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Abstract 

Bisphosphonates are used to treat bone disease characterised by increased bone resorption 

by inhibiting the activity of mature osteoclasts, resulting in decreased bone turnover. 

Bisphosphonates may also reduce the population of osteoclast precursor cells. Our aims 

were to investigate the effect of bisphosphonates on i) osteoclast precursor cells and ii) 

circulating cytokine and cytokine receptor in postmenopausal women with osteoporosis 

compared with healthy premenopausal women. Participants were 62 postmenopausal 

women (mean age 66) from a 48-week parallel group trial of bisphosphonates. They 

received ibandronate 150mg/month (n=22), alendronate 70mg/week (n=19) or risedronate 

35mg/week (n=21). Fasting blood was collected at baseline, weeks 1 and 48. At baseline, 

blood was also collected from 25 healthy premenopausal women (mean age 37) to 

constitute a control group. Peripheral blood mononuclear cells were extracted and stained 

for CD14, M-CSFR, CD11b and TNFRII receptors. Flow cytometry was used to identify cells 

expressing CD14+ and M-CSF+ or CD11b+ or TNFRII+. RANKL and OPG were measured 

to evaluate potential mediation of the bisphosphonate effect. After 48 weeks of treatment, 

there was a decrease in the percentage of cells expressing M-CSFR and CD11b receptors 

by 53% and 49% respectively (p<0.01). Cells expressing M-CSFR and CD11b were 

decreased with ibandronate and risedronate after 48 weeks to the lower part of the 

premenopausal reference interval. These effects were not significantly different between 

each of the treatment groups. There was no significant effect on RANKL and OPG 

throughout the study period. Bisphosphonates inhibit bone resorption in the short-term by 

direct action on mature osteoclasts. There is also a later effect mediated in part by a 

reduction in the population of circulating osteoclast precursors. 

Keywords Bisphosphonates, osteoporosis, osteoclasts, osteoclast precursor cells 

 

 

 

 

 

 

 

 

 

 



  

Introduction  

Postmenopausal osteoporosis is a progressive, age-related skeletal disorder characterised 

by increased bone resorption by osteoclasts, reduced bone mineral density (BMD) and 

increased fracture risk (1). Estrogen deficiency is associated with increased 

osteoclastogenesis, activation frequency and subsequently bone loss.  

Several cytokines, steroids, hormones and prostaglandins are involved in regulating the 

differentiation, proliferation, activation and survival of osteoclasts (2-4). These include 

macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor-ڡB ligand 

(RANKL) and tumour necrosis factor-Į (TNF-Į) (5-8). Osteoclast precursor cells express cell 

surface receptors which are specific for these factors. In-vitro studies have demonstrated 

that M-CSF binds to the M-CSF (c-fms) receptor and induces the expression of genes in the 

osteoclast lineage leading to the differentiation and development of mature osteoclasts and 

cell survival (3, 9). TNF-Į is an inflammatory cytokine that binds to the TNF receptors-1 and 

-2, stimulates osteoclastogenesis and regulates cell apoptosis (10). In addition osteoclast 

precursor cells express ȕ2 integrins such as CD11b/Cd18) adhesion molecules that are 

necessary for cell trafficking and differentiation (11). It been demonstrated in CD11b-

deficient mice where there was a decrease in bone mass and increase in osteoclast number 

(12).  

Treatment with bisphosphonates reduces bone resorption as assessed by bone turnover 

markers (13). In addition, assessments of histomorphometry parameters on bone biopsies 

have shown that the reduction in turnover is associated with a reduction in the activation 

frequency (14). Nitrogen bisphosphonates inhibit osteoclasts by attaching to the 

hydroxyapatite on the bone surface and then are internalised into the mature osteoclasts by 

endocytosis, inhibiting the activity of FPPS in the mevalonate pathway and promoting 

apoptosis (15-21). However it is not clear how they reduce the activation frequency. In vitro 

studies have suggested that a possible mechanism is that they do this by reducing the 

population of osteoclast precursor cells (22, 23). Others have suggested that 

bisphosphonates act solely and directly on the mature osteoclasts themselves (24) and 

reduce their ability to attach to the hydroxyapatite (25). A previous study has demonstrated 

that alendronate reduced the population of osteoclast precursor cells from peripheral blood. 

