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Adaptive Sliding Mode Observers in Uncertain Chaotic Cryptosystems with

a Relaxed Matching Condition

R. Raoufi and A.S.I. Zinober

Department of Applied Mathematics, The University of Sheffield

Sheffield, U.K, e-mail: {R.Raoufi, A.Zinober}@shef.ac.uk

Abstract— We study the performance of adaptive sliding
mode observers in chaotic synchronization and communication
in the presence of uncertainties. The proposed robust adaptive
observer-based synchronization is used for cryptography based
on chaotic masking modulation (CM). Uncertainties are inten-
tionally injected into the chaotic dynamical system to achieve
higher security and we use robust sliding mode observer design
methods for the uncertain nonlinear dynamics. In addition, a
relaxed matching condition is introduced to realize the robust
observer design. Finally, a Lorenz system is employed as
an illustrative example to demonstrate the effectiveness and
feasibility of the proposed cryptosystem.

I. INTRODUCTION

Chaos is a behaviour that lies between rigid regular-

ity and randomness. There has been significant interest in

using chaotic dynamics to realize secure communications

and cryptography during the last two decades. There are

several features of chaotic signals, which make them at-

tractive for use in secure communication systems. Chaotic

dynamics are noise-like but are deterministic with natural

complexity, broad bandwidth and are aperiodic. Another

attractive feature of chaotic signals is their high dependence

on initial conditions; small changes can lead to dramatically

different behaviour over a short time interval. Therefore,

long-term prediction is practically impossible due to the

sensitivity to the initial conditions. This feature is of interest

in cryptography, where highly complex and hard-to-predict

signals are employed. Moreover, chaotic signals are aperiodic

and have a vanishing autocorrelation function, which makes

the signals produced by different generators or even by

the same generator with different initial conditions, appear

to be uncorrelated. This aspect is important in multi-user

communication applications.

Early work on the synchronization of chaotic systems by

Pecora and Carroll [1] enforced trajectories of the slave

chaos system tracking the same values as those of the master

chaotic system. Most of the work in this area focused on

synchronization of chaotic systems to recover information

signals [2]-[10], [20] . Other methods include, controlling

chaotic systems to follow a desired waveform in which a

message is encoded [11], and making use of the quick decay

of the correlation function for chaotic signals.

In a typical chaotic synchronization communication

scheme the information to be transmitted is carried from the

transmitter to the receiver by a chaotic signal through an

analog channel. The decoding of the information signal in

the receiver can be carried out by means of either coherent

(synchronization) or non-coherent (without synchronization)

demodulation schemes [11]-[14]. It is worthwhile noting that

chaotic systems are highly sensitive to trivial perturbations

and uncertainties. Mostly, these perturbations or uncertainties

happen in the practical electronic realization. Therefore, very

often we have an uncertain chaotic system. These trivial

uncertainties can lead to radically different divergence in the

near future behaviour of the chaos states.

This feature of high dependence to any uncertainties

motivates the use of them intentionally to create chaotic

behaviour much more secure for cryptography. The problem

is to design a sufficiently robust synchronization scheme

to guarantee the precise mimicry of chaotic systems in a

master-slave configuration. A good candidate to achieve this

goal is the use of robust sliding mode observer design

methods for the uncertain nonlinear dynamics. In essence,

the use of variable structure techniques in the state re-

construction of nonlinear systems has some advantages,

like allowing the presence of matched uncertain elements

in the model and convergence speed over other existing

techniques like feedback linearization, extended linearization

and traditional Lyapunov-based techniques [15]-[17]. Sliding

mode observers (SMO) require the knowledge of a bounding

function on the uncertainty but this will not be needed in

our approach due to a built-in adaptation mechanism in the

sliding mode filter.

In the present work we design an adaptive sliding mode

observer (ASMO) for robust chaotic synchronization. It

should be pointed out that some other well-known filters

such as Extended Kalman Filters (EKF) or state dependent

Riccati equation filters (SDRE) are not able to guarantee

synchronization with the intentionally injected uncertainties

in the chaos model. With this additional security level, we

will show that an excellent solution is using robust sliding

mode filters.

This paper is organized as follows. Section II briefly

presents the application of chaotic behavior in cryptography

and secure communication. A new scheme of secure commu-

nication, which can also be used as a cryptosystem, based

on two identical adaptive sliding mode observers, will be

illustrating the effectiveness of proposed configuration via

Lorenz system. Section V concludes the paper.

The following notation will be used in the paper. x ∈ Rn
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presented in Section III. Section IV is devoted to an example
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denotes an n-vector of real elements with the associated norm

‖x‖ ≡
(

xT x
)1/2 , λmin(A) (λmax(A)) denotes the minimum

(maximum) eigenvalue of a symmetric matrix A(A ∈ Rn×n)
.

