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Abstract 

Inhibition of protein kinases using ATP-competitive compounds is an important strategy in 

drug discovery. In contrast, the allosteric regulation of kinases through the disruption of 

protein-protein interactions has not been widely adopted, despite the potential for selective 

targeting.    Aurora-A kinase regulates mitotic entry and mitotic spindle assembly, and is a 

promising target for anti-cancer therapy. The microtubule-associated protein TPX2 

activates Aurora-A through binding to two sites. Aurora-A recognition is mediated by two 

motifs within the first 43 residues of TPX2, connected by a flexible linker. To characterize 

the contributions of these three structural elements, we prepared a series of TPX2 

proteomimetics and investigated their binding affinity for Aurora-A using isothermal titration 

calorimetry. A novel stapled TPX2 peptide was developed that has improved binding 

affinity for Aurora-A and mimics the function of TPX2 in activating Aurora-A’s 

autophosphorylation. We conclude that the helical region of TPX2 folds upon binding 

Aurora-A, and that stabilization of this helix does not compromise Aurora-A activation. This 

study demonstrates that the preparation of these proteomimetics using modern synthesis 

methods is feasible and their biochemical evaluation demonstrates the power of 

proteomimetics as tool compounds for investigating PPIs involving intrinsically disordered 

regions of proteins.  
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Aurora 

Introduction 

The mitotic spindle is a molecular machine built from microtubules and associated proteins 

that carries out the segregation of chromosomes during cell division. Assembly of the 

mitotic spindle is regulated by reversible phosphorylation of microtubule-associated 

proteins by Aurora-A and other protein kinases.1,2 In humans, there are two other 

members of the Aurora family (Aurora-B and Aurora-C), all members of which are serine-

threonine protein kinases with very similar catalytic domains and highly variable N-terminal 

regions. Aurora-A is concentrated at the poles of the mitotic spindle and along 

microtubules, and functions in centrosome maturation, spindle assembly, maintenance of 

spindle bipolarity and mitotic checkpoint control.3,4  

 

The catalytic activity of Aurora-A is stimulated by phosphorylation and interactions with 

other proteins.5-7 Many activating binding partners have been identified, however the 

interplay between them is unclear. The best characterized of these pathways, and 

arguably the most important for establishing high Aurora-A kinase activity in early mitosis, 

involves the microtubule-associated protein TPX2 (Targeting Protein for Xenopus kinesin-

like protein 2).2,8-11 Chromatin signals to the spindle assembly machinery using small 

GTPase RAs-related Nuclear protein (RAN), highly concentrated around the chromatin. 

RAN, in turn, releases central spindle assembly factors, including TPX2 from transport 

factors (importin α/β) in the vicinity of chromatin.12 TPX2 then localises, binds to and 

activates the autophosphorylation of Aurora-A on Thr288.13 Aurora-A promotes spindle 

assembly, organisation and stabilization via phosphorylation of microtubule (MT) related 

proteins such as transforming acidic coiled-coil-containing protein 3 (TACC3). TACC3 is 

also an activator of Aurora-A, and this mechanism serves to fine-tune the rate of spindle 

assembly through the regulation of its complexes with ch-TOG and clathrin.14 

 

The crystal structure of the Aurora-A catalytic domain (aa122-403) phosphorylated on 

Thr287 and Thr288 in complex with the minimal domain of TPX2 (aa1-43), which is 

sufficient to bind and activate Aurora-A in vitro, shows how TPX2 stabilizes the active 

conformation of the kinase (Figure 1A).15  TPX2 binds to Aurora-A with two separate 

segments: the upstream stretch (residues Ser7TPX2-Ser21TPX2) which is in an extended 

conformation (red), binds to Aurora-A’s N-terminal lobe and stabilizes the position of the C-

helix; the downstream stretch (residues Asn30TPX2-Asn43TPX2) which is in an α-helical 

conformation (blue), binds between the N- and C-terminal lobes and stabilizes the 

activation loop to form a platform for substrate binding (Figure 1B). The region (pink) 
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Aurora 

between these segments does not appear in the crystal structure, and the contribution of 

this region of TPX2 to the interaction with Aurora-A, if any, is unknown (Figure 1C).  

