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On Classical State Space Realizability of Bilinear Input-Output

Differential Equations

Ü. Kotta, T. Mullari, P. Kotta, A. S. I. Zinober

Abstract— This paper studies the realizability property of
continuous-time bilinear i/o equations in the classical state space
form. Constraints on the parameters of the bilinear i/o model
are suggested that lead to realizable models. The paper proves
that the 2nd order bilinear i/o differential equation, unlike the
discrete-time case, is always realizable in the classical state
space form. The complete list of 3rd and 4th order realizable
i/o bilinear models is given and two subclasses of realizable i/o
bilinear systems are suggested. Our conditions rely basically
upon the property that certain combinations of coefficients of
the i/o equations are zero or not zero. We provide explicit
state equations for all realizable 2nd and 3rd order bilinear
i/o equations, and for one realizable subclass of bilinear i/o
equations of arbitrary order.

I. INTRODUCTION

In many practical situations continuous-time input-output

(i/o) models of the form

y(n) = ϕ(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(s)) (1)

are deduced from i/o data when no information regarding

the structure of the observed dynamical system is available

a priori. Such representations form the basis of much modern

identification theory. Identification therefore involves model

structure selection prior to parameter estimation. In practice,

this involves selecting a form of the multivariate nonlinear

function ϕ(·) and the specification of the maximal derivatives

for the inputs and outputs that appear in equation (1).

Typically, ϕ is assumed to be a low order polynomial, most

often a bilinear or quadratic function, and not all possible

terms are included since in most cases a more complex model

does not necessarily equate to a better model.

The realization problem is defined as follows: given a

nonlinear system described by the i/o differential equation

of the form (1) with s ≤ n − 1, and ϕ(·) smooth,

find, if possible, the state coordinates x ∈ IRn, x =
ψ(y, . . . , y(n−1), u, . . . , u(s)) such that in these coordinates

the system takes the classical state space form

ẋ = f(x, u), y = h(x), (2)

called the realization of (1). It is known that an arbitrarily

structured empirical model (1) does not necessarily have a

state space realization of the form (2) [1], [2]. Using such a
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model is highly undesirable for further control design since

the state space description is central in modern nonlinear

control theory. Thus a basic question is that of deciding when

a given i/o equation admits a realization. In this paper our

purpose is to find the subsets of bilinear i/o equations

y(n) =

n
∑

i=1

aiy
(n−i) +

n
∑

i=1

biu
(n−i) +

n
∑

i,j=1

cijy
(n−i)u(n−j)

(3)

that are guaranteed to have a state space representation of

order n, and as such are good candidate structures to be used

in system identification. Since the bilinear model (3) is linear

in the parameters, it lends itself easily to the well-established

parameter estimation algorithms.

Several (equivalent) necessary and sufficient realizability

conditions exist in the literature [1], [2], [3], [4], [5], that

allow one to decide if the given i/o equation of the form (1)

admits a state space representation or not. These conditions,

though transparent and inherently simple, are not helpful if

we want to check realizability directly from the knowledge

of the bilinear i/o model parameters ai, bi, cij . The objective

here is to study further the realizability property of the

subclass of i/o bilinear differential models and to suggest

constraints on the parameters of the bilinear model that can

lead to realizable models. Our results will extend earlier

results on realizability of discrete-time bilinear i/o equations

[6]. Note that, in the continuous-time case, the applicability

of bilinear models is less limited than in the discrete-time

case because of their greater generality in approximation,

and also because bilinearity often occurs naturally in the

continuous-time case [7], [8], [9]. Many relevant physical

processes have been satisfactorily modelled by means of

bilinear models. Moreover, the results for continuous-time

bilinear i/o model realizability are more important than the

corresponding results in the discrete-time case, since in the

continuous-time case, unlike the discrete-time case [10], no

general subclasses of realizable i/o equations have yet been

found.

