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Abstract :  

 

The basal ganglia system has been proposed as a possible neural substrate for action selection in 

the vertebrate brain. We describe a robotic implementation of a model of the basal ganglia and 

demonstrate the capacity of this system to generate adaptive switching between several acts when 

embedded in a robot that has to �survive� in a laboratory environment. A comparison between 

this brain-inspired selection mechanism and classical winner-takes-all selection highlights some 

adaptive properties specific to the model, such as avoidance of dithering and energy-saving. 

These properties derive, in part, from the capacity of simulated basal ganglia-thalamo-cortical 

loops to generate appropriate behavioural persistence.  

 

Key words: Biorobotics; basal ganglia; action selection; computational model; survival task. 

 



1.Introduction 

 

Computer simulation is one approach to gain insight into the details of the understanding of 

biological mechanisms. It can be useful for predicting the activations of cells or biological 

circuits but, as far as behaviour is concerned, it cannot replace real world experiments in 

evaluating sensorimotor systems. Biorobotics is a recent field at the intersection of biology and 

robotics that designs the architectures of robots as models of specific biological mechanisms [38]. 

The realization of these artificial systems can be used to evaluate and compare biological 

hypotheses, as well as to estimate the efficiency of biological mechanisms within a robot control 

setting.  

The objective of the current paper is to evaluate, on a robotic platform, the hypothesis that the 

vertebrate basal ganglia provide a possible neural substrate for action selection [10],[29]. Action 

selection concerns the issue of solving conflicts between multiple sensorimotor systems so as to 

display relevant behavioural sequences. Several computational models of decision-making 

involving these neural structures have been investigated in a variety of simulation tasks, like 

trajectories control, multi-armed bandit or Wisconsin card sorting tasks (for reviews see [19],[7], 

[33], [34], [14]), but few have been faced with the reality of a robotic device. An exception is the 

computational model of Gurney, Prescott and Redgrave [17], [18] which has been embedded in a 

Khepera robot (©Kteam) and used to simulate the behavioural sequences of a hungry rat placed 

in a novel environment [30]. In the current paper, our objective is to test the same model with a 

more classical action selection task�a 'two resources' survival problem, which is well-known as 

the minimal scenario for evaluating this kind of mechanism [36]. This investigation, which uses 

alternative robot platform (©Lego Mindstorms), requires the embedded basal ganglia model to 



4 

select efficiently between several actions to allow the robot to �survive� in an environment where 

it can find `ingesting places' and `digesting places'. A key requirement is that the control 

architecture should be sufficiently adaptive to generate a chaining of actions allowing it to remain 

as long as possible in its so-called viability zone [4]. This entails, at each time step, maintaining 

its essential state variables above minimal thresholds.  

--Insert Fig.1 about there -- 

As illustrated on Fig.(1), the basal ganglia (BG) is a group of interconnected sub-cortical nuclei. 

In the rat brain, the principle basal ganglia structures are the striatum, the globus pallidus (GP), 

the entopeduncular nucleus (EP), the subthalamic nucleus (STN), and the substantia nigra pars 

reticulata (SNr). The striatum receives somatotopic cortical input from the sensory, motor, and 

association areas. The major output structures are EP and SNr. They maintain a tonic inhibition 

on thalamic nuclei that project on the frontal cortex, in particular on motor areas. The internal 

connectivity of the BG has long been interpreted as a dual pathway [2], a direct pathway, 

consisting of inhibitory striatal efferents which projects to the EP/SNr, and a parallel excitatory 

indirect pathway, projecting to EP/SNr by way of GP and STN.  This interpretation has been 

shown to have several shortcomings, in particular, it fails to account for several anatomically 

important pathways within the BG and to accommodate recent clinical data.  

The model proposed by Gurney, Prescott and Redgrave (henceforth the GPR model, [17],[18]) 

reinterprets the basal ganglia anatomy as a set of neural mechanisms for selection in a new, dual-

pathway functional architecture. A selection pathway, including D1 striatum (i.e., striatal neurons 

with D1 dopamine synaptic receptors) and STN, operates through disinhibition of the output 

nuclei (EP/SNr). A control pathway, involving D2 striatum (i.e., striatal neurons with D2 

dopamine synaptic receptors) and STN, modulates the selection process in the first pathway via 
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innervation from GP. Moreover, Humphries and Gurney [21] embedded the two circuits into a 

wider anatomical context that included a thalamo-cortical excitatory recurrent loop whereby the 

output of the basal ganglia can influence its own future input. 

 

The current work, which is an extension of previous experiments [15], will specifically 

investigate whether the GPR model implements more than a simple `winner-takes-all' (WTA) 

mechanism, a classical selection mechanism proposed long ago by engineers and ethologists [5]. 

The WTA is based on selecting for execution the action that corresponds to the highest 

`motivation' (integration of internal and external factors), whilst inhibiting all competitors. 

