectrum image 

and spatial drift regions used are indicated. The SI shows 8 distinctive regions as labelled in 

Figure 7(b). The thicker layers labelled by numbers 3, 5 and 8 clearly differ in their scattering 

power due to their different chemistry, which we want to investigate in this study, and the 

top regions (1 & 2) consist of nano-crystals that appear to overlap in projection or are 

sintered together and were deposited to further improve the coupling to the incoming light. 

 

 EELS SI_0 EELS SI_1 EELS SI_2 EELS SI_3 

SI size [pixels] 90 x 44 x 

1024 

45 x 22 x 

1024 

90 x 44 x 

1024 

92 x 43 x 

1024 

real-space pixel size [nm] 24.4 48.8 24.4 23.9 

dispersion [eV/channel] 0.2 0.1 0.5 1 

nominal magnification 20000 20000 20000 20000 

conv. angle (α) [mrad] 16.6 16.6 16.6 16.6 

coll. angle (β) [mrad] 15 15 15 15 

spectrum offset [eV] 0 80 250 950 

exposure time [sec] 0.1 0.5 0.5 2 

total acquisition time 

[min] 

9 11 44 176 

Table 1: EELS data acquisition parameters for the four spectrum images (SI) acquired from 

the same area, indicated by the green rectangle in Figure 6(a). Actual acquisition 

commenced in reverse order, starting with the highest energy losses. The SI sizes give pixel 

numbers along x- and y-directions and channel number along the energy-loss coordinate. 

Acceleration voltage: 197kV 

 

Insert Figure 7 about here 

Results from a test case of a semiconductor heterostructure 

Sum spectra are extracted from each individual region for quantification. Elemental 

concentrations (x) are calculated using equation (6a) where the constant is chosen such that 

the concentrations of all detected elements sums up to unity in equation (6b). 

Quantification results for each region are shown in Table 2. Specimen thickness (t) values in 

terms of multiples of the mean free path (λ) of inelastic scattering can be extracted from the 

first EELS Si which contains the zero loss and plasmon peaks. These t/λ values are 

approximately 1 (except in the top thin layer of region 1) indicating an average specimen 

thickness around t≈130nm, which corresponds to the inelastic mean free path calculated 

according to Egerton (2011b) for GaAs under the conditions listed in Table 1. 

The values in Table 2 are normalised with respect to thickness (t/λ) and exposure time (τ). 

The parameters in Table 1 are used for the calculation of partial cross-sections, σ (β, ∆), 
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using SIGMAK, SIGMAL and SIGMAPAR routines that take into account the finite collection 

angle but neglect any corrections due to the angular spread of the incident beam that may 

play a role as soon as α>β (Egerton, 2011b) or due to multiple scattering. 

�A =
�BC,∆�

EBC,∆�∗1B∗G
	×	constant    (6a) 

 

where 

 

∑ 	�A = 1A        (6b) 

 

In the sense that the index j runs over all elements detected, this performs what is usually 

called a relative compositional quantification in at% (rather than an absolute quantification 

in terms of atomic areal density). As the scattering cross-sections in equation (6a) are for 

single scattering, while plural scattering is known to affect the edge shape, moving intensity 

from the onset towards higher energies, a reliable quantification would require either 

deconvoluting each spectrum in the SI to recover the single inelastic scattering contribution 

or integrating all net edge intensities over similar energy ranges so that all edges would be 

affected by multiple (plasmon) scattering to the same degree (Walther et al., 1995). Large 

integration windows can be used for edges at high energy losses that typically lie far apart 

from each other (here: Ga L and As L), while small integration windows must be used at 

lower energies (here: Si L and P L). Small integration ranges, Δ, tend to underestimate 

intensity considerably if thicknesses are large and the spectra are not deconvolved for 

multiple inelastic scattering. This has indeed been observed here, as deconvolution was not 

applied (see below). The algorithm generates maps which provide the spatial distributions 

of the elements in the material. The maps are generated by integration of background 

subtracted spectra at each point according to equation (6a). The background subtraction 

may not work perfectly for some spectra due to high noise or near edge structures which 

would contribute to inferior curve-fitting. Also, the EELS SI with 80eV offset revealed an 

artifact at around channel #100 due to the previous exposure of this area of the CCD to the 

zero-loss peak. This is shown in Figure 8. Hence, the map of the Al L-edge can only be 

evaluated with caution. 