II. REALIZABILITY CONDITIONS FOR I/O BILINEAR

MODEL

Despite the structural simplicity of the bilinear i/o model,

the general realizability conditions yield little insight and

do not tell us in terms of the parameters ai, bi, cij , which

bilinear model is realizable in the classical state space form

and which is not. To give a more general view of the nature

of parameter restrictions necessary for realizability, it is

instructive to consider the special cases where n = 1, 2, 3, 4.
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In our proofs below we use a constructive algorithm

for finding, if possible, the state variables from the n-th

order input-output differential equation, where the highest

order time derivative u(n−1) of the input u appears linearly,

as is the case for bilinear systems. The first step of the

algorithm to eliminate u(n−1) is described in [3]. As shown

in [11], the generalized state variables, defined in the first

step of this algorithm, are the independent invariants of

a certain vector field. This vector field is the Lie bracket

of a total time derivative operator associated with the i/o

differential equation and the partial derivative operator with

respect to u(n−1). We write the generalized state equations

in terms of the invariants of this vector field, containing now

u(n−2) as the highest time derivative of input. We check

their linearity with respect to u(n−2) as the necessary and

sufficient condition for eliminating u(n−2). If the equations

are not linear, we make them linear by suitable selection of

the bilinear i/o equation parameters.

Once these generalized state equations are linear, we

define a new vector field as the Lie bracket of a total

time derivative operator associated with the generalized state

equations and the partial derivative operator with respect to

u(n−2). The next step is to find the independent invariants

of this vector field and use them as the new generalized

state variables. By repeating this procedure n − 1 times,

always checking the linearity of the resulting generalized

state equations with respect to the highest time derivative of

input, and where necessary, making them linear, we finally

obtain the classical state equations that do not depend on

input derivatives anymore.

At each step of the algorithm, in general, by making

the generalized state equations linear with respect to the

highest time derivative of the input, we get several alternative

restrictions on system parameters which means that there is

a branching at each step of the algorithm. Combining the

restrictions, obtained at the different steps, we end up with

a set of branch-dependent rather complicated realizability

conditions.

Now we consider the cases n = 1, 2, 3, 4 separately. The

first order bilinear input-output model y(1) = a1y + b1u +
c11yu is obviously realizable in the classical state-space form

and the choice x(t) = y(t) will yield the state space model.

Propositions 1, 2 and 3 below consider the cases n = 2,

n = 3 and n = 4, respectively.

Proposition 1. The second order bilinear system described

by the i/o equation (3) with n = 2 is always realizable in

the classical state space form and for the case c11 �= 0, the

state equations are

ẋ1 = −
1

c11
[b1 + c21x1 − c11e

c11ux2]

ẋ2 = −
e−c11u

c2
11

[−b1(a1c11 + c21)

+ c11(b2c11 − b1c12)u

+ (a2c
2
11 − a1c11c21 − c2

21)x1

+ (c2
11c22 − c11c12c21)x1u + c2

11c12e
c11ux2u

+ c11(a1c11 + c21)e
c11ux2]

y = x1.

(4)

Proof. According to the theory described above, applied to

the second order bilinear i/o equation, the state coordinates

can be obtained as the independent invariants of the vector

field

Lf

∂

∂u(1)
= −

∂

∂u
−

(

b1 + c11y
(1) + c21y

) ∂

∂y(1)

The latter yields x1 = y, x2 = e−c11u

c11
(b1 + c11ẏ + c21y).

One may investigate what happens to the state equations

(4) for the special case c11 = 0 when the above choice for

the state coordinate x2 is impossible. In that case the vector

field we are looking for simplifies to

Lf

∂

∂u(1)
= −

∂

∂u
− (b1 + c21y)

∂

∂y(1)

which yields a different choice of the state coordinates

x1 = y, x2 = ẏ − c21yu − b1u. The state equations now

become ẋ1 = x2 +c21x1u+b1u, ẋ2 = a2x1 +a1x2 +(c22 +
a1c21)x1u+(c12−c21)x2u+(b2+a1b1)u+b1(c12−c21)u

2+
(c12c21 − c2

21)x1u
2, y = x1.

Proposition 2. The third order bilinear system described

by the i/o equation (3) with n = 3, is realizable in the

classical state space form if and only if either one of the

following conditions is satisfied

(i) b1 = c11 = c21 = c31 = 0,

(ii) c11 = 0, c21 = c12.