These were identified by their expression of CD14/CD11b and were decreased after 12 

months of treatment in osteoporotic women (26). In contrast, another study has 

demonstrated that zoledronate did not reduce the population of osteoclast precursor after 18 

months of treatment in osteopenic women, (27)  



  

There are also conflicting in vitro data regarding the effect of bisphosphonates on 

osteoclastogenic cytokines such as IL-1, TNFĮ and circulating levels of RANKL and 

osteoprotegerin (OPG) (28-31)). RANKL is produced by the osteoblasts and binds to the 

receptor RANK which is located on the osteoclast precursor cells as well as the mature 

osteoclast (32). This process stimulates the activation of the osteoclast and it may be that 

high circulating levels of RANKL may lead to increased bone resorption (33). Therefore a 

possible mechanism of action for bisphosphonates may be to reduce circulating levels of 

RANKL and/or increase levels of OPG, its soluble decoy receptor, thus reducing the 

population of osteoclast precursor cells, the activity of mature osteoclasts and hence bone 

resorption.  

The aims of this study were to investigate the effects of ibandronate, alendronate and 

risedronate on osteoclast precursor cells and levels of circulating cytokines. We hypothesise 

that nitrogen containing bisphosphonates reduce the population of osteoclast precursor cells 

and circulating levels of RANKL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

Subjects and methods 

Subjects 

We conducted a 2-year, open-label, parallel randomised control intervention trial of three 

orally administered bisphosphonates, at their licensed dose. The overall study design has 

been fully described (34). We recruited women with postmenopausal osteoporosis, with 

either (i) a BMD T score < -2.5 at the lumbar spine or proximal femur or (ii) a BMD T score <-

1.0 at the lumbar spine or proximal femur plus a previous fracture sustained during a fall 

from standing height or less.  A subset of 62 subjects were used for this analysis. The study 

medications used were (i) ibandronate (Bonviva, Roche, 150 mg once a month) (n = 22), (ii) 

alendronate (Fosamax, Merck, 70 mg once a week) (n = 19), and (iii) risedronate (Actonel, 

Warner Chilcott, 35 mg once a week) (n = 21). 25 pre-menopausal women (ages 35 to 40 

years) were used in order to generate robust reference intervals for all the measurement 

variables acquired during the study. All had regular menstrual cycles and did not take any 

hormonal contraception. 

The samples size for this analyses was pre-defined in the study protocol. They were all of 

the subjects whom had whole blood and serum collected at baseline and then at weeks 1 

and 48. 

The study was registered with ClinicalTrials.gov (http://clinicaltrials.gov/, number - 

NCT00666627) and with European Union Drug Regulating Authorities Clinical Trials 

(EudraCT, number - 2006-004738-33). Itwas approved by the Sheffield Research Ethics 

Committee and the Medicines and Healthcare Products Regulatory Agency (MHRA), and all 

participants gave fully informed written consent prior to their participation.  All investigations 

were carried out in accordance with the ethical standards laid down in the 1964 Declaration 

of Helsinki and its later amendments, and in accordance with the International Conference 

on Harmonisation Good Clinical Practice (ICH GCP) guidelines. 

Flow cytometry 

100µl of blood were directly stained using the following antibodies and corresponding 

isotype controls: anti-CD14-flouresceinisothiocyanate (FITC), Phycoerythrin (PE)-conjugated 

anti-MCSFR, allophycocyanin (APC)-conjugated anti-CD11b and (PE)-conjugated anti-

TNFRII.  They were incubated for 45 minutes at 4°C. The cells were washed in 1ml of 

http://clinicaltrials.gov/


  

phosphate buffered saline (PBS) with 1% foetal bovine serum (FBS). 1ml of working strength 

H-Lyse buffer was added and mixed vigorously. These were incubated for 20 minutes at 

room temperature until the red cell lysis process was complete. This step removes the red 

blood cells, leaving the white nucleated cells. A supernatant was removed following 

centrifugation and washed using 1ml working strength red lysis buffer. Following the final 

wash the remaining cells were re-suspended in 500µl of PBS was buffer and flow cytometry 

was performed. 

PBMCs were identified according to their size and granularity using the fluorescent-activated 

cell sorting (FACS)-Calibur (Becton Dickinson & Co) (35). Unstained, isotype control and 

dual stained cells were identified from 104 PBMCs. Cell surface antigen expression was 

analysed using CellQuest software (Becton Dickinson & Co). The results were displayed as 

histograms and bivariate dot plots (Figure 1). The dual positive CD14+/M-CSFR+, 

CD14+/CD11b+ and CD14+/TNFRII+ cells were identified as being osteoclast precursor 

cells (35, 36). 