Figure 1. A. X-ray crystal structure of the Aurora-A - TPX2 complex (PDB 1OL5).15 TPX2 non-
structured binding motif (red) and TPX2 α-helix (blue). B. X-ray crystal structure of TPX2 minimal 
binding domain complex. C. Sequence of the TPX2 N-terminal domain. TPX2 upstream stretch 
(extended sequence (red)), TPX2 downstream stretch (α-helix (blue)) and the flexible linker (pink). 

The insertion of two aromatic side chains on the helix of TPX2 (Trp34, Phe35) into a 

pocket between the N- and C-lobes of Aurora-A locks the activation loop into a 

conformation in which the side chain of phospho-Thr288AUR is buried. This stabilizes 

Aurora-A to dephosphorylation by protein phosphatase 1 (PP1) and increases kinase 

activity further. In the absence of TPX2, the activation loop is dynamic and, unusually for a 

protein kinase, activating phosphorylation is not sufficient to stabilize the conformation of 

the activation loop. Indeed, a point mutation within the helical region (W34A) fails to 

protect Aurora-A from dephosphorylation by PP1.16 However, the helix does not appear to 

play a major role in the ability of TPX2 to stimulate the autophosphorylation of Aurora-A, 

and the helix was unresolved in the crystal structure of unphosphorylated Aurora-A 

catalytic in complex with TPX2 (aa1-43).17 This raises the question of whether the helix is 

present in TPX2 alone, or if it forms upon binding to phosphorylated Aurora-A. 
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Aurora 

Regulation of PPIs is a significant challenge in chemical biology and medicinal chemistry. 

A diverse array of peptidomimetic molecular scaffolds that mimic peptide secondary 

structures (e.g. α-helix, turn and β-sheet) and have improved physiochemical properties 

have been developed to disrupt PPIs.18 A peptidomimetic can be defined as a compound 

that mimics a short peptide with a single secondary structure binding motif. Compounds 

that mimic the structure and function of extended regions of protein surfaces incorporating 

more than one secondary structure or binding epitope are proteomimetics.19 

 

The structure of Aurora-A/TPX2 has provided key insights into the nature of the protein-

protein interaction and mechanism of activation of this essential kinase. However, many 

aspects of this dynamic complex have yet to be resolved. What is the role of the TPX2 

linker sequence not observed in the crystal structure? Does the helical region of TPX2 

form upon binding to Aurora-A and, if so, can the entropic penalty of helix formation be 

partially overcome using a helix conformational constraint? To address these questions, 

we have designed and synthesized a series of proteomimetic chemical probes and 

investigated their binding affinity to Aurora-A. We generated a hydrocarbon-stapled TPX2 

proteomimetic that recreates the activity of native TPX2, but with higher affinity binding, 

and determined the crystal structure in complex with Aurora-A. 

 

RESULTS AND DISCUSSION  

TPX2 interacts with Aurora-A through two separate motifs: an upstream stretch in an 

extended conformation (residues Ser7TPX2–Ser21TPX2) and a downstream stretch in an α-

helical conformation (residues Asn30TPX2–Asn43TPX2). The middle section of TPX2 that 

links these two motifs (residues Leu22TPX2–Gln29TPX2) is not resolved in the crystal 

structure and so is believed to be flexible and disordered.  

To investigate whether the side-chain residues of this linker region contribute to the 

binding affinity of Aurora-A/TPX2 PPI an analogue was prepared incorporating a 

polyglycine chain in place of the linker domain (Table 1). Although recombinant expression 

would have provided the appropriate molecule, we require the ability to incorporate non-

native amino acids going forward and so chose to prepare the peptide synthetically. 

Peptides of greater than 20 residues in length are known to be difficult to synthesize due 

to problems with on resin aggregation resulting in deletion sequences and/or complete 

failure of the synthesis.20 Microwave assisted solid-phase peptide synthesis overcomes 

this problem simply through heating the coupling and deprotection reactions.21 Using this 
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Aurora 

method and a Fmoc/tBu protection strategy the TPX2 proteomimetics were prepared in 

satisfactory yields. 