Proof. One starts by looking for the conditions that allow

one to eliminate the second order input time derivatives

as the necessary conditions for realizability. Note that this

can always be done for the 3rd order bilinear input-output

equation, since it is linear with respect to u(2). Using the

total time derivative operator f , associated with the 3rd order

bilinear i/o equation, we define a vector field

Lf

∂

∂u(2)
= −

∂

∂u(1)
−

(

b1 +

3
∑

i=1

ci1y
(3−i)

)

∂

∂y(2)

and use its independent invariants x
[1]
i , i = 1, ..., 3 as the

generalized state variables:

x
[1]
1 = y, x

[1]
2 = y(1)

x
[1]
3 = −

1

c11
exp(−c11u

(1))

[

b1 +
3

∑

i=1

ci1y
(3−i)

]

.

(5)

Using the generalized state variables x
[1]
i defined by (5),

the corresponding first two generalized state equations are

ẋ
[1]
1 = x

[1]
2

ẋ
[1]
2 = x

[1]
3 exp(c11u

(1)) −
b1

c11
−

1

c11

3
∑

i=2

ci1x
[1]
4−i.

(6)
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Next, we look for the conditions that allow us to eliminate

u(1) from the generalized state equations (6) by defining

the new generalized state variables. For that to be possible,

according to the theory, the equations (6) must be linear

with respect to u(1). The second equation of (6) is linear

only if the coefficient c11 equals zero. This condition has no

alternative, because every generalized state equation must be

linear with respect to u(1). Consequently, the first necessary

realizability condition for the 3rd order bilinear input-output

equation reads

c11 = 0. (7)

With the above condition the generalized state variables have

the following form

x
[1]
1 = y, x

[1]
2 = y(1)

x
[1]
3 = y(2) −

[

b1 +

3
∑

i=1

ci1y
(3−i)

]

u(1).
(8)

and the generalized state equations in variables (8) become

x
[1]
1 = x

[1]
2

x
[1]
2 = x

[1]
3 +

(

b3 +
3

∑

i=2

ci1x
[1]
(4−i)

)

u(1)

x
[1]
3 =

3
∑

i=2

aix
[1]
4−i +

3
∑

i=2

bαu(3−α)

+

3
∑

i=2

3
∑

α=2

ciαx
[1]
(4−i)u

(3−α) − c31x
[1]
2 u(1)

+
[

a1 + c13u(c12 − c21)u
(1)

]

·

·

[

x
[1]
3 +

(

b1 +
3

∑

i=2

ci1x
[1]
(4−i)

)

u(1)

]

.

(9)

Still, the third generalized state equation in (9) is nonlinear

with respect to the highest time derivative u(1) of the control

variable. To make it linear, one has to put the restrictions

on the system parameters. Together with condition (7) we

obtain two sets of conditions, being necessary and sufficient

for realization of equation (5) and given in the formulation

of the proposition.

Remark. For identification purposes, the condition c21 =
c12, unless both parameters are equal to zero, is unnatural

since there is no reason to assume that the terms ẏü and ÿu̇

should have equal coefficients. For that reason we suggest

the following 3rd order realizable i/o equations to be used

in modelling

(i) b1 = c11 = c21 = c31 = 0,

(ii) c11 = c21 = c12 = 0.

The state equations, corresponding to (i) are given as a

special case of equations (25) for n = 3 (see below).

Proposition 2A. The state equations, corresponding to the

case (ii) are

ẋ1 = x2 + b1u + c31x1u

ẋ2 = x3 + a1b1b2u + (a1b2c31 + c32)x1u

+ (c22 − 2c31)x2u + (0.5b1c13

+ 0.5b1c22 − 1.5b1c31)u
2

+ (0.5c13c31 + 0.5c22c31 − 1.5c2
31)x1u

2

ẋ3 = a3x1 + a2x2 + a1x3 + (a2b1 + a1b2 + b3

+ a2
1b1)u + (a2c31 + a1c32 + c33 + a2

1c31)ux1

+ (a1c22 + c23 − 2a1c31)ux2 + (b2c13 − b2c22

+ b1c23 + 0.5a1b1(3c13 − c22 − c31) + b2c31

− b1c32)u
2 + (1.5a1c13c31 − 0.5a1c22c31 + c23c31

− 0.5a1c
2
31 + c13c32 − c22c32)x1u

2

+ (c13c22 − c2
22 − 1.5c13c31 + 2.5c22c31x2

− 1.5c2
31 − c32)x2u

2 + (c13 − c22 + c31)x3u
2

+ 1
2 (b1c

2
13 − b1c

2
22 − b1c13c31 + 3b1c22c31

− 2b1c
2
31)u

3 + 0.5(c2
13c31 − c2

22c31 − c13c
2
31

+ 3c22c
2
31 − 2c3

31)x1u
3

y = x1.

