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Impurities from the CCS chain can greatly influence the physical properties of

CO2. This has important design, safety and cost implications for the compres-

sion, transport and storage of CO2. There is an urgent need to understand and

predict the properties of impure CO2 to assist with CCS implementation. How-

ever, CCS presents demanding modelling requirements. A suitable model must

both accurately and robustly predict CO2 phase behaviour over a wide range of

temperature and pressure, and maintain that predictive power for CO2 mixtures

with numerous, mutually interacting chemical species. A promising technique

to address this task is molecular simulation. It offers a molecular approach, with

foundations in firmly established physical principals, along with the potential to

predict the wide range of physical properties required for CCS. The quality of

predictions from molecular simulation depends on accurate force-fields to de-

scribe the interactions between CO2. Unfortunately, there is currently no univer-

sally applicable method to obtain force-fields suitable for molecular simulation.

In this paper we present two methods of obtaining force-fields: the first being

semi-empirical and the second using ab-initio quantum-chemical calculations. In

the first approach we optimise the impurity force-field against measurements of

the phase and pressure-volume behaviour of CO2 binary mixtures with N2, O2,

Ar and H2. A gradient-free optimiser allows us to use the simulation itself as the

underlying model. This leads to accurate and robust predictions under conditions

relevant to CCS. In the second approach we use quantum-chemical calculations

to produce ab-initio evaluations of the interactions between CO2 and relevant im-

purities, taking N2 as an exemplar. We use a modest number of these calculations

to train a machine-learning algorithm, known as a Gaussian Process, to describe

these data. The resulting model is then able to accurately predict a much broader

set of ab-initio force-field calculations at low comparatively numerical cost. This

approach has the potential to lead to first-principles simulation of the thermody-
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namic properties of impure CO2, without fitting to experimental data.

1 Introduction

1.1 CCS Problem and Pipeline Operating Window

The carbon capture and storage depends upon safe and economical transport of

CO2. Pipelines already widely used hydrocarbon transport and are a strong pos-

sibility for this transport. Pipeline transport of CO2 allows a large volume of

material to moved directly from the source to the storage1. However, CO2 out-

put from large facilities is likely to contain a varying number and percentage of

components, depending upon the capturing process. These impurities can sig-

nificantly shift the thermophysical properties of the mixture, relative to that of

pure CO2. Impurities can change the pressure-density behaviour of a CO2 fluid,

with important consequences for pipeline efficiency and CO2 metering. Further-

more, impurities can modify the vapour-liquid equilibrium (VLE) of CO2, and,

in particular, can extend the two-phase region. There are importance cost and

safety issues associated with two-phase flow in pipelines so defining the mini-

mum pressure to ensure homogeneous phase flow a key task. Therefore accurate

modelling of the homogeneous phase density and the VLE of impure CO2 is an

important focus for CCS modelling. Recent work has defined the expected oper-

ating conditions for CCS pipelines1,2 and the most efficient way of transporting

CO2 is in the homogeneous phase, at pressures close to the critical point. The

upper transport temperature will be set by the compressor discharge temperature

and the temperature limits of the pipeline and the lower temperature will corre-

spond to the winter ground temperature of the surrounding soil3. Expected im-

purity levels are about . 4%, with N2 , O2, Ar and H2 being key impurities1,2,4,5.

This range of pressure, temperature and impurity level define pipeline operating

conditions and provide a target window for CCS-oriented modelling. However,

CCS-relevant models should aspire to model a wider range of impurity fraction.

This will ensure the robustness of the model, capture the impurity-rich vapour

phase in two-phase flow and make the models applicable to abnormal pipeline

operation.

1.2 Relevant Experiments

Literature reviews of data relevant to the CCS transport problem have been re-

cently produced by the IMPACTS project6 and from the thesis of Demetriades7.

There is an extensive range of data for CO2+N2 mixtures, several data sets for

CO2+O2 and CO2+Ar mixtures and some very recently published data5,8 on

CO2+H2.

1.3 Equations of state

Equations of state (EoS) are a widely used modelling tool in CCS. EoS postulate

expressions for the volume and temperature-dependence of either the fluid pres-

sure9,17 or the Gibbs free energy11,12. These models contain empirical terms that
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described the deviation from ideal gas behaviour. To optimise their accuracy, EoS

need to be calibrated by fitting their parameters to experimental measurements on

CO2 mixtures.

There is considerable uncertainly over which EoS is most appropriate for

CCS modelling. Options range from simple cubic EoS, such as the Peng-Robinson

model9 , which are mathematically simple and numerically cheap, but which

often fail to accurately predict the liquid properties. For pure CO2, the Span-

Wagner EoS11 covers from the triple-point temperature up to very high pressures

and temperatures with very high accuracy. Furthermore an EoS by Yokozeki13

captures solid-liquid coexistence of pure CO2. There are complex EoS for CO2

mixtures, including the SAFT14, PC-SAFT15, GERG12 , EOS-CG6,16 and Deme-

triades models17. Some comparisons to CCS-relevant measurements have been

made6,17,18.