Although the GPR model has a superficially similar property of selecting (albeit by disinhibition) 

the most highly motivated action, it is modulated by the effects of the control and feedback 

circuits, potentially resulting in different patterns of behavioural switching, compared to simple 

WTA. In particular, the GPR feedback loops can induce �behavioural persistence�. The 

importance of persistence as an adaptive process for animals has long been recognised by 

ethologists (e.g. [25], [39]) due to its functional role in allowing an activity to endure in spite of a 

rapid decrease in its drive. Some authors have also speculated about the possible mechanisms that 

could generate behavioural persistence such as positive feedback [20] or reciprocal inhibition 

between multiple motivational systems [24], [8]. In the current we paper we investigate the 

possibility, proposed by Redgrave, Prescott and Gurney [34], that basal ganglia-thalamocortical 

control loops may serve as a neural substrate for a behavioural persistence effect. A comparison 

of the two control architectures GPR and WTA, embedded in the same robot in the same 

environment, should therefore demonstrate precisely if and how the GPR control circuits can 

bring benefits to the action selection process.  
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Following a description of the GPR computational model, we will detail how this model was 

implemented within the control architecture of the Lego Mindstorms robot. The results obtained 

with the model will be presented and compared with those of a WTA, and these will be discussed 

from the perspective of biological plausibility.  

 

 

2.Method 

 

2.1. The GPR computational model 

 

The details of the computational model and its correspondence with the neural anatomy have 

been fully described in [17], [18], [21], therefore we will introduce here only its main 

characteristics. As shown in Fig.(2), the selection and control pathways will be designated for 

conciseness by BGI and BGII respectively.  

--Insert Fig.2 about there � 

 

 

The inputs for the GPR model are speculative variables called �saliences' that represent the 

commitment toward displaying a given action. The saliences allow the representation of actions 

at the initial stage of the model in terms of a �common currency� [27]. Each action is associated 

with a given salience, which is supposed to be computed in the sensorimotor cortex as a weighted 

function of all the external information and internal needs relevant for this action. The values are 

provided as inputs to STN, D1 and D2 striatum through segregated parallel channels each one 

simulated by a leaky-integrator artificial neuron, which is the simplest neural model incorporating 

the notion of a dynamic membrane potential [40], [3]. 
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The BGI selection effect is mediated by two mechanisms. The first one concerns local recurrent 

inhibitory circuits within D1 striatum, which select a single winner salience � the highest one - 

and generate an output value proportional to that winner. This value is given as an inhibitory 

input to the corresponding channel into EP/SNr. The EP/SNr channels are tonically active and 

direct a continuous flow of inhibition at neural centres that generate the actions. When the signal 

emanating from D1 striatum inhibits a particular inhibitory channel in EP/SNr, it thereby 

removes the inhibition from the corresponding action.  

EP/SNr affords a second selection mechanism with an �off-centre on-surround� feedforward 

network, in which the `on-surround' is supplied by a diffuse excitation of all channels from STN, 

and the `off-centre' by the inhibitory signal from D1 striatum. This mechanism serves to reinforce 

the discrepancies between the winning EP/SNr channel value and all the others.  

The properties of this selection pathway are modulated by control signals computed by the BGII 

circuit, in which a arrangement similar to BGI prevails: local recurrent inhibitory circuits within 

D2 striatum and an �off-centre on-surround� feedforward network, in which the `on-surround' is 

supplied by a diffuse excitation of all the GP channels from STN, and the `off-centre' by the 

inhibitory signal from D2 striatum. Outputs from GP inhibit the EP/SNr and STN channels. The 

role of this control pathway appears to be three-fold.  

First, the output GP signal directed to EP/SNr enhances the selectivity under inter-channel 

competition. Second, the inhibition from GP to STN serves to automatically regulate STN 

activity allowing for effective selection irrespective of the number channels in the model. 

Without this mechanism, as the number of active channels is increased, the STN diffuse 

excitation will also increase, eventually shutting down all the output channels of the model. The 

negative feedback provided by GP is therefore just sufficient to automatically scale this excitation 

in such a way as to ensure appropriate selection. The third role of BGII concerns dopaminergic 
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modulation via the inhibitory D2 receptors, which proceeds synergetically - with excitatory D1 

striatal receptors - to increase the inter-channel output activation interval.  

In the thalamic excitatory recurrent loop, the thalamus (TH on Fig.(2) is decomposed into the 

thalamic reticular nucleus (TRN) and the ventro-lateral thalamus (VL) [21]. Both structures have 

the same segregated channels as BGI and BGII.  This positive feedback loop reinforces the 

salience of selected actions thereby fostering persistence of their state of being selected.  

The outputs of the whole model, provided by the EP/SNr channels, are disinhibitions assigned to 

each action. At this stage, there can be partial disinhibitions of the motor components associated 

to more than one channel. As a consequence, the behaviour eventually displayed can be a 

combination of several actions, by weighting each one according to its degree of disinhibition. 