Proposition 3. The fourth order bilinear system described

by the i/o equation (3) with n = 4, is realizable in the

classical state space form if and only if one of the following

conditions is satisfied

(i) b1 = b2 = 0,

c11 = c12 = c21 = c22 = c31 = c32 = c41 = c42 = 0
(ii) b1 = c11 = c12 = c21 = c31 = c41 = 0, c13 = c22

(iii) c11 = c12 = c13 = c21 = c22 = c31 = 0, c14 − c23 +
c32 − c41 = 0

Proof. According to theory, one has to look for the

conditions that allow one to eliminate the third order input

time derivatives as the necessary conditions for realizability.

Note that this can always be done for 4th order bilinear input-

output equations, since it is linear with respect to u(3). Using

the total time derivative operator f associated with the i/o

equation, we define a vector field

Lf

∂

∂u(3)
= −

∂

∂u(2)

−
(

b1 + c11y
(3) + c21y

(2) + c31y
(1) + c41y

) ∂

∂y(3)
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and use its independent invariants x
[1]
i , i = 1, ..., n as the

generalized state variables:

x
[1]
1 = y, x

[1]
2 = y(1), x

[1]
3 = y(2),

x
[1]
4 =

1

c11
exp(−c11u

(2)) · (10)

[

b1 + c11y
(3) + c21y

(2) + c31y
(1) + c41y

]

.

Using the generalized state variables x
[1]
i defined by (10),

the corresponding first three generalized state equations are

ẋ
[1]
1 = x

[1]
2 , ẋ

[1]
2 = x

[1]
3 ,

ẋ
[1]
3 = x

[1]
4 exp

(

c11u
(2)

)

−
1

c11

(

b1 + c21y
(2) + c31y

(1) + c41y
)

. (11)

Next, we look for the conditions that allow us to eliminate

u(2) from the generalized state equations (11) via defining

the new generalized state variables. For this to be possible,

the equations (11) must be linear with respect to u(2). The

third equation of (11) is linear only if the coefficient c11

equals zero. This condition has no alternative, because every

generalized state equation must be linear with respect to u(2).

Consequently, the first necessary realizability condition for

the 4th order bilinear input-output equation reads

c11 = 0. (12)

With the above condition the generalized state variables have

the following form

x
[1]
1 = y, x

[1]
2 = y(1), x

[1]
3 = y(2),

x
[1]
4 = y(3) −

(

b1 + c21y
(2) + c31y

(1) + c41y
)

u(2).

The generalized state equations now become

ẋ
[1]
1 = x

[1]
2 , ẋ

[1]
2 = x

[1]
3 ,

ẋ
[1]
3 = x

[1]
4 +

(

b1 + c21x
[1]
3 + c31x

[1]
2 + c41x

[1]
1

)

u(2)

ẋ
[1]
4 =

[

a1 + (c12 − c21)u
(2) + c13u

(1) + c14u
]

·

·
[

x
[1]
4 +

(

b1 + c21x
[1]
3 + c31x

[1]
2 + c41x

[1]
1

)

u(2)
]

+ a2x
[1]
3 + a3x

[1]
2 + a4x

[1]
1 + b2u

[2] + b3u
[1] + b4u

+ (c22 − c31)x
[1]
3 u(2) + c23x

[1]
3 u(1) + c24x

[1]
3

+ (c32 − c41)x
[1]
2 u(2) + c33x

[1]
2 u(1) + c34x

[1]
2 u

+ c42x
[1]
1 u(2) + +c43x

[1]
1 u(1) + c44x

[1]
1 u. (13)

Note that the fourth equation of (13) is still nonlinear with

respect to u(2) and will be linear only if c12 = c21 or b1 =
c21 = c31 = c41 = 0, which together with the condition (12),

gives two sets of conditions necessary to hold for elimination

of u(2)

c11 = 0, c12 = c21, (14)

or alternatively,

b1 = c11 = c21 = c31 = c41 = 0. (15)

So, we have a first branching of conditions at this point.