The majority of EoS are fundamentally based on empirical parametric ex-

pressions, which leads to several limitations. The quality of the agreement is

very sensitive to the postulated parametric expression and the effectiveness of the

parameter fitting; and there are no systematic and universally reliable approaches

to either of these. Furthermore, the predictions can only be as good as the avail-

able measurements. Thus effective data fitting requires careful and laborious

construction and fitting of the EoS to comprehensive experimental data. Even

then extrapolation of the model is dubious and modest extrapolations in pressure,

temperature or impurity concentration can lead to wayward model predictions,

for even the most well-established EoS. For example, a quantitative failing of

the GERG EoS12 when predicting CO2−H2 phase behaviour has recently been

demonstrated5,17. The SAFT family of EoS14,15 has a basis in physical mod-

elling, meaning they have the potential to address some of these issues. How-

ever, they still require fitting to experiments and it is not yet clear whether these

outperform empirical EoS in terms of accuracy and robustness6,17,18. There is

a clear need for modelling based on robust physical and chemical principles to

complement EoS approaches.

1.4 Molecular simulation

CCS presents demanding modelling requirements. A suitable model must both

accurately and robustly predict CO2 phase behaviour over a wide range of tem-

perature and pressure, and maintain that predictive power for CO2 mixtures with

numerous, mutually interacting chemical species. A promising technique to ad-

dress this task is molecular simulation. It offers a molecular approach, with foun-

dations in firmly established physical principals, along with the potential to pre-

dict the wide range of physical properties required for CCS.

Molecular simulations have a number of advantages over EoS. Macroscopic

physical properties are predicted from models of the interactions between con-

stituent molecules. Thus simulations have a more rigorous treatment of molec-

ular mixing and the effect of temperature than EoS. Therefore we might expect

improved robustness with respect to changes due to temperature and new impuri-

ties. Simulations can readily compute pressure-volume behaviour, phase separa-

tion and other properties such as specific heat, viscosity and speed of sound19–21.

Simulations have some disadvantages, primarily their computational cost, partic-
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ularly if results with very low statistical uncertainty are required. However, the

ongoing growth in computing power is mitigating this. A further difficulty is that

the accuracy of prediction depends on there being an effective and fast method

to compute the interactions between the constituent molecules of the fluid of

interest. Unfortunately, there is currently no universally applicable methods to

compute intermolecular potentials that are suitable for molecular simulation.

In this paper we present two methods of obtaining force-fields: the first being

semi-empirical and the second being from ab-initio quantum-chemical calcula-

tions. In the first approach we optimise the impurity force-field against measure-

ments of the phase and pressure-volume behaviour of CO2 mixtures, containing

impurities that are common in CCS. We use a gradient-free optimiser, which en-

ables us to use the simulation itself as the underlying model. Our approach leads

to accurate and robust predictions under conditions relevant to CCS. In the second

approach we use quantum-chemical calculations to produce ab-initio evaluations

of the force-field between CO2 and relevant impurities. We use a modest number

of these calculations to train a machine-learning algorithm, known as a Gaussian

Process, to describe these data. The resulting model is then able to accurately pre-

dict a much broader set of ab-initio force-field calculations at low comparatively

numerical cost. This second approach has the potential to lead to first-principles

simulation of the thermodynamic properties of impure CO2, without fitting to

experimental data.

2 Simulations from semi-empirical molecular interactions

All molecular simulations require a method to evaluate the interactions between

molecules. Semi-empirical force-fields are most commonly used. Here a sim-

ple mathematical form is chosen for the potential between pairs of molecules,

with a small number of parameters characterising the interaction between alike

molecules, while further parameters define the cross-species interaction. The

total interaction is the sum over all binary pairs. This summation neglects the

influence of the surrounding molecules on the pair interactions. However, these

“non-additive” interactions are known to be important for VLE and other proper-

ties22. In practice, the neglect of these higher-order interactions is compensated

for by fitting binary force-field parameters to experiments. However, this fun-

damentally semi-empirical approach will, unavoidably, lead to a finite range of

temperature and pressure applicability for a given parameterisation.

Currently available molecular force-fields for common CCS impurities are

fitted to experiments on the pure fluid around its critical point23. This often in-

volves temperatures that are much lower than the CCS operating window. There-

fore they are generally unsuited to simulate mixtures at these higher tempera-

tures. Some binary mixture simulations have been performed that optimise the

mixing parameters but these are also for lower temperatures24. In this section we

run molecular simulations for CO2 mixtures at CCS-relevant temperatures, using

literature force-fields. We then perform a re-optimisation of the impurity param-

eters, fitting directly to mixture measurements at CCS-relevant temperatures.
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2.1 Background

The significant increase in available computing power in the last few decades

has made computer simulation a very valuable and powerful tool. The Monte

Carlo simulation method has become widely used to generate equilibrium prop-

erties. For example, a direct NPT simulation, where the number of molecules,

pressure and temperature are specified and the density is predicted, leads to the

pressure-density behaviour in the homogeneous phase. Furthermore very effec-

tive methods exist to model VLE behaviour.

