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Abstract 

We present unique nonlinear rheological data of well-defined symmetric Cayley-tree 

poly(methyl methacrylates) in shear and uniaxial extension. Earlier work has shown that 

their linear viscoelasticity is governed by the hierarchical relaxation of different 

generations, whereas the segments between branch points are responsible for their 

substantial strain hardening as compared to linear homopolymers of the same total molar 

mass at the same value of imposed stretch rate.  Here, we extend that work in order to 

obtain further experimental evidence that will help understanding the molecular origin of 

the remarkable properties of these highly branched macromolecules. In particular, we 

address three questions pertinent to the specific molecular structure: (i) is steady state 

attainable during uniaxial extension? (ii)  what is the respective transient response in simple 

shear?  and (iii) how does stress relax upon cessation of extension or shear? To accomplish 

our goal we utilize state-of-the-art instrumentation, i.e., filament stretching rheometry 

(FSR) and cone-partitioned plate (CPP) shear rheometry for polymers with 3 and 4 

generations, and complement it with state-of-the-art modeling predictions using the 

Branch-on-Branch (BoB) algorithm. The data indicates that the extensional viscosity 

reaches a steady state value, whose dependence on extension rate is identical to that of 

entangled linear and other branched polymer melts.  Nonlinear shear is characterized by 

transient stress overshoots and the validity of the Cox-Merz rule. Remarkably, nonlinear 

stress relaxation is much broader and slower in extension compared to shear. It is also 

slower at higher generation, and rate-independent for rates below the Rouse rate of the 

outer segment. For extension, the relaxation time is longer than that of the linear stress 

relaxation, suggesting a strong ‘elastic memory’ of the material.  These results are 
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described by BoB semi-quantitatively, both in linear and nonlinear shear and extensional 

regimes.  Given the fact that the segments between branch points are less than 3 

entanglements long, this is a very promising outcome that gives confidence in using BoB 

for understanding the key features. Moreover, the response of the segments between 

generations controls the rheology of the Cayley trees. Their substantial stretching in 

uniaxial extension appears responsible for strain hardening, whereas coupling of stretches 

of different parts of the polymer appears to be the origin of the slower subsequent 

relaxation of extensional stress. Concerning the latter effect, for which  predictions are not 

available, it is hoped that the present experimental findings and proposed framework of 

analysis will motivate further developments in the direction of molecular constitutive 

models for branched and hyperbranched polymers. 

 

I. Introduction 

 

The use of model polymers of well-defined architecture is important in probing 

molecular rheology  [1–4]. Indeed, substantial progress has been made in decoding the 

linear viscoelasticity of model branched polymers (such as combs or pom-pom-like 

macromolecules), and more recently their nonlinear response in shear and extension. The 

rheological properties of model polymers  provide  profound implications in finessing 

molecular models and improving material performance in technological applications  [5–

15].  Focusing on the nonlinear rheology of comb polymers, one important consequence of 

the recent progress in experimental extensional and shear rheology is the quantitative 

assessment of the role of dynamic dilution in transient strain hardening and stress 

overshoot, respectively. Moreover, it has been demonstrated that, still using the comb 

paradigm, introducing long-chain branching induces strain hardening in start-up shear  [9]. 

It is therefore evident that whereas branching is crucially important in processing, the exact 

role of number, size and distribution of branches is not fully quantified.  We note that 

Nielsen et al. measured the transient response of model pom-pom polystyrenes  [10] (which 

are a limiting case of combs with only two branch points at the ends of the backbone) and 

reported strong extension hardening, even at low deformation rates, due to the stretching of 

the backbone between the two branch points. The extensional viscosity reached steady state 

with values scaling with the extensional rate with a power exponent of about -0.5, in 

agreement with modelling predictions [10,16]. The latter were based on the concept of 
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internal chain pressure which counterbalances the contraction due to the applied 

deformation,  [17,18] coupled with backbone tube dilation due to the earlier relaxation of 

the branches. These ideas were also implemented into the time marching algorithm by van 

Ruymbeke et al. 2010   [19,20] in order to predict the extension hardening of Cayley-tree 

poly(methyl methacrylates) of different generations. However, in the latter case, despite the 

very good predictions of transient stress growth coefficient, the experimental measurements 

were limited to maximum Hencky strains of 4 and in some cases, the steady state was not 

reached. Moreover, Marrucci and Ianniruberto suggested that the tube pressure is not a 

universal concept and proposed instead the idea of anisotropic monomeric friction as the 

main mechanism to account for the response of polymer melts and solutions in uniaxial 

extension  [21–23]. An important element of the pom-pom model is the branch withdrawal 

at rates larger than the effective Rouse rate of the polymer. This was worked out for the 

case of multiple branches along the backbone, and a modified pom-pom model for combs 

captured the transient extensional data remarkably well  [15]. In parallel, whereas 

experiments with well-defined branched polymers (such as combs) are absolutely 

necessary in order to elucidate the role of the molecular parameters (number, size and 

distribution of branches, distance between branch points) in the rheological response, the 

state of the art BoB model, developed for randomly branched polymers  [24], can be 

adopted to well-defined branching in a straightforward way. In some specific situations, the 

complex transient response of combs can be described with simple models accounting for 

branch withdrawal and convective constraint release, but a universal constitutive model is 

far from reach. In addition, it is important to emphasize that nonlinear rheological 

experiments with polymer melts are far from non-trivial.  Challenges of particular 

significance are the potential achievement of steady state in extension and associated 

ability to reach sufficiently high Hencky strains (above 4, as mentioned before) on one 

hand, and the occurrence of wall slip and edge fracture instabilities in shear on the other 

hand. Moreover, stress relaxation has emerged as an important experimental indicator of 

material performance baring information on the role of molecular structure on macroscopic 

response  [25,26]. Hence, outstanding challenges remain in the field, on both experimental 

and modelling sides. 