This kind of selection is called �soft switching�, in contrast to �hard switching� denoting the 

selection of a single action [17]. 

 

 

2.2. The robot and its environment 

 

The environment is a 2m x 1.60m flat surface surrounded by walls (Fig.(3), left). It is covered by 

40cm x 40cm tiles of three different kinds: 16 uniformly gray tiles (neutral-gray representing 

`barren' locations), 2 tiles with a circular gray to black gradient (�ingesting' locations, with 

inexhaustible resource), and 2 tiles with a circular gray to white gradient (�digesting' locations).  

 

--Insert Fig.3 about there � 
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Depending on the experimental settings, the robot has to select efficiently among the following 

actions:  

- ReloadOnDark (ROD):  the robot stops on a dark place in order to �ingest� a virtual food (i.e., it 

reloads a �potential energy� that it cannot consume). 

- ReloadOnBright (ROB):  the robot stops on a white place in order to �digest' the eaten food (i.e., 

it transforms its amount of potential energy into an amount of actual energy that it can consume). 

- Wander(W): The robot wheels randomly in the environment (i.e., forward and turning acts of 

random duration).  

- AvoidObstacles (AO) : the robot achieves a backward movement followed by a  45°  rotation 

when one bumper is activated or a  180°  rotation when  both are.  

- Rest (R) : the robot stops for �resting�.  

- Grooming (G) : the robot stops and displays a �virtual grooming' (without moving any effector). 

 

External and internal variables contribute to the calculation of the saliences associated to these 

actions.  

External variables are provided by four sensors. The robot (Fig.(3), right) has two frontal light 

sensors, one behind the other, pointed to the ground. The mean of both values produced by these 

sensors is used to compute two variables, Brightness and Darkness (resp. LB and LD). The 

variable  LB (resp.  LD) is null for all colours darker (resp. brighter) than the neutral-gray, and 

increases linearly with brighter (resp. darker) colours, reaching 1 for the central white (resp. 

black) spots. Two bumpers, situated on the front-right and the front-left, produce each a binary 

value (resp.  BL and BR) set to 1 when the robot hits an obstacle on the left, or right respectively.  

The robot has a �virtual metabolism' based on the two internal variables: Potential Energy (EPot) 

and Energy (E). The procedure to reload Potential Energy is to display ReloadOnDark. The gain 
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Delta EPot in EPot is proportional to the duration TIngest (in seconds) of the ingesting behaviour and 

to the Darkness of the ground: 

  ǻ EPot  = 7* TIngest * LD        (1) 

Then, the variable Potential Energy increases when the robot is on a dark place, but it decreases 

when it is converted into Energy. 

The procedure to transform Potential Energy into Energy is to display ReloadOnBright. The 

changes in Energy and Potential Energy are proportional to the assimilation duration TDigest and 

to the Brightness of the ground:   

  ǻ E = TDigest  (7* LB - 0.5 )          (2) 

  ǻ EPot = - 7*TDigest* LB          (3) 

When the variable Potential Energy is not null, the display of ReloadOnBright produces Energy. 

Otherwise, it consumes it at a rate of 0.5 units/s. The other actions consume Energy at a rate of 

0.5 units/s, with the exception of Rest, which consumes half less (0.25 units/s). 

Initially, Potential Energy and Energy take on values between 0 and 255. Then, these variables 

are normalized to lie between 0 and 1 before being used for salience computation (note that the 

Energy consumption rate is 2e-3 per second and �1e-3 per second for Rest� after normalization). 

When E reaches zero, the robot `dies'.  

 

A third internal variable, Dirtiness, is used in only one experiment and has no effect on the 

metabolism. It increases at a rate of 1 units/s and is lowered by the activation of the action 

Grooming at a rate of 4 units/s. 
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2.3.Details of the GPR model implementation  

 

As mentioned before, the level of commitment toward displaying a given action is expressed by a 

specific salience value, which will be given as an input for a specific channel in BGI and BGII. 

For each action, the salience is computed as a function of the involved external variables (LB, LD, 

BL or BR) and internal variables (EPot, E or Dirtiness), with the addition of the Persistence signal 

(P), coming from the positive feedback of the TH circuit, for the corresponding channel. Transfer 

functions are applied to the sensory inputs, in order to allow, for instance, salience dependencies 

on lack on energies (Table I). 

Because some salience values depend on a coupling between two variables, Sigma-Pi units - 

allowing non-linear combinations of inputs conveying interdependencies between variables [12] - 

were also added. For instance, in our setting, ReloadOnDark should be activated when Darkness 

and Potential Energy are low. Activating it on non-dark places or if Potential Energy is high just 

wastes Energy without any benefit. This situation can eventually lead to �death�, because the 

salience corresponding to this channel is reinforced by its feedback persistence and prevents other 

behaviour from taking control of the robot. The computation by Sigma-Pi units is more than an 

engineering solution, as Mel [28] argues that the dendritic trees of neocortical pyramidal cells can 

compute complex functions of this type. Thus it is at least plausible to assume that second-order 

functions of the relevant contextual variables could be extracted by the neurons in either the 

cortex or the striatum that compute action salience.   