Quantitative analysis of binding affinity (Kd) of the synthetic analogues, compared with the 

native TPX2 sequence, to the catalytic domain of Aurora-A (122-403) was achieved using 

isothermal titration calorimetry (ITC) (Figure 2). The measured Kd of the interaction 

between Aurora-A and synthetic native peptides (1-43) 1 and (7-43) 2 were similar to the 

published value (Table 1).17 TPX2 analogue 3 incorporates an eight residue (and therefore 

equivalent length) polyglycine linker sequence that maintained binding affinity relative to 

the native sequence 2, which suggests that the side-chain functionality of the amino acids 

in this linker region are not required for binding to Aurora-A. The Xenopus and puffer fish 

homologues of TPX2 incorporate a shorter linker sequence with three residues Gly26TPX2-

Thr28TPX2 missing.15 A synthetic TPX2 analogue 4 with a shorter, five-residue polyglycine 

linker that is comparable to these other isoforms was prepared to investigate whether 

binding to Aurora-A would be compromised. This shorter analogue 4 gave comparable 

binding affinity to the native sequence 2. To further probe the structural requirements of 

this linker an analogue incorporating an eleven-residue polyglycine linker 5 was prepared. 

An 8-fold weaker binding affinity was observed for this longer analogue which suggests 

that shorter but not longer linkers are tolerated. This would be expected based on the 

entropic penalty of folding the conformationally more flexible longer sequence 5 versus the 

shorter peptide sequence 4. 

 
Table 1. Sequences of TPX2 proteomimetics prepared and used in binding studies. 
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Aurora 

Figure 2. Representative ITC traces of the binding between Aurora-A and different TPX2 variants; 
native linker 2 (A) Gly5 linker 4 (B) Gly8 linker 3 (C) Gly11 linker 5 (D)  

 

To probe the structural requirements of the extended region of TPX2 Ser7TPX2-Ser21TPX2 

region further we synthesized a TPX2 peptide analogue 6 of this domain. Unfortunately 

this motif proved to be insoluble in aqueous solution and not amendable to use in ITC 

experiments. To overcome this solubility issue we chose to extend the sequence by four 

residues to include charged/polar residues Leu22TPX2-Glu25TPX2. This analogue 7 

demonstrated good aqueous solubility, however did not bind to Aurora-A with significant 

affinity. 
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Aurora 

Table 2. Thermodynamic parameters for binding of different TPX2 variants to Aurora-A as 
determined by ITC. 
 

 

Stapled peptides have recently come of age as tool compounds to disrupt PPIs mediated 

by an α-helix. First proposed by Grubbs22 and then developed by Verdine and co-

workers,23 these constrained peptides have been designed to target a range of different 

biologically relevant PPIs including the AKAP complex.24-27 These peptidomimetics have 

also been demonstrated to overcome a number of the physicochemical problems 

associated with peptides such as poor bioavailability, limited protease stability and a lack 

of membrane permeability.28-30  

The downstream TPX2 domain forms an α-helical conformation (residues Asp30TPX2–

Asp43TPX2) in the Aurora-A/TPX2 crystal structure and makes a series of key interactions 

that contribute to binding affinity. In solution TPX2 30-43 adopts a random coil, and the 

helix must therefore fold upon binding to Aurora-A (Figure 3). Incorporating a 

conformational constraint into the peptide sequence to induce an α-helix in this region of 

TPX2 should therefore overcome some of the entropic penalty of folding and provide a 

proteomimetic with increased binding affinity. 

We initially designed a stapled peptide 8 based only on the helix region (Asp30TPX2-

Asn43TPX2). Examination of the Aurora-A/TPX2 crystal structure provides the structural 

information required to select two residues on the solvent-facing side of the helix that are 

not involved in the binding event. Careful design of the staple was required because we 

predicted that stabilization of the helix C-terminal loop at residues Trp34TPX2-Phe35TPX2 
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Aurora 

would result in a steric clash with Aurora-A. As such, the i, i + 4 residues Glu37TPX2 and 

Leu41TPX2 were replaced with an α-methyl, α-alkenyl amino acid (S5) in order to 

conformationally constrain the N-terminal loop of the helix. Macrocyclisation was 

accomplished on solid support using ring-closing olefin metathesis.  