 

Insert Figure 8 about here 

Some elemental maps in Figure 9 are very noisy, but the overall spatial distribution of 

elements can be clearly evaluated. While the map of the Al L3-edge is affected by the 

artifact as described above and can only be evaluated in so far as to rule out significant Al 

enrichment in any of the thicker regions, the Al K-edge at 1560eV is rather noisy but yields 

an Al K-map in Figure 9(c) that indicates that some Al may be present in parts of interfacial 

regions 4 and 6. The Al L1-edge is very weak and for quantification the corresponding map in 

Figure 9(a) cannot be directly used. For computation of the Al fraction in Table 2 we 

tentatively applied a partial scattering cross-section to Al L1 one order of magnitude smaller 

than for Al L3, which will be an upper estimate as this transition is dipole-forbidden. The 

weak intensity in the Ge L-map is completely due to noise.  
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The quantification of individual spectra generally lacks statistics due to noise. Considering 

instead the sum of spectra from sub-regions as labelled in Figure 7(b) not only provides 

better SNR but a computationally viable method for quantification. Each inclined row 

marked by red lines in Figure 7(b) consists of 24 spectra (for EELS SI_1) or 47 spectra (for all 

other SIs), while the wider regions numbered 2, 3, 5 and 8 all contain several hundred 

spectra. 

Screen shots of the program outputs are shown in Figures 9 and 10. It can be observed that 

the algorithm automatically detects the core losses and dynamically selects pre-edge 

regions and integration windows for each core-loss of the SI and that the output maps yield 

a quick visual feedback on the relative strengths of the chemical signals detected. 

Neglecting the signals from C (main surface contamination) and O (due to surface oxidation) 

the nominal values from Table 2 for wider regions 3, 5 and 8 would indicate chemical 

compositions of the underlying compound semiconductors of GaAs0.84P0.16:Si, 

Al0.09In0.37Ga0.54P:As and GaAs:P,Si respectively, where the elements listed after the colon 

refer to minority elements in the detection range of 1-2 at%, which however seems 

somewhat high for dopants. If we check the ratio of group III/ group V elements in these 

three compounds, i.e. (xAl+xIn+xGa)/(xP+xAs), the values of 1.06, 1.04 and 0.91 obtained from 

the above three regions are in reasonably good agreement with the expected value of unity 

for a stoichiometric III/V compound semiconductor. As previously stated, the proposed 

method is mainly a demonstration of automated background subtraction by identifying 

core-losses, and plural scattering is not presently taken into account in Table 2. The effect 

from plural scattering could be pronounced for Al, Si and P L2,3-edges as these display 

slightly delayed onsets while the integration ranges are small. Hence the effect of plural 

scattering will move intensity from the edge onsets to values beyond the range of the actual 

EELS measurement (for P) or the integration range (for Al and Si), so the intensities in the 

experiment may be significantly lower than the cross-sections calculated for single 

scattering predict. A quick estimate based on the small widths of the integration ranges 

used here (15 eV for Al and Si, and 37.4eV for P) relative to the plasmon energy of GaAs 

(~16eV) shows that plural scattering could reduce intensities of the Al and Si L edges by 

factors of up to 2 for t/λ≈1, however, the concentrations for Al and Si are rather low anyway 

and so the precise values are perhaps not so relevant, while the effect on the P L2,3 edge will 

be much weaker.  The effect of plural scattering could in principle be minimised by 

deconvolution with the low loss spectrum, which we will explore in the future. The 

identification of the chemical composition in the smaller regions is strongly limited by 

counting statistics as well as a potential undersampling of the thinnest layers given the pixel 

sizes reported in Table 1. The implementation of the algorithm in Matlab R2015b means the 

code can be distributed not only to multiple processing cores (presently a PC with 2 cores is 

used) but to multiple computers using the Matlab parallel computing tool box. 

 

Insert Figure 9 about here 

 

Insert Figure 10 about here 
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 �
80eV offset 250eV offset 950eV offset 

�
t/λ Si L3 Al L1 P L3 C K In M4,5 O K Cu L3 Ga L3 As L3 

dispersion 

(eV/channel) 
 0.10 0.10 0.10 0.50 0.50 0.50 1.00 1.00 1.00 

τ (sec)  0.50 0.50 0.50 0.50 0.50 0.50 2.00 2.00 2.00 

∆ (eV)  15 15 37.4 50 89 50 200 200 200 

region 1 0.52 1.44 3.22 5.47 44.09 2.37 43.40 0.00 0.00 0.00 

region 2 0.96 1.51 2.08 3.89 30.03 0.00 38.30 24.18 0.00 0.00 

region 3 0.95 7.87 0.00 6.26 9.29 0.00 2.41 0.00 41.46 32.72 

region 4 0.95 8.53 1.63 40.73 18.61 10.37 0.00 0.00 10.07 10.05 

region 5 1.01 0.00 3.99 43.48 10.10 16.90 0.00 0.00 25.02 0.50 

region 6 1.04 3.82 1.62 29.97 4.84 3.61 0.00 0.00 22.80 33.35 

region 7 1.04 1.57 3.17 49.16 7.87 19.08 0.00 0.00 8.92 10.23 

region 8 1.11 8.07 0.00 1.92 0.00 0.00 1.50 0.00 42.94 45.57 

 

Table 2. Quantification in at% of each region of the four Sis recorded. The sum of all 

concentrations has been normalised to 100% according to equation (6b). 