II. CHAOS AND CRYPTOGRAPHY

Chaotic cryptosystems use a chaotic non-linear oscillator

as a broadband pseudo-random signal generator. This signal

is combined with the message to produce an unintelligi-

ble signal, transmitted through the insecure communication

channel. At reception, the pseudo-random signal is regener-

ated, so that by combining it with the received signal through

the inverse operation, the original message is recovered [18].

In Chaotic Masking Modulation (CM) the chaotic signal

is added to the information signal and at the receiver the

masking is removed. In order for this scheme to work

properly, the receiver must synchronize robustly with a small

perturbation in the driving signal due to the addition of the

message. The power level of the information signal should

be much lower than that of the chaotic signal to bury it

effectively [18]. Another technique for chaotic modulation

is based on switching which is more suitable for binary

communication. Chaotic switching systems or chaos shift

keying (CSK) is more robust against noise than chaotic

masking. However, its transmission rate is much lower than

CM modulation.

In the direct modulation scheme the information signal is

multiplied by a chaos-based spread spectrum noise signal.

The transmission rate of this method is much higher than

the CSK and CM schemes [18]. It is worth noting that this

method has a significant higher security level.

III. PROPOSED CHAOTIC CRYPTOSYSTEM VIA ADAPTIVE

SLIDING MODE OBSERVER DESIGN

A. Robust adaptive sliding mode observers in chaos synchro-

nization

The use of variable structure techniques in the state

reconstruction of nonlinear uncertain systems is shown in

[19] to have some advantages such as allowing the presence

of matched uncertain elements in the model and faster con-

vergence speed over other existing techniques. The security

of the chaotic modulation can be significantly enhanced

by intentionally adding matched unknown disturbance to

the states, which will make it more difficult for a party,

intending to intercept the information, to recover the infor-

mation accurately. Non-adaptive sliding observers require the

knowledge of a bounding function on the uncertainty. this

not be essential in our approach, due to a built-in adaptation

mechanism in the filter for the estimation of the upper bound

of the intentionally injected uncertainties.

For the adaptive sliding mode observer we will discuss

an uncertain class of chaotic system. This model can be

used in CM, direct modulation and CSK schemes. We point

out the capability of the robust adaptive observer to handle

disturbances, as these have shown to be a challenge for other

observers. It should be pointed out that the extra degree of

robustness or insensitivity is very useful in chaotic systems

applications, as they are super-sensitive to perturbations in

the initial conditions and parameters; especially, in our case

since we intend to add unknown perturbed signals to the

chaotic system to make it much more unpredictable.

B. Uncertain chaos system model and robust adaptive ob-

server design

Consider the following nonlinear chaotic system model in

the presence of uncertainty

ẋ = Ax+ f (x, t)+Bξ (y, t) (1)

y = Cx (2)

where x∈Rn, y∈Rr, ξ (y, t)∈Rm represents the uncertainties

and t ∈ R+ . f (x(t), t) is the nonlinear part of the system.

The triple (A,B,C) has appropriate dimensions. We make the

following assumptions:

(A) (A,C) is assumed to be detectable and observable so that

there exists an observer gain K ∈Rn×p such that A0 = A−KC

is a strictly Hurwitz matrix.

(B) The unknown disturbance ξ (y, t) is bounded (but un-

known)

‖ξ (y, t)‖ < ρ (3)

(C) The following Lyapunov equation has a positive solution

P for a positive definite matrix Q = QT > 0

AT
0 P+PA0 = −Q (4)

(D) The known nonlinearity f (x, t) satisfies a Lipshitz con-

dition

‖ f (x1, t)− f (x2, t)‖ ≤ γ ‖x1 − x2‖ (5)

where x1,x2 ∈ Rn,γ ∈ R+ is a known positive constant.

(E) Matching condition with unmatched uncertainty distance

[21]: In many applications, satisfying the classical matching

condition B = P−1CT by finding appropriate matrices K and

Q to satisfy simultaneously the LE equation (4) and the

classical matching condition is very restrictive. Therefore,

introducing the matching condition with unmatched uncer-

tainty distance is a more relaxed condition to design the

adaptive robust observer. So, we assume that

Γ = B−βP−1CT
,‖Γ‖ ≤ ε (6)

where β is a positive parameter. The unmatched distance

is ‖Γ‖ ≤ ε and if ε is very small, the stability of the

system can be ultimately achieved. We will use the following

robust ASMO to reconstruct the system states from the

measurement y(t)