Circular dichroism spectroscopy confirmed that the native TPX2 (30-43) peptide 9! is a 

random coil with no defined secondary structure, but that the stapled TPX2 (30-43) 

peptide 8 is helical (Figure 4). Native TPX2 peptide (30-43) 9, lacking the constraint, has a 

negative band at 199 nm, characteristic of random coil.31 The stapled peptide 8 has a 

negative bands at 208 nm and 222 nm, characteristic of an α-helical conformation. 

However, neither the stapled peptide 8 nor corresponding native peptide 9 demonstrated 

significant binding affinity for Aurora-A. This suggests that the TPX2 helix region alone 

does not bind significantly to Aurora-A but requires the upstream-extended sequence motif 

(Ser7TPX2–Ser21TPX2) to enhance binding.  

!

 
Figure 3. CD spectra of stapled TPX2 helix (30-43) peptide 8 and native TPX2 (30-43) peptide 9. 
 

With this knowledge, we decided to investigate if a full length stapled TPX2 peptide would 

bind with increased affinity when compared to the native sequence. The synthesis of this 

TPX2 stapled analogue 10 was achieved using microwave assisted solid phase synthesis 

and pseudoprolines to prevent on resin aggregation of the peptide (see Sup Info). In our 

initial attempt to synthesize this peptide we also observed aspartimide formation as a 

major side reaction. This was overcome by adding organic acid (e.g. oxyma) to the 

deprotection solution, generating piperidinium ion which suppresses aspartimide 

formation.32  
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Aurora 

Gratifyingly, the stapled TPX2 peptide 10 was observed by ITC to bind with higher affinity 

than the corresponding unconstrained native peptide 1 (Figure 4A). The thermodynamic 

parameters determined from ITC measurements of native TPX2 peptide 1 and stapled 

TXP2 peptide 10 indicate that the Gibbs free energy of binding is predominantly driven in 

both cases by a favorable enthalpic term (∆H –26.19 & –42.57 kcal/mol). This suggests 

that the conformationally constrained peptide 10 makes more favorable interactions with 

Aurora-A than the native peptide (vide infra).  

Interestingly, the entropic term for the constrained peptide 10 is more unfavorable when 

compared to the native TPX2 peptide 1 (T∆S –18.81 to –33.55 kcal/mol). Two major terms 

contribute to the entropy of binding, the conformational entropy change and the 

desolvation entropy change.33 We have demonstrated that the entropic penalty of folding 

the helix region can be overcome by the conformational constraint. However, the 

constraint may restrict the peptide from adopting the correct conformation for binding, 

which may be subtly different to the conformation of the unbound constrained peptide. 

This data can also be rationalized by considering the positive entropic contribution made 

by desolvation of water molecules coordinated to the native TPX2 peptide 1 backbone 

amide functionality. When constrained, this amide functionality is involved in the 

intramolecular H-bonding network of the α-helix and so is not available to coordinate 

water.  

Figure 4. A. Representative ITC traces of the binding between Aurora-A and different TPX2 

variants; native 1-43 (1), stapled 1-43 (10); B. Comparison of the effect of recombinant TPX2 1-43 
and stapled TPX2 1-43 (10) (20 µM) on the autophosphorylation of Aurora-A (2.5 µM) on Thr288 
through ATP (160 µM) turnover. Samples were separated by SDS-PAGE, analysed by Coomassie 
staining (top) and their phosphorylation state probed by Western blot using an antibody specific for 
phosphorylated Thr288 (Cell Signalling) (bottom).!Aurora-A prepared in the absence of 
phosphatase, which is fully phosphorylated on Thr-288, is included as a positive control in the first 
lane and labelled “Phosphorylated”. 
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Aurora 

TPX2 stimulates the autophosphorylation of Aurora-A on Thr288, an event that can be 

detected using a site-specific antibody.  We confirmed that the TPX2 1-43 proteomimetic 

10 retained the ability to induce Aurora-A phosphorylation, similar to the recombinant, 

native 1-43 peptide (Figure 4B).   