 

Concerning the computation of all the channel values within BGI, BGII and TH, we use the same 

parameters - registered on Fig.(2) and Appendix 1- as in [30], except that the dopamine 

modulation was kept constant. To stabilise the system, the basal ganglia module was allowed to 
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compute up to four cycles with the same sensory data before waiting for new ones. For the output 

computations, the modality proposed in the original GPR model was modified, for the sake of the 

comparison with a WTA mechanism. Initially, the outputs of all actions were combined, leading 

to a �soft switching�. However, a WTA mechanism allows for only one winner, a situation that 

can be termed �hard switching'. In our experiments, the �soft switching' of the GPR output was 

disabled, in order to compare the selection of the winning act, and not the way this winning act is 

displayed after this selection. Accordingly, the motor output of the most fully disinhibited action 

was always enacted, and that of any partially disinhibited competitors always ignored.  

 

2.4. The experiments 

 

The GPR and the WTA architectures are embedded in the same robot. Both �GPR robot� and 

�WTA robot� have to achieve the same task independently, in the same environment. The input 

saliences are computed alike for both conditions, with the exception of the persistence signal P 

which is only included in the GPR saliences (Table I). For all experiments, the parameters were 

`hand-crafted' in an attempt to find settings that were close to optimal.  

As an output, the GPR robot will display at each time-step the least inhibited action, and the 

WTA will display the action associated with the highest salience. If, in either architecture, there 

are multiple winning outputs, the action previously selected remains active.  

 

 

--Insert Table I about there � 

 

Experiment 1 compares both architectures with the smallest set of actions enabling 

survival (i.e., Wander, ReloadOnDark, ReloadOnBright and  AvoidObstacle), in order to 
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determine their efficiency in selecting a chaining of actions for this minimal two resources task. 

Two further experiments were also performed to explore the potential of the GPR architecture. 

Experiment 2 compares the capacity of both architectures to avoid the so-called �dithering 

effect�, a classical issue in action selection corresponding to a rapid oscillation between two acts 

[37]. For this purpose, a competing action, Grooming, is added to the behavioural repertoire used 

for Experiment 1. This action does not influence the robot�s metabolism, but its salience is 

weighted in order to enhance the competition between this action and a current winning act. 

Experiment 3 compares the capacity of both architectures to save energy, by having the 

opportunity to display a low-energy cost act, i.e., Rest. This action, added to the behavioural 

repertoire used in Experiment 1, can only be exhibited when the robot does not need either to 

reload Energy or Potential Energy, or to Wander. 

 

All these experiments are composed of a set of runs for each architecture. At the beginning of a 

run, Energy is set to 1 and Potential Energy to 0.5, which allows less than 9 minutes of survival 

without appropriate reloading behaviours. The robot operates as long as its Energy is above 0 and 

its real batteries are loaded (up to 5 hours of continuous functioning). An action selection 

mechanism will be considered as successful if it is able to ensure at least 1 hour of survival per 

run. 

Data describing internal variables and active behaviours is recorded approximately 15 times per 

second. For each run, this data is used to compute the following value sets: 

⋅ Medians of Energy, Potential Energy and acts duration 

⋅ Frequencies of activation of each act 
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⋅ Average amount of Potential Energy extracted per second from the inexhaustible resources. 

This value is computed by adding up the variations of Potential Energy during ROD 

activations and by dividing the result by the total duration of the run.  

For each experiment, all the value sets per run obtained for the GPR and WTA will be compared 

using the non-parametric Mann-Whitney U test.  

 

3. Results 

 

3.1. Experiment 1 (GPR: 9 runs; WTA: 10 runs) 

With both GPR and WTA architectures, the robot achieved efficient action selection. All runs 

were successful, as all of them lasted more than one hour. Both architectures clearly succeeded in 

keeping the robot�s essential variables within the viability zone. This first result prompted us to 

further analyze the structure of the behavioural sequences generated in the two conditions. 

On Fig.(4), graphs (a) (b) and (c) show the input saliences, the inhibitory outputs (EP/SNr) of the 

GPR model and the corresponding behavioural sequence displayed by the GPR robot, while 

graphs (d) and (e) show the input salience and corresponding behavioural sequence displayed by 

the WTA robot. Note the substantial difference between the input saliences in the two runs (a) 

and (d), which are primarily due to effects of persistence in the GPR model. The output signals in 

(b) show that the control circuit (BGII) and the positive feedback loop (TH) have increased the 

contrast between the saliences.  

 

--Insert Fig.4 about there � 
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As shown in Table II, ROB, ROD and AO bouts generally last longer with the GPR architecture 

than with the WTA. This can be explained by effects of persistence, allowing an action to remain 

active for some time after its 'raw' salience has fallen below that of other actions. Although bouts 

of `ingesting� and `digesting� are shorter in the WTA condition, their frequencies are 

correspondingly higher. One may then ask whether these behavioural differences are reflected in 

the way the energies are collected. 