˙̂x(t) = Ax̂(t)+ f (x̂)+Ke(t)+S(x̂(t),y(t), ρ̂(t)) (7)

where e(t) is the estimation error defined as

e(t) = x(t)− x̂(t)

S(x̂(t),y(t)) is the sliding mode adaptive gain of the observer

which is calculated from

S(x̂(t),y(t), ρ̂(t)) = ρ̂(t)βP−1CT Ce

‖Ce‖
(8)
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for ‖Ce‖ �= 0, our improved adaptive algorithm can be chosen

as
˙̂ρ(t) = η(‖Ce(t)‖−η0ρ̂(t)), η ,η0 ≥ 0 (9)

To prove the stability of the adaptive sliding mode observer

(7)-(9), consider the following Lyapunov function candidate

V (e(t), ρ̄(t)) = eT Pe+η−1βρ̄2(t) (10)

where

ρ̄(t) = ρ − ρ̂(t)

The evolution of the estimation error is

ė(t) = A0e−S(x̂,y,ρ(t))+Bξ (y, t)+ f (x, t)− f (x̂, t)

the derivative of V (e(t), ρ̄(t)) is evaluated along the e(t) and

ρ̄(t)

V̇ = eT (AT
0 P+PA0)e+2eT P(Bξ (y, t)

−S(x̂,y,ρ(t)))+2eT P( f (x, t)− f (x̂, t))

+2η−1βρ̄(t)(− ˙̂ρ(t)

= −eT Qe+2eT P( f (x, t)− f (x̂, t))+2eT PΓξ (y, t)

+2eTCT βξ (y, t)−2ρ̂(t)β
eTCTCe

‖Ce‖

+2η−1βρ̄(t)(− ˙̂ρ(t))

< −(λmin(Q)−2γλmax(P))‖e‖2

+2β ‖Ce‖(ρ − ρ̂(t))

+2‖e‖‖P‖ερ +2η−1βρ̄(t)(− ˙̂ρ(t))

By using the adaptive law (9) one obtains

V̇ < −(λmin(Q)−2γλmax(P))‖e‖2

+2‖P‖ερ ‖e‖+2βη0(ρ − ρ̂(t))ρ̂(t)

< −(λmin(Q)−2γλmax(P))‖e‖2

+2‖P‖ερ ‖e‖−2βη0(
1

2
ρ − ρ̂(t))2 +

2β

4
η0ρ2

< −(λmin(Q)−2γλmax(P))‖e‖2

+2‖P‖ερ ‖e‖+
2β

4
η0ρ2

< −(λmin(Q)−2γλmax(P)−1)‖e‖2

+(‖P‖ερ)2 +
1

4
η0ρ2

Negative definiteness of V̇ is obtained for

‖e(t)‖ ≥ κ =

√

(‖P‖ερ)2 + β
2

η0ρ2

λmin(Q)−2γλmax(P)−1
(11)

if the following design condition

λmin(Q) ≥ 2γλmax(P)+1 (12)

is satisfied. Therefore, the state error trajectory enters the

closed ellipsoid and remain there

Ω = {e ∈ Rn|V (e(t)), ρ̂(t)) ≤ λmax(P)κ2} (13)

the ultimate stability of the designed ASMO is guaranteed.

Remark 1. Practically, we can use the following continuous

sliding control instead of equation (8)

S(x̂(t),y(t), ρ̂(t)) = ρ̂(t)P−1CT β
Ce

‖Ce‖+δ
(14)

with

0 < δ ≪ 1

This yields a continuous approximation of the signum func-

tion to eliminate high frequency chattering.

Remark 2. In the modified adaptation law (9), the parameter

η0 should be chosen suitably small 0 ≤ η0 ≪ 1 by the

designer. η0 prevents ρ̂(t) from becoming too large and

quarantees suitable magnitude of the adaptive gain.

C. The proposed chaos communication scheme

We, now propose a new chaotic communication scheme

based on adaptive sliding mode observers in the presence of

uncertainties. In the transmitter module a chaotic system is

employed as the master to generate a chaotic driver signal

for synchronization via the output measurement signal. To

enhance significantly the security level of the new scheme, an

unknown perturbation signal ξ (y, t) is constructed from the

output measurement is intentionally injected into the chaotic

dynamics. Practically, all the states of a chaotic system can

not be measured. To remedy this problem, an ASMO is used

in the transmitter section to generate all the states of the main

chaotic encrypter. It should be pointed out that the ASMO

(7)-(9) is sufficiently robust to estimate all the states despite

the uncertainties. Subsequently, modulation schemes such as

CM, CSK, etc can be easily designed based on the state

estimate. In this paper, we consider only chaotic masking

modulation (CM). The proposed scheme is illustrated in

Figure 1. The information signal s(t) is masked with the

second state estimate in the transmitter section. The actual

first state of the chaotic system, the output measurement y(t),
is transmitted through a communication channel, which may

be not secure, to the receiver section. The hidden information

signal c(t) is transmitted through another insecure channel to

the receiver section as well. The ASMO is employed in the

receiver module to estimate the states of the master chaotic

system via the received measurement signal. It should be

emphasized that the receiver observer is identical to the one

designed in the transmitter module. When synchronization is

achieved, the masking modulation can be removed precisely

using the second state estimate in the receiver section.

