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Mechanical effects on atoms interacting with highly twisted Laguerre-Gaussian light
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Laguerre-Gaussian (LG) light modes with large values of the radial index p and the azimuthal index l are

considered. We give special emphasis on the mechanical effects on atoms arising from the Gouy phase and the

phase due to the curvature of such light. It is shown that the additional phase terms for highly twisted light can

lead to mechanical effects based on the substantial reduction of the axial wavenumber. As a consequence, axial

recoil effects are diminished in the processes of stimulated emission and absorption of the light by the atoms.

Both the scattering force and the momentum diffusion are affected by the inclusion of these normally ignored

additional phase terms. The magnitudes of the effects are explored using order of magnitude analysis with typical

parameters due to the atoms and the light.

DOI: 10.1103/PhysRevA.94.043854

I. INTRODUCTION

Soon after the discovery of Laguerre-Gaussian (LG) laser

light it was recognized that such states of light could herald a

new technique in the manipulation of the atomic gross motion

since a LG photon carries not only a linear momentum vector

but a quantized orbital angular momentum vector along the

beam propagation axis. The realization of such beams in the

laboratory was followed by a sizable amount of theoretical

work on the mechanical effects of such beams on atoms

[1–9]. A detailed review of work carried out on this subject is

given in Ref. [10]. Another related new development has been

the production of twisted matter (de-Broglie) waves. Such

matter waves have been realized for electrons and neutrons

and proposed for atoms [11–20]. It has been shown that the

diffraction of an atom wave packet from a light mask with

a forklike intensity profile results in the generation of atom

vortex Bessel and LG beams endowed with the property of

quantized orbital angular momentum [19].

By contrast, experimental investigations on gross atomic

motion in twisted light are fewer and are still lagging behind

theory. The common feature of most of the investigations

is that they are limited to cases of the lowest values of the

winding number l and, significantly, they also ignore modes

with nonzero values of the radial mode index p. Advances in

techniques for the generation of twisted light have recently

enabled modes with very large radial index, p, and/or winding

number l to be realized [21,22]. The role of the quantum

numbers l,p characterizing the LG light fields have been

investigated within the context of treating them as LG wave

functions [23], and recently the “ignored quantum number”

p within the context of quantum communications has been

emphasized in Ref. [24] and a quantum mechanical theory

featuring the effects of p has recently been presented [25].

The current experimental activity on the production of optical

vortices with extremely large values of l and p [21,22] contin-

ues. It has been suggested that such beams can be exploited in

the creation of concentric cylindrical lattices in which quantum

Hall physics with cold atoms can be realized [26].

*vlempesis@ksu.edu.sa

It turns out that in the study of the mechanical effects of

LG light on atoms the consideration of large l and p values

brings to the fore optical phase terms, which have so far been

discarded because for small l and p values they are justifiably

negligible. We show here that considerable modifications arise

in the physics involving atomic gross motion primarily because

the radiation forces exerted by the light on the atoms are

modified and so are effects such as atom diffraction and

the momentum diffusion coefficients. The modifications stem

from phase gradients originating from the beam curvature and

the Gouy phase most prominently near the focus plane of the

LG light mode. Both the Gouy and the curvature phase terms

have so far been ignored in the analysis, with the Gouy phase

strongly dependent on the values of l and p.

The Gouy phase anomaly is a basic property of all

focused beams. Although frequently discussed with reference

to focused light beams, it is also known to arise in the

cases of focused acoustic and electron beams. It was first

discovered over 11 decades ago by Gouy who made direct

measurements of the anomaly in optical beams [27,28]. Over

the years the Gouy phase has been shown to play significant

roles in a number of contexts as described in the interesting

paper by Feng and Winful [29], who provided a physically

transparent interpretation of the Gouy phase as originating

from the in-plane spatial confinement of the focused beam.

Hariharan and Robinson have given another explanation of

the Gouy phase as a geometrical quantum effect, which arises

as a result of the uncertainty principle whenever there is a

modification of the volume of space in which the light beam

is transmitted [30]. One of the most prominent manifestations

of the Gouy phase is in the context of optical tweezers where

it plays a role in the in-plane trapping of particles and leads

to super-luminal phase velocities vφ at focus. This suggests a

subluminal group velocity vg of the light in vacuum, which

is in conformity with the product rule vφvg = c2. Recent

experiments suggest that light in vacuum travels at subluminal

speeds for all beams, including Gaussian, Hermite-Gaussian,

and Laguerre-Gaussian ones, which are endowed with lateral

intensity spread. Of course, light only has its normal speed c

in vacuum when propagating in the form of a plane wave [31].