We continue first with the set of conditions (14) and return

later to conditions (15). With (14), equations (13) read

ẋ
[1]
1 = x

[1]
2 , ẋ

[1]
2 = x

[1]
3 ,

ẋ
[1]
3 = x

[1]
4 +

(

b1 + c21x
[1]
3 + c31x

[1]
2 + c41x

[1]
1

)

u(2)

ẋ
[1]
4 = a2x

[1]
3 + a3x

[1]
2 + a4x

[1]
1 + b3u

(1) + b4u

+ c23x
[1]
3 u(1) + c24x

[1]
3 u + c33x

[1]
2 u(1) + c34x

[1]
2 u

+ c43x
[1]
1 u(1) + c44x

[1]
1 u

+
(

a1 + c13u
(1) + c14u

)

x
[1]
4

+
[(

b1 + c21x
[1]
3 + c31x

[1]
2 + c41x

[1]
1

)

·

·
(

a1 + c13u
(1) + c14u

)

+ b2

+ (c22 − c31)x
[1]
3 + (c32 − c41) + c42x

[1]
1

]

u(2).

(16)

To eliminate the variables u(2) from equations (16), we

calculate the Lie bracket of a vector field

f [1] =

4
∑

i=1

ẋ
[1]
i

∂

∂x
[1]
i

+

2
∑

α=1

u(α) ∂

∂u(α−1)

with vector field
∂

∂u(2)
:

Lf [1]

∂

∂u(2)
=

−
∂

∂u(1)
−

(

b1 + c21x
[1]
3 + c31x

[1]
2 + c41x

[1]
1

) ∂

∂x
[1]
3

−
[(

b1 + c21x
[1]
3 + c31x

[1]
2 + c41x

[1]
1

)

·

·
(

a1 + c13u
(1) + c14u

)

+ b2 + (c22 − c31)x
[1]
3 + (c32 − c41)x

[1]
2 + c42x

[1]
1

] ∂

∂x
[1]
4

(17)

and define the new generalized state variables x
[2]
i as the

independent invariants of vector field (17). First three of them

are

x
[2]
1 = x

[1]
1 , x

[2]
2 = x

[1]
2 ,

x
[2]
1 =

1

c11
exp(−c21u

(1))(b1 + c21x
[1]
3 + c31x

[1]
2 + c41x

[1]
1 ),

yielding the first two generalized state equations

ẋ
[2]
1 = x

[2]
2 ,

ẋ
[2]
2 = x

[2]
3 exp

(

c21u
(1)

)

−
1

c11

[

b1 + c31x
[1]
2 + c41x

[1]
1

]

.

(18)

Since the second equation of (18) is nonlinear with respect

to u(1), one cannot eliminate it unless c21 = 0. The

latter yields, together with conditions (14), the following

conditions necessary for elimination of u(1)

c11 = c12 = c21 = 0. (19)
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If conditions (19) hold, the equations (16) read

ẋ
[1]
1 = x

[1]
2 , ẋ

[1]
2 = x

[1]
3 ,

ẋ
[1]
3 = x

[1]
4 +

(

b1 + c31x
[1]
2 + c41x

[1]
1

)

u(2),

ẋ
[1]
4 =

(

a1 + c13u
(1) + c14u

)

x
[1]
4

+ a2x
[1]
3 + a3x

[1]
2 + a4x

[1]
1 + b3u

(1)

+ b4u + c23x
[1]
3 u(1) + c24x

[1]
3 u + c33x

[1]
2 u(1)

+ c34x
[1]
2 u + c43x

[1]
1 u(1) + c44x

[1]
1 u

+
[(

b1 + c31x
[1]
2 + c41x

[1]
1

) (

a1 + c13u
(1) + c14u

)

+ b2 + (c22 − c31) x
[1]
1 + (c32 − c41) x

[1]
2

+ c42x
[1]
1

]

u(2).