 

Figure 1: antibody and isotype control stained PBMCs. The number of PBMCs that are positive for 
and express CD14/MCSFR (top panel), CD14/CD11b (middle panel) and CD14/TNFRII (bottom 
panel) on their cell surface are shown in the upper right of each quadrant of each dot plot 

 



  

Bone turnover markers 

Carboxy-terminal cross-linking telopeptides of type I collagen (CTX) and N-terminal 

propeptide of type I collagen (PINP) were measured in serum using the IDS-iSYS multi-

disciplined automated chemiluminescence immunoassay (Immunodiagnositics Systems, 

Boldon United Kingdom). Each measurement was performed in duplicate and the inter-

assay coefficient of variations (CV’s) were 4% and 5.2% respectively. 

Cytokine measurements 

Circulating levels of RANKL and OPG were measured in serum using manual sandwich 

enzyme immunoassays from Biomedica Gruppe (Vienna, Austria) and Biovendor (Czech 

Republic), respectively. Each measurement was performed in duplicate and the inter-assay 

CV’s were 4.2% and 3.8% respectively. 

Statistical analyses 

Descriptive data were presented as mean (standard deviation) and the differences between 

the 2 groups of patients were analysed by two-sample t-tests. 

Box and whisker plots and a non-parametric Wilcoxon’s signed test were used illustrate and 

compare the percentage of circulating osteoclast precursor cells at baseline and after 1 and 

48 weeks of bisphosphonate treatment. The median levels and 25 and 75 percentiles were 

calculated.  

A one-way analysis of variance (ANOVA) was used to compare the change from baseline of 

levels of circulating cytokines, CTX and PINP between each treatment group after 48 weeks. 

A Kruskal-Wallis test was used to determine significance. A Spearman correlation was 

performed to assess the relationship between the change in CD14+/M-CSFR+ and the 

change in vitamin D levels from baseline to week 48. 

For each biochemical test the median levels and 25 and 75 percentiles were calculated for 

the premenopausal comparator group. The data was analysed using GraphPad Prism 6 

software, version 6.05, 2014 and p<0.05 was the significance cut-off. 

 

 

 

 

 

 



  

 

 

 

 

 

 

Results 

Patient characteristics 

The baseline characteristics for the postmenopausal women with osteoporosis and healthy 

premenopausal women in the study population are shown in table 1. Overall, mean BMD T-

scores at the spine and total hip were lower in postmenopausal women with osteoporosis 

compared to the premenopausal women. 

Table 1 Baseline characteristics of the postmenopausal women with osteoporosis and healthy 
premenopausal women. The mean and SD are shown. 

 

Variable Postmenopausal women 

with osteoporosis (N = 

62) 

Healthy premenopausal 

women (N = 25) 

Age (years) 

Height (cm) 

Weight (kg) 

BMI (kg/m
2
) 

Lumbar spine BMD T-

score 

Total hip BMD T-score 

25 OH D ng/ml 

65.8 (6.6) 

160.7 (5.5) 

68.1 (10.9) 

26.4 (4.1) 

-2.2 (0.8) 

-1.3 (0.8) 

22.9 (10.5) 

37.6 (1.8) 

166.3 (6.3) 

68.9 (10.3) 

25.0 (4.2) 

0.5 (1.1) 

0.6 (1.0) 

19.0 (8.1) 

  

The effect of bisphosphonates on osteoclast precursor cells 

The effects of bisphosphonates on the population of osteoclast precursor cell are shown in 

figure 2. At baseline there was no significant difference in the median percentage of 

osteoclast precursor cells expressing CD14+/M-CSFR+, CD14+/CD11b+ and CD14+/TNFRII 

between postmenopausal women with osteoporosis and premenopausal women. After 1 

week of treatment there was no significant change in the percentage of osteoclast precursor 

cells expressing CD14+/M-CSFR+, CD14+/CD11b+ and CD14+/TNFRII. After 48 weeks of 



  

treatment there was a significant reduction in the percentage of CD14+/M-CSFR+ and 

CD14+/CD11b+ osteoclast precursor cells, p<0.001. There was no difference in the 

percentage of CD14+/TNFRII+ osteoclast precursor cells. There was no correlation between 

the change in CD14+/M-CSFR+ and the change in vitamin D levels from baseline to week 

48. 