This paper is organized as follows: In Sec. II we outline the

main properties of a LG field for a mode with well defined l and
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p. Section III explores the modifications of the scattering force

exerted by the light on a two-level atom when the full phase

of the LG mode is taken into account. We present numerical

estimates for the deviations from the conventional approaches

where the Gouy and curvature terms have been omitted from

the analysis. In Sec. IV we consider the diffusion coefficients

associated with the motion of a two-level atom in a coherent

LG laser beam with high values of l and p. Section V contains

our conclusions and further comments.

II. LAGUERRE-GAUSSIAN LIGHT MODES: GOUY PHASE

AND BEAM CURVATURE

In the paraxial approximation the electric field associated

with a Laguerre-Gaussian mode, of wavelength λ = 2π/k

propagating in the z direction and polarized in the x direction

is given by

E = u|l|
p ei�lp x̂, (1)

where u
|l|
p is the amplitude or mode distribution function,

u|l|
p = Ek00

Cpl(
1 + z2/z2

R

)1/2

(√
2r

w(z)

)|l|
L|l|

p

(
2r2

w2(z)

)

× e−r2/w2(z) (2)

and �lp is the phase function,

�lp = kz + lφ − (2p + |l| + 1) tan−1(z/zR) +
kr2z

2
(
z2 + z2

R

) .

(3)

Here L
|l|
p are the generalized Laguerre polynomials distin-

guished by the integers l and p. In a LG mode the integer l

is referred to as the azimuthal or the winding number (also

topological charge), which can be positive or negative. This

determines the orbital angular momentum content as l� per

photon carried by the mode, while integer p > 0 determines

the number of the radial nodes in the mode as equal to p + 1.

The factor Clp is given by Clp =
√

2p!/2π (|l|! + p!); w(z) is

the width of the beam and it is equal to w0

√
1 + z2/z2

R , where

w0 is the beam waist; Ek00 represents the field amplitude of

a Gaussian beam with the same power and beam waist, and

zR = πw2
0/λ is the Rayleigh range of the beam. In Eq. (3) the

Gouy phase term is identified as the third term, namely,

�Gouy = −(2p + |l| + 1) tan−1(z/zR), (4)

and the curvature term is the last term, namely,

�curve =
kr2z

2
(
z2 + z2

R

) . (5)

It is easy to see that the beam now has a total wave vector

K = ∇�lp, where the gradient of the phase function is given

by

K = ∇�lp

= k

[
1−(2p+|l|+1)

zR

k
(
z2 + z2

R

) +
r2

(
z2
R − z2

)

2
(
z2 + z2

R

)2

]
ẑ +

l

r
φ̂.

(6)

where carets indicate unit vectors in cylindrical polar coordi-

nates. This modified wave vector amounts to modifications in

the photon recoil and the radiation pressure forces exerted on

the atom as a result of its interaction with the beam.

The first indication of the expected modifications of pres-

sure forces can be seen by considering the linear momentum

density carried by the beam. This is defined as the time-

averaged Poynting vector, S = ǫ0E × B, the real part of which

is given by [1]

S = i
ǫ0

2
〈E × B〉 = i

ǫ0

2

(
v|l|

p ∇v|l|∗
p − v|l|∗

p ∇v|l|
p

)
, (7)

where v
|l|
p = u

|l|
p ei�lp . Substituting for u

|l|
p from Eq. (2) we have

after some algebra,

S = ǫ0

(
u|l|

p

)2

{[
k − (2p + |l| + 1)

zR

z2 + z2
R

+
kr2

(
z2
R − z2

)

2
(
z2 + z2

R

)
]

ẑ

+
l

r
φ̂ +

2kzr

z2 + z2
R

r̂

}
. (8)

From the results in Eqs. (6) and (8) we see that both the

wave vector and the Poynting vector expressions are modified

compared with the expressions given so far in the literature

provided that we work with parameters that can make the

contributions from the Gouy phase Eq. (4) and the curvature

phase Eq. (5) of appreciable sizes.