2.1.1 Grand Equilibrium Monte Carlo. Grand Equilibrium Monte Carlo

(GEMC) is a molecular simulation method that predicts two-phase coexistence

behaviour21. The GE algorithm involves running Monte-Carlo (MC) simulations

on two separate boxes, corresponding to the liquid gas phases, which sample the

properties of these phases in coexistence. These simulations involve imposing

the temperature and mol fraction on the liquid phase and then predicting the

coexistence pressure, the gas mol fraction and the densities of the two coexisting

phases. Full details of the method are described elsewhere21,25.

2.1.2 Molecular Potentials. In semi-empirical force-fields, the Van der Waals

forces are often represented by the Lennard-Jones (LJ) potential which details the

repulsive and attractive interactions between atoms

U(r) = 4ε

[

(σ

r

)12

−

(

σ

r

6
)]

, (1)

where r is the separation between two particles and ε and σ are the energy and

size parameters respectively. For interactions between the particles of the same

species, the LJ potential remains as above but for interactions between different

particles, ε and σ are found using the Lorenz-Bertholet combining rules

σi j = η
σi +σ j

2
(2)

εi j = ξ
√

εiε j. (3)

(4)

These two new parameters η and ξ scale all of the LJ interactions between a

given pair of particle types i and j and effectively allow arbitrary modification to

the combination rules between two molecules while leaving the self interaction

unchanged.

Electrostatic interactions can be problematic in molecular simulation because

of the slow decay of the interaction with molecular separation. However, an

efficient way to model electrostatic interactions in neutrally charged molecules

is to use a point quadrupole potential, the formula for which is given in equation

18 of Deublein et al.25. This quadruple potential requires a single parameter per

molecular species, the quadrupole moment, Q. As this interaction is electrostatic

the expression is valid for the interaction between alike and distinct molecules.

2.1.3 Force-fields for CO2 and CCS impurities. Force-Fields for more

complex diatomic, triatomic and larger molecules can be constructed by combin-

ing multiple LJ and quadrupole sites together, with each individual contribution
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Fig. 1 Diagrams of two force-field types: a two centre Lennard-Jones with quadrupole

(a) used for diatomic molecules and a three centre Lennard-Jones with quadrupole (b)

used for CO2.

summed to give the total potential. For example, a simple diatomic molecule can

be created by fixing two identical LJ sites a specific bond length from one an-

other and placing a quadrupole site at the centre (see figure 1a), an arrangement

known as the two-centre Lennard-Jones plus quadrupole (2CLJQ) potential26.

This force-field requires 4 parameters, ε and σ for the LJ terms, the bond length,

L and the quadrupole moment, Q. 2CLJQ force-fields are available for diatomic

molecules, including N2, O2
23 and H2

5. Similarly, a CO2 force-field has been

obtained using a three-centre Lennard-Jones plus point quadrupole model, to rep-

resent this triatomic molecule27 (see figure 1b and table 1). As Ar is monatomic

and non-polar, we use a single Lennard-Jones site with no quadrupole23. These

literature force-fields were obtained by fitting self interactions to experimental

data for the corresponding pure fluid around its critical point. For CO2 this is

close to the working temperature of CCS transport pipelines. Indeed, simulation

results from this force-field are within ∼ 2% of experiments on pure CO2 for

the density and vapour pressure in the CCS transport window23. However, the

temperature ranges used to fit the impurity force-fields for N2 and O2 are less

well matched to the CCS transport problem. The critical points for both of these

materials are closer to 100K which is significantly lower than that of the 273-

310K CCS region. These impurity force-fields perform well for the pure material

around its critical point but, because of the empirical nature of the original fitting,

they are unlikely to be perform as well at this much higher temperature. To com-

pound this we also require that they predict properties of a mixture of which the

impurity is only a small percentage. This is in contrast to the original fitting,

which only used self interactions to optimise for the pure material properties23.

εC/kB (K) σC (Å) εO/kB (K) σO (Å) Q (DÅ) L (Å)

12.3724 2.8137 100.493 2.9755 4.0739 1.2869

Table 1 3CLJQ Force-field for pure CO2
27.

There are some CO2 binary mixtures that have been simulated with the avail-

able force-fields and good agreement with VLE data was obtained with the opti-

misation of the Lorenz-Bertholet mixing parameters24. However, this compari-

son does not use the detailed CO2 force-field27 and was performed for tempera-

tures below the CCS transport window.
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2.2 Simulations with literature force-fields

Source ε/kB (K) σ (Å) Q (DÅ) L (Å) η ξ

N2 Vrabec23 34.897 3.3211 1.4397 1.0464 1.0000 1.0000

Optimised 35.272 3.4267 1.3836 1.0594 1.0646 0.9970

O2 Vrabec23 43.183 3.1062 0.8081 0.9699 1.0000 1.0000

Optimised 43.649 3.1315 0.8036 0.9741 1.0010 1.0216

Ar Vrabec23 116.79 3.3952 N/A N/A 1.0000 1.0000

Optimised 114.87 3.5462 N/A N/A 1.0497 0.9839

H2 Tenorio5 12.500 2.5900 -0.4233 0.7400 1.0000 1.1000

Optimised 12.745 2.6742 -0.4243 0.7019 0.9929 1.1428

Table 2 2CLJQ Force-fields for nitrogen, oxygen, argon and hydrogen from the literature

and optimised force-fields from this work.