--Insert Fig.5 about there � 

 

--Insert Tables II & III about there � 

 

Table III indicates that the higher frequencies of acts of the WTA robot serve to substantially 

compensate for their shorter durations, to the point that the medians of Potential Energy and 

Energy between both architectures end up having similar values. The histogram of Fig.(6), which 

depicts the percentages of overall time (on y-axis) during which Potential Energy is gained at the 

levels shown on x-axis, also reveals a similarity in reloading, except for the last class: the GPR 

robot maintains EPot at over 95% of the maximum charge during 25% of time, compared to less 

than 13% for the WTA robot. This observation suggests that the GPR robot could reach this �state 

of comfort� for a longer time than the WTA. However, it does not seem to take full advantage of 

this efficient reloading strategy, as both EPot medians are similar (Fig. (5) and Table III). Since 

the transformation from EPot to E is dissipative (see Eq. (2) and (3)), the EPot extracted from the 

environment is just larger (2.2e-3) than the rate of Energy consumption. In this experiment, this 

value is similar for both systems, because all the available behaviours consume Energy at the 

same rates. 
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--Insert Fig.6 about there � 

 

Experiment 1 has shown that both models can display relevant switching between actions, but 

with different survival strategies. The purpose of the following experiments is to explore some 

consequences of such behavioural discrepancies. 

 

3.2. Experiment 2: analysis of persistence. 

 

The main differences between the behaviour of the GPR and WTA robots derive from the 

duration of their activity bouts. Specifically, in the GPR robot, the bout duration of a given action 

- due to the BGI selection - is extended by both the positive feedback of TH and the control of 

BGII. The persistence value computed by TH increases the winning salience, favouring the 

selection of the corresponding act for the forthcoming time steps. In parallel, the inhibitory 

signals coming from BGII to STN and EP/SNr decrease the global activation of the model. 

Without this control, a winning act could reinforce itself endlessly preventing itself from being 

deselected.  

Figure (7) illustrates the persistence effect on an example involving ReloadOnDark. The salience 

of ReloadOnDark is proportional to the lack of Potential Energy, and while the robot reloads, its 

salience decreases. With the WTA architecture, another salience can easily interrupt this action 

before the Potential Energy has been fully reloaded. In contrast, if correctly tuned, the GPR robot 

is able to completely reload, because the salience for ReloadOnDark is reinforced by the 

persistence signal which therefore increases the duration of the bout. 

--Insert Fig.7 about there � 
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One of the advantages of having a persistence effect is to prevent �dithering�, that is, switching 

frequently between different actions. As mentioned before, avoiding this oscillation is an issue 

for most of the engineering-designed architectures for action selection. Dithering may be 

particularly deleterious where there are significant costs associated with unnecessary switching 

between one action and another. However, in other situations, frequent interruptions of a selected 

action may actually be appropriate. For example, if an animal eats in a dangerous area, it should 

break away from its meal on a regular basis to check for predators. As a consequence, an efficient 

action selection system should be able to control the level of behavioural persistence according to 

circumstances. The following will show that it is the case for the GPR architecture, not for the 

WTA one.  

In order to demonstrate the importance of appropriate persistence, the Grooming act was added to 

the previous behavioural repertoire of the robot. Note that this act has no effect on the robot�s 

metabolism, but that it can compete with other actions. For example, a robot that is situated on a 

black tile (potential energy source), is currently starved of EPot, and has a high Dirtiness value, 

may �hesitate� to display either an ingesting or a grooming act, as shown on Fig.(8). By 

appropriate tuning of the Persistence weights the GPR robot can overcome this difficulty for both 

actions. Lacking this possibility, the WTA robot necessarily oscillates between these behaviours. 

As a consequence, the GPR robot can show persistence or rapid switching as required by 

circumstances.   

 

--Insert Fig.8 about there � 
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3.3. Experiment 3 (GPR: 5 runs; WTA: 6 runs) 

 

Despite its lack of persistence, the WTA robot was able to survive during Experiment 1 by 

increasing the frequency of its reloading actions. However, the short duration of these bouts and 

the low percentage of time during which it is completely reloaded suggest that it spends less time 

than the GPR robot in a �comfort zone� well away from the boundary of viability. The conditions 

of Experiment 1 did not allow the GPR robot to make use of this benefit. Indeed, when the GPR 

robot had both high Energy and Potential Energy levels, none of its four actions were relevant to 

its situation, however, it was nevertheless required to choose one. The addition of Rest � a low 

energy cost act � to the behavioural repertoire of the robots in Experiment 1 will test the 

capability of both selection architectures to save energy when other actions are not particularly 

relevant, that is, when their saliences are close to zero.  