III. MODIFIED RADIATION PRESSURE FORCES

It is well known that the radiation pressure on a two-level

atom undergoing an electric dipole transition at near resonance

with the light is the vector sum of two distinct forces, namely

the dissipative force and the dipole force, which depend on

the detuning (defined as �0 = ω − ω0, with ω0 the atomic

transition frequency and ω the frequency of the light), on the

half-width Ŵ of the upper quantum state of the two-level atom,

and on the Rabi frequency 
lp. In the saturation limit where


lp ≫ �, Ŵ, the dissipative force can be approximated to

〈Fdiss〉lp ≈ �Ŵ∇�lp. (9)

With the forces acting on the atom due to the LG light

defined as outlined above, the dynamics of the center of mass

R can be evaluated. However, earlier treatments to date have

invariably ignored the Gouy phase and the curvature effects

and have discussed lowest order LG modes, most notably the

l = 1, p = 0 doughnut mode [10]. As pointed out earlier, ex-

perimental techniques for mode generation have advanced con-

siderably. Higher-order twisted light modes can now be readily

created in the laboratory with large values of l and p. We now

seek to explore the effects that can arise for large l and p in

the dynamics of the atoms subject to this kind of light modes.

Consider the situation in which the atoms move near

the focus plane of the LG mode such that z ≪ zR . When

substituted in the dissipative force expression Eq. (9), the φ̂

force component generates a light-induced torque, which is

responsible for the azimuthal dynamics of the atom leading to

their rotation. The ẑ component, on the other hand, determines

their axial dynamics. To investigate the dynamics near the

focus we proceed in a series expansion of the involved

quantities with respect to the variable (z/zR). The field phase
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�kpl can be written as

�pl =
[
kzR − (2p + |l| + 1) +

kr2

2zR

]
z

zR

+ O

(
z

zR

)3

. (10)

The beam waist w(z) = w0

√
1 + ( z

zR
)2 can be approxi-

mated as

w(z) = w0

[
1 + O

((
z

zR

)2)]
. (11)

The gradient terms originating from the Gouy phase and

the curvature phase terms when taken together amount to an

effective axial wave vector denoted by keff, so that the phase

gradient in the vicinity of the focus plane can be written as

∇�pl ≈ keff̂z +
l

r
φ̂, (12)

where keff is given by the equation

keff ≈ k

(
1 −

(2p + |l| + 1)

kzR

+
r2

2z2
R

)
. (13)

The above relations show clearly that the axial wave vector

is modified from k to keff. In the specific case p = 0 and making

use of the relation zR = πw2
0/λ we find that the winding

number l should be close to (kw0)2 and since kw0 ≫ 1, only

LG beams with large value of l could exhibit a nonnegligible

effect, i.e., such that keff differs significantly from k.

To quantify further the size of the modifications we consider

the following typical experimental scenario. Consider an LG

mode of wavelength λ = 2π/k = 852.35 nm, with azimuthal

and radial indices l = 300, p = 3, respectively. We focus on

four different cases of beam waist with respective values w0 =
3λ, 5λ, 10λ, and 20λ, and seek to explore how the effective

wave vector keff changes with the radial position r near the

focus plane, i.e., in the region at z ≈ 0 of the beam. The plot

of keff as a function of radius r , scaled in beam waist units, is

shown in Fig. 1. There are four keff curves: a dotted one (w0 =
3λ), a dashed one (w0 = 5λ), a dot dashed one (w0 = 10λ),

and a long dashed one (w0 = 20λ). The full spike-like curve

is a scaled plot of the intensity of the specific LG beam being

considered. It is in this region where the beam intensity and

thus its mechanical effects on the atoms are considerable.

From Fig. 1 we see that as the beam waist becomes smaller

the values of keff become considerably different from that of

k. We also see that for w0 = 3λ the effective axial wave vector

keff takes negative values at certain radial positions and this

is to be interpreted by saying that locally the atom “sees” a

beam traveling in the opposite direction. We must, however, be

careful in interpreting this scenario since, as has recently been

pointed out, when the focusing is very tight the generated LG

beam is not a pure state as we have the production of modes

with higher and lower winding numbers due to a small field

component in the propagation direction so the above ideal

picture does not apply [26,32].

A direct consequence of the modification of the axial wave

vector is that the dissipative force on a two-level atom is also

modified. In the saturation limit this force is now given by

〈Fdiss〉lp = �Ŵkeff̂z + �Ŵ
l

r
φ̂. (14)

FIG. 1. The ratio keff/k as a function of the radial position, scaled

in beam waist units, for a LG mode of wavelength λ = 852.35 nm

and indices l = 300, p = 3. The ratio is given for four different

beam waists: w0 = 3λ (dotted), w0 = 5λ (dashed), w0 = 10λ (dott-

dashed), and w0 = 20λ (long dashed). The solid curve is a scaled plot

of the intensity highlighting the regions where the beam intensity and

thus its mechanical effects on atoms are considerable. The radial

distance r is scaled in w0 units.