We computed the homogeneous density and VLE behaviour of CO2 binary

mixtures using the GE method21, implemented in the ms2 software25, for each

impurity in table 2. These simulations used the 3CLJQ force-field for CO2 and

2CLJQ force-fields for the impurity, as detailed in table 1 and 2 respectively. In

both the liquid and gas simulations we used 20,000 MC steps for equilibration

and 100,000 production steps, from which the ensemble-average properties were

extracted. The liquid simulations involved 800 particles and the gas runs had

an average of 500 particles. The chemical potential in the liquid simulation was

computed using Widom’s insertion method, with 2,000 test insertions per MC

step. The Lennard-Jones cutoff radius was chosen to be the maximum value

allowed by the box size, which was typically larger than 17Å. These simulation

settings have previously been shown to be adequate for quantitative simulations

of CO2 mixtures with comparable diatomic molecules24.

The GEMC method imposes a temperature T and a liquid mole fraction x

from which the coexistence properties are found. The method requires an initial

estimate of the coexistence pressure P0, although it does not have to be exact as

the true value will be found from the vapour simulation. Therefore, we took the

initial pressure estimate from experimental data for the mixture under investiga-

tion, interpolating to the desired mol fraction where necessary. If the simulated

coexistence pressure differed significantly from the initial estimate P0, we per-

formed a second set of simulations where P0 was set to the previously simulated

value, thus ensuring the system had converged with respect to the choice of P0.

Using the simulation parameters above, a full coexistence simulation, compris-

ing an NPT run followed by a GE run, takes around 20 hours on a single core

of a 3GHz processor. A homogeneous density simulation takes between 3 and 4

hours.

Using the simulation parameters and literature force-fields in table 2, we per-

formed a set of simulations for mixtures of CO2 with the CCS-relevant impuri-

ties, N2 O2 Ar and H2 and compared to coexistence and homogeneous measure-

ments in the CCS temperature and pressure. We use CO2+N2, here, as an exem-

plar and the results are shown in figure 2. The agreement for the vapour mole
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fraction is moderately poor everywhere, except for lower pressures at T = 293K.

The coexistence pressure agreement for both temperatures worsens as the sim-

ulation pressure increases and, while the pressure performs better than that of

the vapour mole fraction, the disagreement is sometimes outside the statistical

error of the simulation. For the homogeneous, supercritical phase (figure 2b) the

general agreement for the density is good with the exception of a single point in

T = 300K. The results for O2, Ar and H2, shown in the Supplementary Informa-

tion are entirely comparable to N2. Generally, the homogeneous phase density is

predicted well, but the predictions are unacceptable for the coexistence pressure

and are more erroneous still for the gas mol fraction.
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Fig. 2 Comparison between CO2 + N2 measurements (shaded symbol) and simulations

using the literature force-field (open symbols) and the optimised force-field (shaded

symbols), from table 2: (a) coexisting mol fraction (experimental data at 273K28 and

293K 29); and (b) homogeneous phase pressure-density behaviour (experimental data for

mixtures 30 and pure N2
31).

2.3 Optimisation of impurity force-fields

2.3.1 The simplex method. For each impurity in this study, we optimised

the force-field to CCS-relevant data to improve the quantitative accuracy of sim-

ulations of CO2 mixtures in the CCS region of temperature and pressure. Using

binary mixture measurements as a basis for comparison, the parameters of the

impurity force-fields were changed using an iterative optimisation method. The

experimental data for CO2 mixtures used for this optimisation is a combination of

coexisting mol fraction, coexisting densities (where available) and homogeneous

phase density data, along with density data for the pure impurity, all at several

temperatures. We used a reduced set of representative data, to control the number

of concurrent simulations needed. The experimental data used for optimisation

correspond exactly to those data presented in the figures in the Supplementary

Information.

During this optimisation, we held the CO2 force-field fixed and made small

adjustments to the values of the six impurity force-field parameters (ε, σ, Q, L, η
and ξ, where the Lorenz-Bertholet mixing parameter refer to the interaction be-

tween CO2 and the impurity), using the literature force-fields as a starting point.

To quantify the disagreement between the simulation and experiments, we con-
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structed an error function that sums over the square fractional deviation between

experiments and simulations,

E(ε,σ,Q,L,η,ξ) =
Nc

∑
i=1

(

xE
vi − xS

vi

xE
vi

)2

+
Nc

∑
i=1

(

PE
vi −PS

vi

PE
vi

)2

+
Ncρ

∑
i=1

(

ρE
ci −ρS

ci

ρE
ci

)2

+
Nhm

∑
i=1

(

ρE
mi −ρS

mi

ρE
mi

)2

+
Np

∑
i=1

(

ρE
pi −ρS

pi

ρE
pi

)2

,

(5)

where E and S denote experiment and simulation, respectively, xv is the coexist-

ing vapour mol fraction, Pv is the coexisting vapour pressure, ρci is the coexisting

density (liquid or vapour), ρm is the homogeneous phase density for the CO2 mix-

ture, ρpis the homogeneous phase density for the pure impurity, and Nc, Ncρ, Nhm

and Np are the number of data point for the coexisting mol fraction, coexisting

density, mixture density and pure additive density, respectively.