 

Conclusion 

The algorithm is robust in detecting ionization edges. Mapping of the core loss intensity is 

provided for quantitative assessment of sub-regions. Quantification can be done from 

spectra integrated over each sub-region. The ionization edges at low energies or edges 

which are very close to each other are always difficult to quantify as the background is 

difficult to subtract. Inconsistencies in gain correction of the detector are not taken into 

account in edge detection and background subtraction. Hence, a false positive identification 

of edges is possible at around channel #100 or more generally in the presence of excessive 

noise. The elemental maps produced by the proposed algorithm are in qualitative 

agreement with results from Gatan Digital Micrograph. The noise present in elemental maps 

can be reduced by applying image processing techniques. The effects from plural scattering 

have not been taken into account for quantification as yet but this needs to be done in the 

future and a graphical user interface is also in development. 
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Figure captions 

 

Figure 1: Comparison of noise suppression methods applied to an EEL spectrum. w describes 

the width (in pixels) of the filter mask. Principal Component Analysis (PCA) is not effective in 

suppressing shot noise as the reconstruction based on the sum of the first 17 components 

(shown  at the top) still contains noise. The median filter works best. 

Figure 2: Original spectrum of Si L-edge and C K-edge (in dark blue) and angle as defined in 

equation (3) (in red) showing the presence of clusters in the latter correlates with the onset 

of ionization edges. 

Figure 3: Flow chart for edge detection in spectra that consist of 1024 channels. c=count of 

channels with positive gradient, i=energy channel, j=loop count, w= window width, mod = 

modulo operator (remainder after division). 

Figure 4: The location of core-loss (here: Si L-edge) is detected from the look-up table and 

fine-tuned as per equation (4). 

Figure 5: Histogram distribution of edge onsets detected for EELS SI from semiconductor 

heterostructure shown in Figure 7 for 80eV offset (a), 250eV offset (b) and 950eV offset (c). 

The edges are later identified in Table 2. 

Figure 6: Block diagram of ionization core-loss edge selection and background subtraction. 

Figure 7: (a) An annular dark-field (ADF) image showing an overview of the layer structure 

analysed and indicating the rectangular regions selected for spatial drift (yellow) and 

spectrum image acquisition (green). (b) Definition of regions in the EELS SI. A sum spectrum 

is extracted from each region for further quantification in Table 2. 

Figure 8: The persistence of an artifact at 72 – 85eV in spectra from all locations (3 single 

spectra are displayed) shows that the Al L3-edge (nominally starting at 73eV) cannot be 

evaluated from spectra acquired with 80eV offset after spectra without offset had been 

acquired. 

Figure 9: Set of maps generated with EELS SI of 80eV offset (a), with 250eV offset (b) and 

with 950eV offset (c). The elemental maps show the spatial distribution of Al L3, Si L3, Al L1, P 

L3, C K, In M4,5, O K, Cu L3, Ga L3, Ge L3, As L3 and Al K edges. Al L3 is a false positive detection 

due to an artifact. Maximum intensity values in kilo-counts after background subtraction, 

integration and scaling according to equation (6a) with constant=1. 

Figure 10: Screen shot of program output showing pre-edge regions and integration 

windows dynamically assigned by the algorithm for SI with 80eV offset (a), 250eV offset (b) 

and 950eV offset (c). 
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Lay Summary 

Electron energy loss spectroscopy (EELS) has become a standard tool for identification and 

sometimes also quantification of elements in materials science. This is important for 

understanding the chemical and/or structural composition of processed materials. In EELS, 

the background is often intense and can be modelled over small energy ranges using an 

inverse power-law function. On top of this background, core-loss edges are superimposed 

that are due to the ionization energies characteristic of each element. This study describes a 

Matlab algorithm to automatically detect and quantify core-loss edges based on a single 

inelastic scattering approach, without any prior knowledge of the material. The algorithm 

provides elemental maps and concentration profiles by making smart decisions in selecting 

pre-edge regions and integration ranges. Deconvolution to take into account plural 

scattering is not considered yet but will be integrated in a future version.  
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