Note that the axial (ẑ) dissipative force, which in the absence

of the anomalous Gouy and curvature phases is known to

be given simply by 〈Fdiss〉lp = �Ŵk̂z, is now modified by the

inclusion of the additional phase terms. By contrast, these

phase anomalies have no effect on the azimuthal φ̂ force

component, which, in the saturation limit, gives rise to a

light-induced torque of magnitude �Ŵl acting on the atom

about the beam axis. With reference to Fig. 1, which suggests

that the effective wave vector is nullified on critical radial

distances and changes its sign from negative to positive around

them, we see that we could provide possible ways to handle

atoms via LG light beams.

The mechanical effects of light on atom are very sensitive

to the Doppler shift experienced by a moving atom. If the

atom has a velocity V then the Doppler shift is given by δD =
{∇�lp} · V. This topic has been investigated analytically by

Allen, Babiker, and Power [33], but it now seems clear that

the Doppler shift too is subject to modifications due to Gouy

and curvature phases for highly twisted light and there are also

consequences in the context of the dynamics of the optical

molasses in such LG beams [10].

IV. MOMENTUM DIFFUSION

It is well known that there are fluctuations of the radiation

pressure forces due to some physical factors, which result

in atomic momentum diffusion. Such fluctuations may arise

from the fluctuations of the recoil momentum due to the

fluorescence photons that are emitted in random directions,

from the fluctuations in the number of fluorescence cycles in a
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specified time interval and from the fluctuations in the number

of the absorbed photons [34]. These sources of diffusion are

behind the heating of the translational degrees of freedom and

so determine the limits of the mechanical action of the light

on the atoms.

Whenever a photon is spontaneously emitted in a given

direction, and since the direction of the emission is random,

the atom recoils backwards and executes a random walk of

step size �k in momentum space. The momentum diffusion

coefficient Dspont associated with this process is given by

Dspont =
1

4
�

2k2Ŵ
S

1 + S
, (15)

with S the saturation parameter given by S = 
2
lp/2(�2 +

Ŵ2/4). Since spontaneous emission involves the vacuum

modes Dspont does not depend on the details of the effective

wave vector of the structured beam. This is not the case with

the rest of the diffusion coefficients associated with the atomic

motion in the light field.

The evaluation of the momentum diffusion coefficient Dabs

due to the fluctuations of the number of absorbed photons in

the case of an LG beam with high values of p and l indices

leads to the following expression:

Dabs =
1

4
�

2k2Ŵ
S

1 + S
(1 + Q)

×
[(

1 −
2p + |l| + 1

kzR

+
r2

2z2
R

)2

+
(

l

kr

)2]
, (16)

where Q is the Mandel parameter [35] that represents a

departure from Poissonian statistics and is defined as

Q =
〈(�n̂)2〉 − 〈n̂〉

〈n̂〉
, (17)

where n̂ is the photon operator and, thus, 〈n̂〉 is the mean photon

count and 〈(�n̂)2〉 is the variance. The diffusion coefficient

Ddip associated with the dipole force is given by

Ddip ≈
1

2Ŵ
(�∇
lp)2. (18)

We now proceed to estimate (in our case) the diffusion

coefficient for a doughnut mode with p = 0, but large l and

choose the saturation parameter S to be small, i.e., S ≪ 1, and

so S/(1 + S) ≈ S. We obtain from Eqs. (15) and (16) at the

radius of maximal light intensity r = w0

√
|l|/2, respectively,

that

Dspont ≈
1

4
�

2kL2

Ŵ

2

l0

2
√

|l|(�2 + Ŵ2/4)
, (19)

and

Dabs ≈ Dspont(1 + Q)

×
[(

1 −
λ2(|l| + 2)

4π2w2
0

)2

+
|l|λ2

2π2w2
0

]
. (20)

The second and third terms in the square brackets represent

modifications that would not be present in the corresponding

relation for a Gaussian beam. These modification terms are

of different physical origins. The first term is associated with

fluctuations of the atomic momentum along the beam axis. As

the azimuthal index l of the beam increases this contributes

a larger negative value. The third term is proportional to

the absolute value |l| of the azimuthal index. This term is

associated with fluctuations of the atomic angular momentum

along the beam axis. Thus, because of the relative sign

difference the two fluctuation terms compete with each other

as the azimuthal index increases.