We optimised the model parameters by using the simplex method32 to im-

prove the error function. The simplex method is a simple downhill optimiser that

will locate a local minimum in the error, which is desirable for this system as

straying too far from the literature force-field would be unphysical. The simplex

method is also gradient free, which is important for our system as generating ac-

curate gradients of the error function by simulation is very expensive. For the

initial simplex, we used the literature force-field and formed the simplex nodes

by individually scaling-up all parameters by 5%, apart from η and ξ, which were

scaled-up by 10%. This approach leads to a seven point simplex. As approxi-

mately 20 data points were used for each impurity, the initial simplex requires

140 simulations (the longest of which is ∼ 20 hours). However, as these simula-

tions are independent they can be run in parallel on separate cores. Subsequent

iterations require only a single simplex point, reducing the number of simulations

to ∼ 20 per iteration. The simplex optimisation is ended when the difference be-

tween error terms at different points on the simplex becomes of the same order as

the statistical uncertainties of the simulations. At this point simplex had shrunk

sufficiently that no further meaningful improvement in the agreement could be

achieved. This typically required 10-20 iterations.

2.3.2 CO2 + N2. Figure 2 shows for the optimised force-field, there is a clear

improvement in the coexistence predictions for both temperatures in figure 2a)

when predicting vapour pressure and, particularly, vapour mole fraction. Figure

2b) shows that, in the homogeneous single phase, predictions of the pure N2

properties remain consistent with the experimental data as we intended and, while

the mixture density does suffer slightly at 265K, this is more than compensated

for by the large increase in accuracy in the coexistence phase. For CO2+N2 we

held back the coexisting density data, to test whether the resulting optimised

force-field could predict these data. Predictive results from the optimised force-

field for these measurements are shown in figure 3b). The results are reasonable,

but there is a noticeable deficiency in the predictions for high densities in both

the homogeneous and coexisting phase (figure 2b and c). To address this for

the optimisations of O2, Ar and H2) we include coexisting density data when
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available. These optimisations proceeded in very similar manner to CO2+N2 and

are detailed in the Supplementary Information.

2.4 Predictive simulations

To test the robustness of the predictions from the optimised force-field we ran

a series of predictive simulations to compare with CCS-relevant measurements.

In all cases these included coexisting mol fractions and densities, along with ho-

mogeneous phase densities. The range of temperature, pressure and impurity

fraction encompassed by these comparisons is much more extensive that the data

used for fitting. For the coexistence simulations in the vicinity of the critical point

pressure, we found noticeable noise in the gas mol fraction. To address this we

used larger simulations, with 150,000 run steps and 1200 and 750 particles in the

liquid and gas runs, respectively. We also averaged the predictions over 10 inde-

pendent simulation runs of the same conditions. Comparison of the simulation

predictions with a wide range of measurements are shown in figures 3- 7.

2.4.1 CO2+N2. In figure 3a) the liquid mol fraction is predicted very accu-

rately, at all temperatures. The gas mol fraction is also predicted well but at high

pressures minor noise and systematic deviation become evident. The coexisting

density (figure 3b) shows good agreement for the gas density, apart from minor

deviations approaching the critical pressure. This deviation is probably due to

inaccuracies in the coexisting gas mol fraction, rather than an inability to predict

the gas density at the correct mol fraction. The coexisting liquid density shows

reasonable agreement but has clear underprediction in the approach to the criti-

cal point. This slight underprediction of the density in the high density region is

also evident in the homogeneous phase predictions in figure 3c), where low and

moderate densities are predicted well.

2.4.2 CO2+O2. The mol fraction predictions for CO2+O2 mixtures are shown

in figure 4a). Here, as with CO2+N2, the liquid mol fraction is predicted accu-

rately at all temperatures and the gas mol fraction is well captured everywhere

except close to the critical point, where there is some systematic deviation, along

with noise in the simulation results. In an improvement over the CO2+N2 perfor-

mance, the coexisting and homogeneous phase densities are predicted accurately

everywhere, including at high densities (see figure 4 b and c).

2.4.3 CO2+Ar. Figure 5 shows that the CO2+Ar results are comparable to

the CO2+N2 results, in that the measurements are generally predicted accurately,

except for the gas mol fraction close to the critical point and the pressure-density

behaviour at high densities.