 

Figure 2: Box and whisker plots representing the percentage of CD14+ cells which are positive for M-
CSFR, CD11b and TNFR-II at baseline and after bisphosphonate treatment (N=62). The dashed lines 
represent the median levels and 25 and 75 percentiles for premenopausal women (N=25). 

The effects of ibandronate, alendronate and risedronate on the population of osteoclast 

precursor cells are shown in figure 3 and table 2. After 1 week there was no significant 

change in the percentage CD14+/M-CSFR+, CD14+/CD11b+ and CD14+/TNFRII+ cells with 

any of the bisphosphonates. After 48 weeks of treatment with ibandronate there was a 

significant decrease from baseline in the population of cells expressing CD14+/M-CSFR+ by 

65%, p<0.05. There was a decrease with alendronate treatment in the population of cells 

expressing CD14+/CD11b+ by 40% but this was not statistically significant. There was a 

significant decrease with risedronate treatment in the population of cells expressing 

CD14+/M-CSFR+ and CD14+/CD11b+ by 61% and 54%, p<0.01, respectively. These effects 
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were not significantly different between each of the treatment groups. None of the 

bisphosphonates had an effect on the population of cells expressing CD14+/TNFRII+. 

 

Figure 3: Box and whisker plots representing the percentage of CD14+ cells which are positive for M-
CSFR, CD11b and TNFR-II at baseline and after ibandronate (N=22), alendronate (N=19) and 
risedronate (N=21) treatment. The dashed lines represent the median levels and 25 and 75 
percentiles for premenopausal women (N=25). *p<0.05, **p<0.01 and ***p<0.001. 

 

Table 2: Median levels (25%-75% percentiles) of CD14+ cells which are positive for M-CSFR, CD11b, 
TNFR-II and bone turnover markers at each time point. *p<0.05, **p<0.01 and ***p<0.001 change 
from baseline. 

Variable 

 
Premenopausal 

Limits 
 

  
Baseline  

 
Week 48 

IBN ALN RIS IBN ALN RIS 

%CD14+/MCSFR+ 2.0 (0.6-3.6) 2.0 (1.2-2.8) 1.5(1.0-2.6) 1.8(0.8-2.8) 0.7 (0.1-1.4)* 1.0(0.5-2.3) 0.7(0.4-

1.4)** 

%CD14+/CD11b+ 2.7 (2.1-3.5) 2.5(1.3-4.3) 2.6(1.7-4.5) 3.5(2.0-4.1) 1.5(0.1-2.8) 2.0(1.3-3.2) 1.6(1.3-

3.1)** 

%CD14+/TNFRII+ 2.1 (1.3-2.9) 2.6(1.3-3.7) 2.2(0.7-4.0) 2.1(1.5-3.5) 1.8(0.5-3.4) 1.5(0.7-2.5) 1.8(1.7-2.8) 

CTX ng/ml 0.33 (0.27-0.44) 0.59(0.5-0.9) 0.73(0.6-0.9) 0.69(0.4-0.9) 0.12(0.1-

0.3)*** 

0.10(0.1-

0.9)*** 

0.12(0.1-

0.4)*** 

PINP ng/ml 25.5 (36.2- 46.0) 48.8(34.8-

61.8) 

54.3(44.4-

67.1) 

45.5(37.9-

52.0) 

15.5(10.0-

17.8)*** 

14.1(11.5-

21.3)*** 

19.8(11.4-

32.0)*** 
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At baseline median levels of circulating serum RANKL and OPG were 0.07 pmol/l and 

5.2pmol/l respectively. There were no significant changes in RANKL and OPG after 48 

weeks of bisphosphonate treatment, (Figure 3). There were significant decreases in CTX 

after one week of treatment with each of the bisphosphates, p<0.001. There were significant 

decreases in PINP at week 48 with each of the bisphosphonates, p<0.001, (Table 2). 