and the vector field (17) has the following form

Lf [1]

∂

∂u(2)
=

−
∂

∂u(1)
−

(

b1 + c31x
[1]
2 + c41x

[1]
1

) ∂

∂x
[1]
3

−
[

(b1 + c31x
[1]
2 + c41x

[1]
1 ) (a1 + c14u)

+ b2 + (c32 − c41)x
[1]
2 + c42x

[1]
1 + (c22 − c31)x

[1]
3

+
(

b1 + c31x
[1]
2 + c41x

[1]
1

)

c13u
(1)

] ∂

∂x
[1]
4

(20)

The new generalized state variables x
[2]
i , as the independent

invariants of vector field (20), are

x
[2]
1 = x

[1]
1 , x

[2]
2 = x

[1]
2 ,

x
[2]
3 = x

[1]
3 −

(

b1 + c31x
[1]
2 + c41x

[1]
1

)

u(1),

x
[2]
4 = x

[1]
4 −

[(

b1 + c31x
[1]
2 + c41x

[1]
1

)

(a1 + c14u) + b2

+ (c32 − c41)x
[1]
2 + c42x

[1]
1 + (c22 − c31)x

[1]
3

]

u(1)

+
1

2

(

b1 + c31x
[1]
2 + c41x

[1]
1

)

·

· (c22 − c31 − c13) (u(1))2.

The inverse relations are

x
[1]
1 = x

[2]
1 , x

[1]
2 = x

[2]
2 ,

x
[1]
3 = x

[2]
3 +

(

b1 + c31x
[2]
2 + c41x

[2]
1

)

u(1),

x
[1]
4 = x

[2]
4 +

[(

b1 + c31x
[2]
2 + c41x

[2]
1

)

(a1 + c14u) + b2

+ (c32 − c41)x
[2]
2 + c42x

[2]
1 + (c22 − c31)x

[2]
3

]

u(1)

+
1

2

(

b1 + c31x
[2]
2 + c41x

[2]
1

)

·

· (c22 − c31 + c13) (u(1))2.

The first three generalized state equations have the form

ẋ
[2]
1 = x

[2]
2 ,

ẋ
[2]
2 = x

[2]
3 +

(

b1 + c31x
[2]
2 + c41x

[2]
1

)

u(1),

ẋ
[2]
3 = x

[2]
4 +

[(

b1 + c31x
[2]
2 + c41x

[2]
1

)

(a1 + c14u) + b2

+ (c32 − 2c41)x
[2]
2 + c42x

[2]
1 + (c22 − 2c31)x

[2]
3

]

u(1)

+
1

2

(

b1 + c31x
[2]
2 + c41x

[2]
1

)

·

·(c22 − 3c31 + c13)(u
(1))2. (21)

We can eliminate the quantities u(1) from these generalized

state equations via a new generalized state transformation,

if and only if all these state equations separately are linear

with respect to u(1). The third equation of (21) is linear, if

either b1 = c31 = c41 = 0, or

c22 − 3c31 + c13 = 0. (22)

The first condition, together with the earlier conditions

(19), yields again conditions (15) and therefore will not cause

the new branching. The second new necessary conditions

(22), together with (15), have no alternative, because the third

equation in system (21) must be linear with respect to u(1)

independent on the other equations.

The fourth state equation for ẋ
[2]
4 is extremely complicated

and contains quadratic and cubic terms with respect to u(1).

The coefficients of the quadratic and cubic terms are zero

for two different cases, either

b1 = c31 = c41 = 0, c22 − c31 − c13 = 0, (23)

or

c13 = c31 = c22 = 0, −c23 + c32 − c41 + c14 = 0. (24)

The conditions (23), together with (19) and (22), yield the

realizability conditions (ii). The conditions (24), together

with (19) and (22), yield the realizability conditions (iii).

Now we return to the first branching (see (14) and (15))

and continue with conditions (15). Analogous calculations

will give us the third set of conditions (i).