2.4.4 CO2+H2. In figure 6a) the simulations predict accurately the liquid

mol fraction. The gas mol fraction is predicted reasonably accurately, although

the predictions are systematically a little too high. At 295.K the measured mol

fractions approach rapidly from about 12MPa, to give a critical point at abut

15MPa, a feature that the simulations do not capture even though the liquid mol

fraction is correctly predicted at all pressures. It is noteworthy that the widely-

used GERG equation of state drastically overpredicts these data17, giving a crit-

ical pressure of 25MPa. The simulations predict accurately the density in the

coexisting and homogeneous phases everywhere (see figure 6 b and c).
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Fig. 3 Simulations (lines) for CO2 + N2 mixtures using our optimised force-field,

compared with measurements (points) of coexisting mol fraction28,29,33 (a); coexisting

density28,34 (b); and the pressure-density behaviour of the homogeneous phase30 (c).
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Fig. 7 Simulations (lines) for the CO2 + H2 bubble point computed from our optimised

force-fields, compared with measurements of the bubble point5 (closed symbols). Also

shown are the measured dew points (patterned symbols).

Need to add predictions to figure 7: Figure 7 shows the results for the

CO2+H2 phase envelope for H2 concentrations of 3% and 5%, compared to mea-

surements. The bubble point predictions were computed by direction simulation.

However, the GE method is unsuitable for direction simulation of the dew point5

so we obtained dew point predictions by interpolating the simulation data in fig-

ure 6a). The simulations predict accurately the bubble and dew points for all

measurements. Also included is the prediction of the GERG EoS for the bubble

point40, which at 5%H2, significantly underpredicts the bubble point. This has

implications for pipeline design as the bubble-point defines the limit of the safe

regime of operating pressures. The stronger molecular basis of our simulations

leads to a more successful description of these data.

2.5 Application to EoS

We note that CO2 thermophysical properties are usually modelled using EoS.

EoS are significantly cheaper numerically than simulations and, with sufficiently

effective fitting to high-quality measurements, give more accurate correlations of

the data. However, the ability of EoS to extrapolate to regions where measure-

ments are unavailable, is questionable, even for small changes in temperature or

impurity fraction (for example, see the GERG predictions in figure 7). This is due

to either their lack of physical basis or mathematical approximations. In contrast

to an EoS, molecular simulation provides a physical model, arising from the in-

teractions between CO2 and the relevant impurity. Thus, if a suitable force-field

is available, simulations can provide more robust predictions in regions where no

optimisation or fitting has been done. Thus there is a key complementary role

for molecular simulation in CCS modelling. We propose, here, two methods by

which simulations can improve EoS fitting. Firstly, where experimental data are

sparse, simulation predictions can be used as surrogate experimental data and in-

cluded in the fitting, to impose improved extrapolation onto the EoS. This will

1–22 | 15



be particularly useful in regions where experiments are prohibitively difficult,

expensive or unsafe. Secondly, often EoS are fitted to coexistence data via con-

strained optimisation10,17. The constraints are more readily applied if the full

complement of coexistence data is available for each pressure and temperatures.

This requires measurements of the density at coexistence for both the liquid and

the vapour phases. For many experimental techniques the co-existing density is

not measured. Indeed we recently developed an ad hoc method of interpolating

to these density data when fitting an EoS17. However, replacing this method

with simulation data is an attractive alternative. Using simulation data in EoS

fitting will provide a more complete picture of coexistence and numerically more

straightforward fitting. Both of these exploit the superior robustness of simula-

tion predictions, with respect to changes in temperature, pressure and impurity

fraction.

2.6 Summary and future extensions

We performed simulations of binary mixtures of CO2 with N2, O2, Ar and H2

using two-centre Lennard-Jones plus quadrupole force-fields and compared the

results against mixture data in the CCS region of temperature and pressure. Al-

though the literature force-field for pure CO2 was suitable for CCS transport

modelling, force-fields for the impurities did not given sufficiently accurate pre-

dictions at temperatures relevant to CCS. Therefore we re-optimised the impurity

force-fields by fitting to selected VLE and homogeneous phase measurements for

binary CO2 mixtures, under conditions relevant to CCS transport. We then used

these new force-fields to predict a much broader set of CCS-relevant measure-

ments. For all impurities, the simulations generally gave very good predictions

for all liquid mol fraction. The gas mol fraction predictions were good, except

close to the critical point where they showed some minor noise and systematic

deviation from the measurements. The density predictions at high density were

somewhat erroneous for CO2 with N2 and Ar but were very good throughout for

O2 and H2. We have focused on binary mixtures herein, however the impurity

force-fields developed herein can be used to compute the properties of CO2 mix-

tures with many impurity species. The force-fields will also provide useful pre-

dictions for quantities such as specific heat, viscosity and speed of sound. Our

optimisation method will allow force-fields for other impurities to be similarly

optimised where experimental data exists. In the longer term, the optimisation

method in this work can be applied to lower temperatures than we studied here,

down to the triple point of CO2. This will aid in modelling burst CO2 trans-

port pipes, as the mixture will cool when it escapes the high pressure environ-

ment within the pipe. This may necessitate impurity force-fields that include a

weak temperature dependence if they are to be effective over a larger temperature

range.