Encouraged by the relatively high binding affinity value found between the stapled TPX2 

peptide and Aurora-A, we crystallized and solved the structure of the complex (PDB: 

5LXM, Figure 5A). Electron density was visible for four more TPX2 residues in our model 

than in that of native TPX2; Ser6 at the N-terminus of the peptide, Leu22 at the start of the 

flexible linker region and Thr28 and Gln29 directly after the linker, suggesting a lower 

degree of flexibility in the stapled peptide compared to native TPX2. To model the 

hydrocarbon staple, we exchanged residues Glu37 and Leu41 for the unnatural amino 

acid 2-methyl-L-norleucine (PDB: MK8) and formed the double bond between the two alkyl 

chains using geometric and planar restraints (Figure 5B).  

 

As with the previous structures of the Aurora-A/TPX2 complex, the interactions of the other 

two regions of TPX2 with Aurora-A are well-resolved. The region from Ser7TPX2 to 

Ser21TPX2 adopts an extended conformation characterized by minimal intramolecular 

contacts and extensive main and side chain interactions with Aurora-A. Residues Tyr8TPX2, 

Tyr10TPX2 and Ala12TPX2 sit tightly in hydrophobic pockets between the β−sheetAUR, helix 

αBAUR and helix αCAUR. Whereas segment Phe16TPX2-Phe19TPX2 tightly nestle in an 

adjacent hydrophobic pocket of Aurora-A. Phe16TPX2 also forms a cation-π interaction with 

Arg126AUR. Aromatic residues Trp34TPX2 and Phe35TPX2 in the helical region of TPX2 

interact with His187AUR and His280AUR. Ala39TPX2 interacts with the activation segment at 

Pro282AUR (Figure 5C).  

 

The staple itself clearly does not interact with the surface of Aurora-A (Figure 5C). The 

nearest Aurora-A residue, His187, is more than 9 Å from the staple. TPX2 residues known 

to be crucial for binding to Aurora-A (Trp34 and Phe35) remain in identical conformations 

as found in the native TPX2 structure.  
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Aurora 

 

Figure 5. A. Aurora-A (grey) in complex with stapled TPX2 protein 10 (cyan) (PDB: 5LXM). The 
hydrocarbon staple is shown as sticks with the rest of TPX2 shown as cartoon. The flexible region 
linking the extended sequence and α-helical domains of TPX2 (not visible in the crystal structure) 
is represented as a dark blue dashed line. B. Zoomed in view of the hydrocarbon staple with the 
final 2mFo-DFc electron density map shown as wire-mesh contoured at 1.0 σ. C. Side view of the 
TPX2 helix showing the distance of the staple from the Aurora-A surface. The closest residue, 
His187, is 9.1 Å from the staple. Trp34 and Phe35 of TPX2, known to make crucial interaction with 
Aurora-A residues, are shown as sticks.     

By superposing the existing structure of Aurora-A in complex with native TPX2 (PDB: 

1OL5) onto our structure, we were able to easily visualize the influence of the hydrocarbon 

staple on the binding mode of the stapled TPX2 and its two domains (Figure 6). The N-

terminal extended sequence motif of our stapled peptide overlays remarkably closely to 

that of native TPX2 (RMSD: 0.38) with residues known to be crucial for binding to Aurora-

A in almost identical conformations between the two structures (Figure 6B and 6C). This 

indicates that the introduction of the staple has no effect on the binding mode nor 

conformation of the extended region of TPX2.  
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Figure 6. A. View of Aurora-A (grey) bound to stapled TPX2 (cyan) with native TPX2 (magenta, 
PDB: 1OL5) overlaid. TPX2 residues known to be crucial for binding to Aurora-A are shown as 
sticks to highlight the conserved binding mode between stapled and native TPX: B. Tyr8 and 
Tyr10, C. Phe16 and Phe19, D. Asp11 and Trp34, E. Potential salt bridges can be seen between 
Glu36TPX2 and Lys250AurA and F. Lys38TPX2 and Glu183AurA.   