 

--Insert Fig.9 about there � 

 

--Insert Tables IV & V about there � 

 

In this experiment, all runs for both robots were successful and lasted more than one hour. As in 

Experiment 1, both architectures clearly succeeded in keeping the robot�s essential variables 

within the viability zone.  

The results of Table IV show that both robots activate Rest with a similar frequency per hour. 

However, as expected, the duration of a Rest bout is significantly longer for the GPR robot. As a 

consequence, it consumes less Energy than the WTA and needs to perform fewer reloading 
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actions (Table IV) than in Experiment 1, in which Rest was not available. In this situation, it can 

extract from the environment significantly less EPot than the WTA (Table V). 

The more frequent reloading actions displayed by the WTA robot allow it to maintain a higher 

level of Energy, but the conjunction of more frequent conversions of EPot into E and incomplete 

reloads prevent it from reaching a higher level of Potential Energy (Fig. (9) and Table V). In 

contrast, the GPR robot can maintain a high level because, on the one hand, it can take advantage 

of its ability to save Energy and, on the second hand, it can display more efficient reloading 

actions. Indeed, despite extracting less EPot over the course of the experiment the GPR achieves a 

higher median level of EPot overall (see Fig.(10)), reaching over 95% of the maximum charge 

during more than 45% of the time. 

 

--Insert Fig.10 about there � 

 

4. Discussion 

 

Building on the work of Gurney, Prescott and Redgrave [17], [18], our objective was to evaluate 

the vertebrate basal ganglia as a possible neural substrate for action selection. We have shown 

that the model is able to generate adaptive switching between several acts when embedded in a 

robot that has to �survive� in a real environment. The comparison with WTA served to highlight 

some adaptive properties specific to the GPR model, such as the avoidance of dithering and 

energy-saving that derives from its capacity to generate appropriate behavioural persistence. 

Though it is possible to add persistence to the WTA architecture via a simple feedback loop - like 

TH loop in GPR -, a control mechanism - like BGII in GPR - is then mandatory to avoid 

overload.  
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One adaptive effect of persistence is that it can maintain the robot internal variables at more 

comfortable levels, helping it to survive any temporary upset in the availability of resources 

(Experiments 1 and 3). Another effect is that it serves to avoid dithering, the main issue of most 

engineering architectures of action selection (Experiment 2). It also allows the GPR robot to save 

energy with a longer display of a low-cost act when other actions are not contextually relevant 

(Experiment 3). A final less intuitive adaptive effect is that persistence can `prime' the robot to 

anticipate forthcoming opportunities for action. For instance, due to the low communication 

frequency between the robot and the PC, we noticed that the WTA robot often stops after it has 

driven past the central brightest (or darkest) patch on the gradient tiles, whereas the GPR robot 

generally manages to stop closer to the patch centre. What happens is that the corresponding 

salience increases slightly as the GPR robot enters the brighter (or darker) area. Although this is 

not enough, in itself, to prompt a change in the selected action, the positive feedback begins to 

build up the salience so that, when the robot eventually reaches the centre, it is able to select the 

appropriate action more rapidly. This increased responsiveness is possible because the brightness 

(or darkness) gradient serves to prime the appropriate action.  

This work lends additional weight to the proposal that the basal ganglia control loops 

implemented by the GPR model may serve as a neural substrate for the adaptive benefits of 

persistence. It also suggests some improvements to the model. In particular, as stated by 

physiologists and ethologists, we know that persistence varies accordingly to various contextual 

factors. For example, McFarland [25] pointed out that the duration of feeding bouts in rats could 

be diversely triggered by the stimulation of oral or of gut receptors. The persistence effect on 

feeding and drinking bouts in rats was also shown to depend on learning, diurnal and nocturnal 

conditions [23]. According to McFarland and Lloyd [26] and the 'time-sharing' hypothesis, an 

action may also show a 'hidden' persistence, even after its execution has been interrupted. For 
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example, a 'dominant' act may be temporarily suspended to allow an alternative behaviour to be 

expressed, only later resuming its performance. In this case, the 'salience' of the dominant act 

persists even though the behaviour itself is deselected for a short while. 

In the GPR model, the duration of behavioural persistence could also be sensitive to contextual 

variables, since salience is a function of many factors of which positive feedback is only one.  

But the persistence weights - together with the salience weights �  are still tuned �by hand� to suit 

different environmental situations. One way to improve the model is to consider biological 

hypotheses on learning in the basal ganglia that have already been implemented in various 

computational models (see [22] for a review). The activation patterns of dopamine neurons 

within the striatum - e.g., shifting back from responding to a primary reward to a reward-

predicting stimulus [35] - has been shown to be very similar to that generated by machine 

learning algorithms, in particular Temporal Difference models [6]. These models distinguish an 

�actor�, which learns to display actions so as to maximize the weighted sum of future rewards, 

and a �critic�, which computes this sum on line. The GPR model can be assimilated to an �actor� 

� with details usually neglected by the preceding models � to which a critic should be added to 

exhibit efficient learning capabilities. Although, according to [31], [22], TD learning inspired 

models of the basal ganglia are built on suppositions that are incompatible with observed features 

in the basal ganglia anatomy and physiology, some of them have succeeded in closely simulating 

the observed activations of striatal neurons in conditioning responses [11]. Accordingly, these 

models - or their alternative [31] - can be a future support for inclusion of learning processes in 

the GPR control architecture.  