3 Ab-initio molecular interactions

We demonstrated in section 2 the potential for molecular simulation to improve

upon and complement modelling by EoS. Above we used semi-empirical molec-

ular force-fields, which were optimised to measurements in the relevant regime
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of pressure, temperature and impurity concentration. Despite it successes, this

approach has several limitations. Even with fitting, there is not close agreement

with experiments everywhere. Furthermore, fitting simulations is numerically

expensive. Finally, the semi-empirical method requires experimental data for fit-

ting, although it needs less extensive data than EoS fitting. These limitation arise

from the semi-empirical nature of the fitted force-field. In contrast, fully ab ini-

tio approaches22 are also possible, in principle, and have the potential to address

these issues.

In this section we illustrate a nascent technique, with the potential, ultimately,

to lead to completely ab initio predicts of thermophysical properties, such as

those studied above. Computational chemistry has advanced to the stage where

calculations of intermolecular potential energies can be accurately computed, for

small molecules, from ab initio quantum calculations. However, the computa-

tional cost of evaluating the energy at a single point is too large (often minutes

or hours of time per pair of molecules) to be practical within a molecular simula-

tions. Thus it is necessary to fit or interpolate calculated energy data to produce

a potential energy surface. Approaching this problem with traditional parametric

fitting techniques is often laborious and its effectiveness is contingent on a good

initial choice of parametric function. Good choices for a particular molecular

interaction may not translate to other chemistries.

We follow a procedure, proposed by Uteva et al43 to produce intermolecu-

lar potential energy surfaces efficiently from a relatively small number of train-

ing data. This non-parametric approach uses a machine learning technique to

directly learn the mathematical structure from the data; no selection of paramet-

ric function is necessary. The use of machine learning suggests that this algo-

rithm may be more readily generalised to new interactions. Indeed the technique

has been readily applied to several distinct chemical systems, without modifica-

tion43. Here we apply the algorithm to interpolation of the CO2−N2 interaction.

We use quantum-chemical calculations to produce ab-initio evaluations of the

intermolecular potential between the CO2−N2 binary pair. Using a modest num-

ber of these calculations, we to train a machine-learning algorithm, known as

a Gaussian Process, to describe these data. The resulting model is then able to

accurately predict a much broader set of ab-initio force-field calculations at low

comparatively numerical cost.

3.1 Intermolecular potential data for CO2−N2

Data sets of the intermolecular interaction energy of the bimolecular complex

CO2+N2 are calculated as a function of their configurational geometry. All

molecules are approximated as linear rigid rotors in their vibrational ground state,

with fixed bond lengths of 1.1632Å and 1.0975Å for the C-O and N-N bonds, re-

spectively. Energy calculations are carried out in Molpro44 using second-order

Möller-Plesset perturbation theory (MP2) and augmented correlation-consistent

triple-zeta (aug-cc-pVTZ) basis sets. Basis set superposition errors are corrected

using the full counterpoise correction procedure. An energy cutoff of Ecut =
0.005 Eh is imposed and configurations with intermolecular potentials above this

cutoff are excluded from the training and test data sets. Configurations are also

excluded if any interatomic distance is below 1.5 Å or if all interatomic distances
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are above 8.5 Å.
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Fig. 8 The geometry of a CO2+N2 pair, described by angles and centre of mass distance

(a) and interatomic distances (b).

As with many molecular systems, the CO2−N2 interaction contains several

symmetries. For example, the intermolecular potential is unchanged by the inter-

change of both N atoms or both O atoms (see ESI for full details). Because of

these symmetries we generate data over the region 1.5Å< r < 10Å, 0< θ1 < π/2,

0 < θ2 < π/2 and 0 < φ < π, where r is the distance between the molecular cen-

tres, θ1 is the angle between r and the CO2 axis, θ2 is the angle between r and the

N2 axis, and φ is the torsional angle of the N2 axis (see figure 8a). This defines a

symmetry-distinct sub-region, which is the smallest region of space from which

the behaviour for all space can be inferred via the symmetries.

3.2 Gaussian Processes

Gaussian processes (GPs)45 are used extensively in machine learning and statis-

tics as regression models. They are ‘non-parametric’ models of functions, which

generalise the Gaussian distribution. The prior specification of a GP consists

of a mean function (often taken as zero) and a covariance function k(x,x′), ex-

pressing the covariance between f (x) and f (x′), where f is the function being

interpolated. Training data, consisting of observations of the value of f at vari-

ous locations, update the mean and covariance functions to give a posterior model

which predicts the function at any location.

Properties of the GP model are inherited from the covariance function, for

example, symmetry, differentiability and stationarity. Stationarity is a common

assumption when using GPs. It assumes that the covariance function depends

only on the distance |x−x′| and not the individual positions x and x′. However,

the intermolecular energy is a non-stationary function of distance, as it varies

rapidly at small interatomic separations, but more gently at larger separation. To

deal with this non-stationarity we use the inverse interatomic distances as covari-

ates in the GP, to achieve approximate stationarity. Thus the GP coordinates are

x= (1/r1, ...,1/rND
) where ri is the interatomic distance, running over all pairs of

nuclei on different molecules. Thus for CO2
+N2 this results in an over-specified

system, with ND = 6 dimensions, of which 4 are independent.