In order to see the significance of the above diffusion

coefficients, we first highlight their connection with the Rabi

frequency of the LG beam. For a LG mode with p = 0 and

the normalization factor Clp =
√

(2|l|+1/π |l|!) the intensity

is maximum at the radial coordinate r = w0

√
|l|/2, so the

corresponding Rabi frequency at this radial coordinate is given

by 
2
l0 ≈ 
2

0/
√

|l|, where 
0 is the Rabi frequency associated

with a Gaussian beam of the same power and beam waist. The

gradient of the Rabi frequency appearing in Eq. (18) involves

a differentiation with respect to r and can be shown to be given

approximately by (∇
l0)2 ≈
√

|l|
2
0/w

2
0 . We see that as the

azimuthal, or winding number, l, increases the Rabi frequency

becomes smaller compared to the Gaussian wave case while

the gradient of the Rabi frequency becomes larger. This means

that the saturation parameter becomes smaller and the diffusion

coefficient due to the fluctuations of the number of absorbed

photons becomes smaller compared to the same coefficient

for an atom irradiated by a Gaussian beam. By contrast the

diffusion coefficient associated with the dipole force becomes

stronger as the winding number l of the beam increases.

The above qualitative analysis suggests that the physics

involves a random walk in momentum space where the

corresponding “steps” are such that: (i) they do not have the

same size since a spontaneous “kick” has a size different from a

stimulated “kick” and (ii) these kicks have a spatial dependence

since they depend on r . These “structured kicks” would have an

impact in cases where cold atoms are diffracted through light

masks created by LG beams with high values of p and l such

as those arising in the production of atom vortex beams [19].

V. COMMENTS AND CONCLUSIONS

In this paper we have considered the Gouy phase and

the curvature phase terms, which are naturally present in a

Laguerre-Gaussian light mode but are often neglected in the

context of the interaction of LG light with atoms. We have

shown that highly twisted LG modes (i.e., when the values of

radial index p and azimuthal index l are large) the anomalous

phase terms become significant. Specifically we considered

the semiclassical interaction of LG light with two-level atoms

and the features arising on taking the two anomalous phases

into consideration when compared with the case in which

these phases are ignored. We have shown that the axial wave

number of the highly twisted LG light is modified by the phase

terms, with the effective wave vector diminished compared

to its value in the absence of the anomalous phase terms.

The immediate physical consequences for free atoms is that

the radiation forces responsible for their translational motion

in twisted light are significantly modified. All the associated

effects that arise when the interaction of the beam with the

atomic transition is at close resonance with the light (as in

the case of optical molasses) would be modified accordingly

[10]. Atoms trapped in doughnut beams can be used as a basis

043854-4



MECHANICAL EFFECTS ON ATOMS INTERACTING WITH . . . PHYSICAL REVIEW A 94, 043854 (2016)

for atomtronics [36]. If ions are trapped they may create axial

magnetic fields, which could have useful applications at the

microscale. The modifications in question would have to be

taken into account in those contexts.

Twisted light beams have been proposed for the creation of

properly tailored light masks, which can diffract cold atoms

and so generate atom vortex beams [19]. These atom beams

have an amplitude function of the Bessel type but are endowed

with a phase function as for an LG beam. If we employ highly

twisted beams for the creation of such light masks then the

generated atom vortex beams will have Gouy and curvature

terms included in their phase function. The high diffraction

orders of the generated atom vortices would then have higher

angular momenta and consequently they would propagate with

a smaller axial wave vector (i.e., travel more slowly) in the axial

direction.

Highly twisted LG modes can now be produced routinely

in the laboratory, so it is to be anticipated that the effects

pointed out here would be revealed in future experiments,

and they would then be taken into account in various physical

applications. The significant reduction of the axial wave vector

would feature in applications in recoil free spectroscopy

experiments. The effects depend also on the extent of the

beam focusing. It is the combination of tightly focused modes

and large values of p and l that ensures significant changes

in the atomic momentum. In the tight focusing regime the

atomic motion can be loosely described as “blind” in the

axial direction as it interacts with light. In this case the atom

experiences primarily a torque which makes it rotate in the

azimuthal direction moving in the plane transverse to the

propagation direction of the beam.
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