This robotic embodiment is part of an ongoing, multi-partner project which aims to synthesize 

Psikharpax, an `artificial rat', in which such biomimetic mechanisms for action selection will be 

combined with biomimetic mechanisms for navigation [13], both inspired by existing structures 
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in the rat brain. For that purpose, the current model will be further refined to match the particular 

characteristics of the nucleus accumbens (ventral striatum) in order to investigate its role in 

integrating spatial, sensorimotor and motivational information [16], [1], [9]. 
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Abbreviations 

AO AvoidObstacle action 

BG basal ganglia 

BGI �selection part� of the GPR 

BGII �control part� of the GPR 

BL left bumper sensor value 

BR right bumper sensor value 

D1 striatal neurons containing D1 dopamine receptors 

D2 striatal neurons containing D2 dopamine receptors 

E energy 

EPot potential energy 

EP entopeduncular nucleus 

G Grooming action 

GP globus pallidus 
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GPR Gurney, Prescott and Redgrave model of basal ganglia 

LB brightness sensor value 

LD darkness sensor value 

P persistence 

R Rest action 

ROB ReloadOnBright action 

ROD ReloadOnDark action 

SNr substantia nigra pars reticulata 

STN sub-thalamic nucleus 

TDigest duration of ROB action 

TH �thalamic part� of the GPR 

TIngest duration of ROD action 

TRN thalamic reticular nucleus 

VL ventro-lateral thalamus 

W Wander action 

WTA winner-takes-all action selection mechanism 
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Appendix 1. Weight parameters for the GPR model  

Module   Threshold        Slope 

D1 striatum 0.2 0.35

D2 striatum 0.2 0.35

STN -0.25 0.35

GP -0.2 1

EP/SNr -0.2 1

Persistence 0 1

TRN 0 0.5

VL -0.8 0.62

 

Neurons parameters 

Time constant K= 0.25 

Lambda of the Dopamine levels = 0.2 
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Table I. Salience calculations. The transfert functions Rev(x) and Circ(x) stand respectively for 

(1-x) and the square root of (1-x²). 

 

 

Actions Saliences calculations 

WTA � BL � BR + 0.5 × Rev(EPot) + 0.7 × Rev(E)  Wander 

GPR � BL � BR + 0.8 × Rev(EPot) + 0.9 × Rev(E)  

WTA 3 BL + 3 BR AvoidObstacle 

GPR 2 BL + 2 BR + 0.5 PAO 

WTA �2 LB � BL � BR + 3 LD × Rev(EPot) ReloadOnDark 

GPR �2 LB � BL � BR + 3 LD × Rev(EPot) + 0.4 PROD 

WTA �2 LD � BL � BR + 3 LB × Circ(Rev(EPot)) × Rev(E) ReloadOnBright 

GPR �2 LD � BL � BR + 3 LB × Circ(Rev(EPot)) × Rev(E) + 0.5 PROB 

WTA � BL � BR + 0.1 Rest 

GPR � BL � BR + 0.6 PR 
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Table II.  Experiment 1. Comparison (U Mann-Whitney test) between the GPR and WTA robots 

of all runs cumulated. Top: Act durations. Bottom: Frequency of activations of each act per hour.  

 

 

Duration W ROD ROB AO 

GPR 

M 50 253 212 34 

range 46 : 52 133.5 : 356 145 : 268 31 : 38 

WTA 

M 46 141 139 20 

range 40 : 48 98 : 246 112 : 152 20 : 20 

U =  24 8 3 3 

 p> 0.05 p< 0.01 p< 0.01 p< 0.01 
 

     

Frequency W ROD ROB AO 

GPR  

M 272.52 28.79 49.98 233.05 

range 259.12 : 294.12 26.57 : 45.58 40.78 : 59.08 220.13 : 257.68 

WTA  

M 433.79 40.58 51.96 331.42 

range 393.37 : 470.97 24.71 : 49.17 48.29 : 61.42 295.20 : 403.69 

U =  0 18 20 0 

 p<0.01 p<0.05 p<0.05 p<0.01 
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Table III.  Experiment 1. Comparison (U Mann-Whitney test) between the GPR and WTA robots 

of the medians of Energy (E), of Potential Energy (EPot), and of Potential Energy extracted (EPot 

extr.) per run.  