Our GP has a zero mean function and a squared-exponential covariance func-
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tion

κ(x,x′) =
ND

∏
i=1

exp

[

−
(xi − x′i)

2

2l2
i

]

(6)

where li is the correlation length for each dimension. We generalise this function

to respect the symmetries of the system. The symmetries mean that the inter-

molecular potential is invariant under several permutations of the inverse inter-

atomic distances x (see the ESI for full details). Let G represent the permutation

group containing permutations of elements of x under which the energy surface is

unchanged. If li = l j for all coordinates xi and x j that swap for some permutation

in G, then a covariance function of the form

ksym(x,x
′) = σ2

f ∑
g∈G

κ(gx,x′), (7)

where σ2
f is the signal variance, results in a GP that shares the symmetries of the

energy surface (see the Supplementary Material). The ‘symmetric model’ based

on this covariance function gives predictions that respect the relevant symmetries,

and usually significantly improves the performance43, even within the symmetry-

invariant region covered by the test data, as shown below.

3.2.1 Latin hypercube data The training and test data should ideally cover

evenly a single symmetry-distinct sub-region of x space, and respect the geo-

metric constraint. We generate candidate co-ordinate sets of the desired size

from Latin hypercube (LHC) sampling of 1/r, cosθ1, cosθ2 and φ, on the ranges

specified above. We then delete points that violate the geometric constraints, re-

ject the entire LHC if it does not contain at least the target number of points and

compute the minimum separation of the remaining points in x space. We repeat

this process over a large number of iterations and the candidate data set with the

largest minimum separation is then used in Molpro energy calculations. This

‘maximin’ approach aims to cover evenly the symmetric distinct sub-region of x

space.

3.3 Results

Results are obtained using the GPy package46, modified to include symmetric co-

variance functions. Zero-mean Gaussian observation error45 is assumed on the

function outputs (referred to as nugget in geostatistics), with standard deviation

σn. Thus the model’s hyperparameters are σ f , σn and {li}. These hyperparam-

eters are estimated by optimising the log-likelihood over ≈ 30 random restarts,

which typically is sufficient to find the optimal values multiple times. We re-

peated this process for a range of different sizes of training data, all generated via

the LHC algorithm described above. The accuracy of the interpolation was then

tested by computing the root mean square error (RMSE) for the GP interpolations

against a much larger test data set. The test set comprised of a very large LHC of

size ∼ 15,000 points (also generated via the same algorithm). Figure 9 shows the

RMSE for increasing number of training points. When compared a fixed number

of training points, the symmetric covariance function typically gives an RMSE

that is 3-7 time more accurate than the non-symmetric version. An RMSE of

5×10−6 Eh corresponds to a mean error of 0.5% of the high energy cut off, and

this is achieved by the symmetric model with ∼ 200 training points.
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Fig. 9 RMSE against number of training points (LHC size) for CO2+N2. The lowest

energy in the test data is -1.38×10−3 Eh.

3.4 Summary

We used quantum-chemical calculations to produce ab-initio evaluations of the

interactions between CO2 and N2. Via a modest number of these calculations, we

trained a machine-learning algorithm, known as a Gaussian Process, to describe

these data. The resulting model accurately predicts a much broader set of ab-

initio force-field calculations at low comparatively numerical cost. Several pieces

of future work are necessary to be able to implement GP force-fields into molec-

ular simulations such as those from our semi-empirical force-fields in section 2.

These are extension of the technique to non-additive (three-body) interactions;

optimisation of the number and placement of training data and streamlining of

the computation of the predicted potential using the symmetric covariance func-

tion. This work leads directly from the algorithm of Uteva43, used here, and has

the potential to lead to first-principles simulation of the thermodynamic proper-

ties of impure CO2, without fitting to experimental data.

4 Conclusions

The goal of this work was to develop methods by to predict the thermophysical

properties of impure CO2, to aid in the design and safe operation of CCS tech-

nology, particularly the pipeline transport. Robust modelling methods are needed

because available experimental data do not comprehensively cover the relevant

temperature, pressure and impurity regime. Simulation is a promising molecular

approach, with foundations in firmly established physical principals. However,

molecular simulation requires suitable force-fields to describe the interaction be-

tween CO2 molecules and the impurities and we explored two methods to obtain

such force-fields. We demonstrated that, even with semi-empirical force-fields

this leads to VLE and pressure-density predictions that, when compared to EoS,

are more robust to changes to temperature, pressure and impurity fraction and re-

20 | 1–22



quire far less comprehensive fitting data. We also described a method to produce

ab initio potential energy surfaces from quantum-chemical calculations, apply-

ing the method to the CO2+N2 binary pair. This method has the potential to

deliver first-principles simulation of the thermodynamic properties, provided the

extensions to the method outlined above can be achieved.

Future work for the semi-empirical forcefields will involve simulating a wider

range of CCS-relevant properties, such as specific heat, viscosity and speed of

sound, comparing to measurements on ternary and higher order mixtures, and

extending the range of pressure and temperature. To obtain first-principles the

method for ab initio potential energy surfaces needs to be generalised to three-

body interactions and implemented within a molecular simulation.
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