Remark 3. In practical applications it may be unrealistic to

implement the exact identical sliding mode coupled observer

in a transmitter-receiver configuration. Therefore there could

be an undesired error between the states estimates of the

robust observers. The mismatched error can be modelled

by an additive perturbation ∆K on one of the observers

gain. It should be noticed that the additive gain perturbation

simultaneously influences the matching condition (refer to

assumptions (C) and (E)). On the other hand, in spite of the

hardware perturbation, it is obvious that both implemented
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observers obey the ultimate error upper bound (11) if the

conditions (4) and (12) are satisfied. Consequently

sup(‖x̂Transmitter − x̂Receiver‖) = 2κ

Subsequently, one can obtain the following ultimate recovery

data error

sup(|sR(t)− s(t)|) ≤ 2κ (15)

Remark 4. In should be emphasized that the state adaptive

robust observers can be synchronized to the master chaotic

driver system in spite of different initial conditions. Further-

more, the difference due to the initial values of the observers

practically imposes transient error in the data recovery until

the synchronization is achieved.

IV. SIMULATION EXAMPLE

As an example consider the following chaotic model is

called the Lorenz attractor

ẋ(t) =

⎡

⎣

−σ σ 0

r −1 0

0 0 −b

⎤

⎦x(t)+

⎡

⎣

0

−x1x3

x1x2

⎤

⎦+Bξ (y, t)

y =
[

1 0 0
]

x

where σ ,r,b are positive parameters. When σ = 10,r = 28

and b = 1.25, the above system behaves chaotically [1].

The available output is chosen to be the first state x1. The

structure of the intentional injected uncertainty (which is

completely unknown in receiver section) is chosen as

B =

⎡

⎣

1

0

0

⎤

⎦ , ξ (y, t) = sin(y)cos(5t)

By choosing the matrices

Q = 100

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦ , K =

⎡

⎣

10

100

1

⎤

⎦

the solution of LE equation (4) yields

P =

⎡

⎣

2.7059 0.4118 −0.0133

0.4118 20.3475 0.2423

−0.0133 0.2423 40.0106

⎤

⎦

and the eigenvalues of A0 = A−KC are

−1.2500, −10.5000 ±25.0948i. If we select β = 2.7,

then according to the relaxed matching condition (6)

Γ =

⎡

⎣

−0.0009

0.0203

−0.0005

⎤

⎦

Therefore the unmatched distance is ε = 0.0203 which is

sufficiently small to achieve acceptable ultimate stability. The

above design procedure is valid since the Lipshitz constant

γ satisfies the inequality (12)

γ ≤ 1.2371

Finally, using the above parameters and equations (7)-(9)

with η = 5, the ASMO can be properly designed to achieve

the robust adaptive synchronization in the presence of inten-

tional injected uncertainty signal. It is assumed that ∆K = 0,

η0 = 0.001. It should be pointed out that the encryption rule

has been chosen as

c(t) = s(t)+ x̂2(t)

where s(t) = 2sin(2π5t) is the actual data (message) and c(t)
is the encrypted data. Figure 2 depicts the three dimensional

plot of the Lorenz attractor. The actual states and their

estimates are shown in Figure 3. Figure 4 illustrates the

adaptive gain of the employed sliding mode state estimators.

The actual data is plotted in Figure 4. Figure 5 shows

the encrypted signal. The recovered data and the error of

data recovery are depicted in Figures 6 and 7 respectively.

Obviously, the recovered data implies the effectiveness of the

proposed scheme.

V. CONCLUSION

This paper proposes a new practical secure communication

scheme using the concept of adaptive sliding mode observer

design. An uncertain signal is intentionally injected into the

chaotic driver to enhance the security level of the overall

system. The robust synchronization is based on an ASMO.

A relaxed matching condition is used to make the design

procedure more realizable.
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Fig. 1. The proposed chaotic communication scheme based on ASMO

Fig. 2. The Lorenz attractor

Fig. 3. Actual states and their estimates

Fig. 4. Adaptive gains
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Fig. 5. Actual message

Fig. 6. Encrypted message

Fig. 7. Recovered message

Fig. 8. Data recovery error
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