 

 E EPot EPot extr. (10
-3

) 

GPR        M 0.78 0.75 2.3 

range 0.68 : 0.81 0.65 : 0.86 2.4 : 2.2 

WTA       M 0.77 0.77 2.2 

range 0.72 : 0.81 0.71 : 0.83 2.0 : 2.6 

U =  26 43 27 

 p> 0.05 p> 0.05 p> 0.05 
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Table IV. Experiment 3.  Comparison (U Mann-Whitney test) between the GPR and WTA robots 

of all runs cumulated. Top: Act durations. Bottom: Frequency of activations of each act per hour.  

 

 

Duration W ROD ROB AO R 

GPR       M 52.5 302 294 34 1728 

range 49 : 56 233.5 : 348 233 : 308 33 : 35 1445 : 2116.5 

WTA      M 48 161 150 20 485 

range 48 : 49 132 : 192 120 : 168 20 : 24 340 : 568 

U =  1 0 0 2 0 

 p< 0.01 p< 0.01 p< 0.01 p< 0.05 p< 0.01 

 

      

Frequency W ROD ROB AO R 

GPR       M 195.35 27.20 44.99 143.64 10.06 

range 182.42 : 239.65 16.01 : 32.30 29.61 : 56.94 137.52 : 175.58 9.29 : 12.74 

WTA      M 427.22 52.12 74.22 306.40 8.75 

range 408.67 : 436.53 45.05 : 61.47 57.19 : 81.97 301.41 : 313.96 4.71 : 9.62 

U =  0 0 0 0 13 

 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p> 0.05 
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Table V.  Experiment 3. Comparison (U Mann-Whitney test) between the GPR and WTA robots 

of the medians of Energy (E), of Potential Energy (EPot), and of Potential Energy extracted (EPot 

extr.) per run.  

 
 

 E EPot EPot extr. (10
-3

) 

GPR       M 0.78 0.937 1.8 

range 0.757 : 0.792 0.875 : 0.973 1.7 : 1.9 

WTA      M 0.8 0.81 2.2 

range 0.788:0.816 0.796 : 0.855 2.1 : 2.2 

U =  1 0 0 

 p< 0.01 p< 0.01 p< 0.01 
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Figure captions 

 

Figure 1. Basal ganglia in the rat brain (gray areas). 

 

Figure 2. The GPR model (see text for explanations). Arrows represent excitatory connections, 

blobs inhibitory connections. Weight parameters are shown next to their respective pathways.  

 

Figure 3.  

Left: The environment showing `food' (A) and `nest' (B) locations.   

Right: the Lego Mindstorm robot. (A): the light sensors; (B): the bumpers. 

 

Figure 4.  

Left: (a) Input saliences, (b) output EP/SNr signals and (c) the corresponding behavioural 

sequence generated by the GPR model.  

Right:(d) Input and output signals (saliences) and (e) the corresponding behavioural sequence 

generated by a WTA. The abscissa shows the number of cycles where 1450 cycles correspond to 

100 sec.  

 

Figure 5. Scatter plots of the median values of Energy (top) / Potential Energy (bottom) in 

Experiment 1 for each run of the GPR and the WTA robots. 

 

Figure 6. Percentages of overall time (on y-axis) during which Potential Energy is reloaded at the 

levels shown on x-axis (the maximum charge is 1). GPR: white, and WTA: black (all runs 

cumulated). 

 

Figure 7.  Effect of persistence in GPR.  

From top to bottom:  

`Raw' salience (i.e. without persistence) of ReloadOnDark; Output EP/SNr signals; the 

corresponding behavioural sequence generated by the GPR robot: (A) points where the switch 

would happen without persistence, (B) points where the switch actually takes place. On x-axis:  

number of computation cycles (250 cycles correspond to approx. 17 sec).  

 

Figure 8. Control of dithering: with a GPR architecture (left) it is possible to control the 

oscillation length by adjusting the persistence parameters, while a WTA (right) necessarily 

dithers between acts. 

 

Figure 9. Scatter plots of the median values of Energy (top) / Potential Energy (bottom) in 

Experiment 3 for each run of the GPR and WTA robots. 

 

Figure 10.  Percentages of overall time (on y-axis) during which Potential Energy is reloaded at 

the levels shown on x-axis (the maximum charge is 1). GPR: white and WTA: black (all runs 

cumulated).  



38 

 

 

Fig. 1 

 

Superior
Colliculus

Cortex

EP
GP

STN

ThalamusStriatum

SNr

Other motor centers

 

 



3
9

 

F
ig

.2
 

   

STN

D2 Striatum

Motor Component
of Act 1

of Act 2

of Act 3

Persistence

GP

BGII

BGI

D1 Striatum
EP/SNr

Selected
Act

Internal VariablesExternal Variables

VL

TRN

Dopamine

TH

Dopamine

−0.13−0.13
1

1

1

1

1

1.2

0.8 −1

−1

−0.4

−0.25

1

1

1

WE
i

W

WI

P
i

i

 



40 

 

Fig.3 
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Fig.5 
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Fig.6 
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Fig.7 
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Fig.9 
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Fig.10 
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