Spearman’s correlation analysis showed that changes in CTX and in PINP levels did not 

correlate with the changes in the CD14+/M-CSFR+ and CD14+/CD11b+ osteoclast precursor 

cell populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

Discussion 

Bisphosphonates are widely used to treat postmenopausal osteoporosis and some studies 

suggest that their effects are exerted only on mature and active osteoclasts, (22, 23). Here 

we have shown that nitrogen containing bisphosphonates significantly reduced the 

population of osteoclast precursor cells as assessed by their expression of cell surface 

antigens. There was no difference in effect between bisphosphonates.  

It is of interest that the effects on osteoclast precursor cells may only occur in the long term. 

This is in contrast to the immediate effect on bone resorption as shown by the short term 

reduction in CTX after 1 week of treatment. The absence of a short term effect of 

bisphosphonates on osteoclast precursor cells suggests that the initial short term reduction 

in bone resorption is a result of bisphosphonates exerting their effect on mature, resorbing 

osteoclasts rather than the osteoclast precursor cells. The long term sustained reduction in 

bone resorption may be due to the bisphosphonates exerting their effect on both the 

osteoclast precursor cells and the mature osteoclasts. However in this subset of participants 

the only long term time point assessed was at week 48. Therefore one particular limitation is 

not knowing exactly when the bisphosphonates begin exerting their effect on the osteoclast 

precursor cell population. The data is supported by others (26), who also demonstrated that 

alendronate significantly reduced CTX after 3 months of treatment but the reduction in 

osteoclast precursor cells occurred after 12 months. It may be therefore be that the effect on 

osteoclast precursor cells occurs somewhere between 3 and 12 of treatment.  

Treatment with vitamin D did not have an effect on the osteoclast precursor cells. Previously, 

in vivo experiments have shown that bone marrow cells from mice treated with vitamin D had 

a reduction in osteoclast progenitor cell population compared to vehicle treated OVX-mice 

(37). Another study investigated the effects of 1,25-(OH)2D and 25-(OH) D on osteoclast 

differentiation in human monocyte cell cultures in the presence on M-CSF and RANKL (38). 

Neither 1,25-(OH)2D and 25-(OH) D had any significant effects on osteoclast differentiation. 

There was no significant difference in the population of osteoclast precursor cells in 

postmenopausal osteoporosis before treatment and premenopausal women. In comparison 

levels of bone turnover markers are significantly higher suggesting that the proportion of 

osteoclasts in maintained but their activity is increased with age. In contrast, D’Amelio P et 

al, 2008 (39) demonstrated that postmenopausal women had an increased number of 

osteoclast precursor cells compared to premenopausal women. This may be due to 



  

increased production of RANKL and TNF by monocytes and T-cells and therefore the 

upregulation of osteoclastogenesis.  

In in vitro models RANKL and OPG have been shown to regulate osteoclastogenesis. The 

reduction in the population of osteoclast precursor cells with bisphosphonate treatment may 

be mediated by circulating levels of RANKL. However our data demonstrated that 

bisphosphonate treatments had no direct effect on circulating levels of RANKL and OPG. 

These findings are comparable to other clinical studies (40-43) and inconsistent with others 

(44, 45). Dundar et al 2009 demonstrated that in postmenopausal women with osteoporosis 

receiving 35mg/week of oral risedronate there was a significant decrease in levels of RANKL 

and an increase in levels of OPG after 3 and 6 months of treatment (44).  In contrast and in 

a similar study design, Dobnig et al 2006 demonstrated that women receiving either 10mg of 

alendronate or 5mg of risedronate daily showed no effect on RANKL but OPG increased 

after 6 and 12 months of treatment, (46). Another clinical trial in which postmenopausal 

women with osteoporosis were receiving 35mg or risedronate, demonstrated that there was 

no effect on OPG but a gradual decrease in RANKL, also occurring in the osteopenic control 

group receiving no treatment, (40). The discrepancies may be due to the different 

populations and diseases studied and to the limitations of the ELISA’s themselves.  

 

Conclusion 

Nitrogen-containing bisphosphonate reduce the population of osteoclast precursor cells in 

the long term and bone turnover in the short term. Both of these mechanisms may reduce 

the activation frequency of bone remodelling by having a direct and indirect effect on mature 

osteoclasts. These findings further suggest that bisphosphonates act selectively and directly 

on the osteoclast precursor cells to reduce their population without influencing levels of 

circulating cytokines. The differences between bisphosphonates targeting osteoclast 

precursors may help explain and be related to their magnitude of effect on bone turnover 

markers. 
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