 

The conformation of the α-helical region of TPX2, in contrast, varies between stapled and 

native TPX2 structures (Figure 6A). The staple extends the length of the helix by an 

additional turn and the buried surface area at the interface with Aurora-A is increased by 

over 25% (RMSD: 1.63).  The final turn is kinked and follows the contour of the surface of 

Aurora-A. This flips round the position of TPX2 Glu42, orienting this side chain towards 

Aurora-A in the stapled TPX2 structure. Despite these differences in the shape and length 

of the TPX2 helix, the residues on the helix known to be crucial for binding of TPX2 to 

Aurora-A, namely Trp34 and Phe35, overlay very well between stapled and native TPX2 

(Figure 6D). In the context of the stapled TPX2 helix, electron density is clear for two 

additional charged side chains, Glu36 and Lys38, unlike in the native peptide. These side 

chains contribute to salt-bridge and/or electrostatic interactions with Aurora-A, which might 

explain why the enthalpic contribution of the interaction is increased (Figure 6E and 6F). 

Most of the water molecules at the interface are conserved between the two structures. 

However, in the structure of Aurora-A bound to stapled TPX2, there is a clearly defined 

molecule of MES from the crystallization buffer nestled between the C-terminus of the helix 

and the Aurora-A surface. In the native TPX2 structure, a sulfate ion is present instead, but 

in almost the same position as the sulfate moiety of the MES molecule (see supplementary 

Page 12 of 17

ACS Paragon Plus Environment

ACS Chemical Biology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Aurora 

information, Figure S1). This is likely due to the different crystallization conditions, which 

both contained 100 mM MES buffer. However the condition used for the native crystals 

has 200 mM sulfate, which might therefore be the dominant binding ligand. Alternatively, 

the slightly different binding mode of stapled TPX2 may generate a surface that 

complements that of MES more than the native TPX2.   

 

From this data we can infer that the gain in affinity for interaction with Aurora-A seen with 

the stapled TPX2 peptide 10 over the native TPX2 peptide 1 is mainly due to more 

favorable enthalpic interactions. The data is also in agreement with the recently reported 

conformational selection binding pathway model.34 Remarkably, neither of the two 

individual motifs in native or stapled TPX2 have measurable binding affinity, and yet the 

interaction is in the low micromolar range when they are tethered through a linker. We are 

currently investigating the basis of this effect using biophysical approaches. 

 

The genes encoding Aurora-A kinase and its protein partner TPX2 are frequently co-

amplified in cancers, and this complex, and both proteins individually, have been proposed 

as targets for cancer drug discovery. Due to the inherent difficulty in developing selective 

active site kinase inhibitors, targeting this protein-protein interaction (PPI) with allosteric 

small molecule ligands provides a novel strategy to develop Aurora-A inhibitors with 

enhanced selectivity.36-38 Indeed, a recent study reported a small molecule, allosteric 

inhibitor of Aurora-A that binds in the hydrophobic pocket between the β sheetAUR, helix 

αBAUR and helix αCAUR and blocks the interaction with TPX2.39 Similarly, a synthetic single 

domain antibody, vNAR-D01, was shown to bind to the same pocket and inhibit Aurora-A 

through stabilization of a distorted conformation of the αC-helix.40 It is very interesting that 

the same pocket can be used to positively and negatively regulate Aurora-A activity, and 

this opens up exciting avenues of research to investigate the consequences of 

manipulating Aurora-A activity in cancer cells. 

 

In conclusion, as part of our investigations into the allosteric regulation of Aurora-A kinase 

we synthesized and characterization a conformationally constrained TPX2 proteomimetic 

spanning residues 1-43. ITC data revealed that the constrained TPX2 peptide binds 

Aurora-A with higher affinity than the corresponding native peptide and mimics the function 

of TPX2 in activating Aurora-A’s autophosphorylation. More generally, this investigation 

provides further insights into the thermodynamic effects of pre-organizing peptides using 

conformational constraints and demonstrates that proteomimetics are useful tool 
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compounds for investigating interactions between intrinsically disordered domains of 

proteins. 
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