The results of Propositions 2 and 3 illustrate the com-

plicated nature of realizability conditions for i/o bilinear

models. For arbitrary n, we have to go through n−1 steps. At

each step we obtain several restrictions on system parameters

with many equivalent branches. All these conditions can

be combined together in very many different ways. They

yield peculiar structures and most of them are probably

not important for practical applications. We suggest below

two realizable subclasses of i/o bilinear models that are

diagrammatically shown below:

a1 • . . . an−3• an−2• an−1• an•

b1 ◦ . . . bn−3◦ bn−2• bn−1• bn•

c11 ◦ . . . c1,n−3◦ c1,n−2◦ c1,n−1A c1,n•

c21 ◦ . . . c2,n−3◦ c2,n−2A c2,n−1• c2,n•

c31 ◦ . . . c3,n−3◦ c3,n−2• c3,n−1• c3,n•
...

...
...

...
...

cn−1,1 ◦ . . . cn−1,n−3◦ cn−1,n−2• cn−1,n−1• cn−1,n•

cn,1 ◦ . . . cn,n−3◦ cn,n−2• cn,n−1• cn,n•
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a1• . . . an−2• an−1• an•

b1◦ . . . bn−2◦ bn−1• bn•

c11◦ . . . c1,n−2◦ c1,n−1• c1,n•

c21◦ . . . c2,n−2◦ c2,n−1• c2,n•
...

...
...

...
...

cn,1◦ . . . cn,n−2◦ cn,n−1• cn,n•

For the second subclass we also give the corresponding

state equations, shown below:

ẋ1 = x2, . . . , ẋn−2 = xn−1

ẋn−1 = −
1

c1,n−1

(

bn−1 +

n−1
∑

i=1

cn−i+1,n−1xi

)

+ ec1,n−1uxn

ẋn =
e−c1,n−1u

c2
1,n−1

{

ζ + βu +
n−1
∑

i=1

αixi +
n−1
∑

i=1

γixiu

}

+
e

c2
1,n−1

[c1,n−1 (c2,n−1 + 1)xn

+ c2
1,n−1c1,nxnu

]

(25)

and y = x1, where ζ = −bn−1(c2,n−1 − a1c1,n−1),
β = bnc2

1,n−1 − bn−1c1,n−1c1,n), αi = an−i+1c
2
1,n−1 −

a1c1,n−1cn−i+1,n−1−c2,n−1cn−i+1,n−1+c1,n−1cn−i+2,n−1

and γi = c2
1,n−1cn−i+1,n − c1,n−1c1,ncn−i+1,n−1.

Though the state equations, given above were suggested

by applying the realization theory in [11], can be checked

directly by eliminating x in the state equations.

III. CONCLUSIONS

In this paper we have studied the class of higher order bi-

linear i/o differential equations, that may approximate many

nonlinear systems, and has been popular in the identification

literature. It has been demonstrated that the 2nd order bilinear

i/o differential equation, unlike the discrete-time case, is

always realizable in the classical state space form. Sufficient

and necessary conditions, in terms of restrictions on the

bilinear model parameters, have been provided to establish

whether it is possible to find a state space representation of

the i/o bilinear system, or not, for the cases of 3rd and 4th

order models.

When compared to the general realizability conditions (see

e.g. [11]), our conditions rely on the property that certain

combinations of coefficients of the i/o equations are zero

or not. Since, even in low order cases, the necessary and

sufficient conditions exhibit quite a peculiar and non-regular

structure, it is a very difficult, and probably not a practical

task, to find the necessary and sufficient conditions for the

general case. Instead, we suggest two subclasses of realizable

i/o bilinear systems.

Note also that earlier results do not suggest explicit state

equations for i/o models. Though a procedure to find them

was given, application in general requires integrating the

integrable one-forms which sometimes can be a complicated

task. In this paper we provide explicit state equations for

all realizable 2nd and 3rd order bilinear i/o equations and

for one realizable subclass of bilinear i/o equations for the

general case for arbitrary value n.

The results indicate that special care should be taken when

choosing the model structure in identification if one wants to

end up with a realizable i/o model, since the general bilinear

i/o model is not realizable in the classical state space form.

Future research will be directed towards the development of

simple model classes, other than bilinear, which can be put

into the state space form, and capture the basic nonlinearities

of the plants whilst remaining within limited complexity, like

the discrete-time subclass in [10].
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