Recent advances in instrumentation have opened the route for obtaining high-

quality experimental data, especially in nonlinear transient conditions. More specifically, 

the development of the filament stretching rheometer (FSR) allows the measurement of 

true stress in well-controlled uniaxial extension at large Hencky strains and that of stress 
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relaxation upon cessation of extension  [25,27]. At the same time, the implementation of 

cone-partitioned plate (CPP) in rotational strain-controlled rheometry offers the ability to 

measure reliably transient shear stress over the largest possible range of shear rates  [28–

30]. It is therefore essential to combine novel macromolecular structures of relevance in 

processing and state of the art experimental tools in order to provide useful, reliable 

experimental information in different flow histories, towards a better understanding of the 

behaviour of complex polymers and a critical assessment of predictive models and their 

eventual improvement.  

In this work, we address this challenge and present a combined set of accurate 

experimental data with a well-defined dendritically branched macromolecule of third and 

fourth generation subjected to both nonlinear shear and uniaxial extensional deformation, 

during both start-up and relaxation upon flow cessation.  We compare these experimental 

data against modelling predictions using BoB. The choice of the particular Cayley-tree type 

of structure is motivated by the fact that it is an excellent  model  for investigating the 

hierarchical role of branches (with and without free ends, with varying number and molar 

mass) in rheology, and represents a next step in complexity from comb  [19,31]. One well-

known, albeit intriguing aspect of such macromolecules is their rather low zero-shear 

viscosity and larger level of extension hardening due to the fact that their very large total 

molar mass is split into multiple segments (hyperbranched), each having small molar mass. 

Here we present new data with Cayley tree poly(methacrylates) of generations 3 and 4 

(section II), whose linear viscoelasticity and strain hardening was investigated before. We 

show, in particular, the transient extensional data with steady state values at large Hencky 

strains, respective transient shear data, the Cox-Merz representation, and the relaxation of 

extensional and shear stresses, along with the BoB predictions (section III). The key 

conclusions and implications of the work are summarized in the last section. 

 

 

II. Materials and methods  

 

II.1. Cayley-tree polymers:  We used Cayley-tree poly(methyl methacrylates), PMMA, of 

generations 3 (code G3) and 4 (code G4). These dendritically branched macromolecules 

were synthesized anionically by Hirao and co-workers [32–36] using benzyl bromide 

moieties as coupling agents. Earlier rheological investigations were discussed by van 
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Ruymbeke et al.  [19].  Each tree polymer consists of equal molar mass segments between 

generations (or with a free end at the highest generation).  The number average molar mass 

of each segment is Mn=11,000 g/mol (i.e., 2.4 entanglements) and the polydispersity index 

Mw/Mn=1.02.  Figure 1 below provides cartoon illustrations of the molecular structures of 

G3 and G4. Characterization of G3 and G4 can be found in Ref.  [19] and  [35,36]. Here we 

note that we performed size exclusion chromatography in fresh and used (after first 

stretching experiment) samples G4. The results from the analysis with the RI detector (not 

shown) show that there is a small  fraction (about 6%) of larger molecules, which we call 

side-products, with an average molar mass of about 1340 kg/mol, i.e. double that of the 

main target product (see also Refs.  [32–36]). Whereas these side-products have an 

influence on the linear viscoelasticity at very long times  [19], at this small amount they do 

not affect the terminal response of the target dendritic molecules. This is also supported by 

earlier extensive work on structural and rheological analysis of branched 

polymers  [2,19,37]. Furthermore, the used samples appear to contain slightly larger 

fraction of side-products (10%) but were perfectly soluble in good solvent chloroform. 

These facts, along with evidence from literature (for fractions of 15% or lower we can 

ignore their contribution to a first approach  [37]), give confidence about the 

appropriateness of these samples for the present investigation (see also section III.1 below). 

 

 

 

Figure 1: Illustration of Cayley tree polymers of 3 (G3) and 4 (G4) generations. 

 

II.2. Sample preparation: Prior to molding the samples were dried in a vacuum oven at 

90ºC for two to three days. The materials were then molded into cylindrical test specimens 
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using homemade vacuum molds (typically, between two Teflon discs). The amount of 

sample for each specimen was about 20–40 mg.  The materials were pressed at 

approximately 170 ºC (the mold was put in a hot press with applied load of 0.4 tons). This 

protocol ensured that the samples were properly annealed. Given the low quantity of 

samples, the specimens for both extensional and shear measurements were reused when 

necessary, after a rheological test was completed.  The recovered sample from the 

rheometer was remolded by using the same protocol described above. Possible degradation 

was checked before new rheological measurements via reproducibility of linear viscoelastic 

measurements and size exclusion chromatography. 

 

II.3. Rheology:  

II.3.1. Uniaxial extension: The extensional stress measurements were performed with a 

filament stretching rheometer (FSR)  [27,38,39]. The molded specimens had a fixed radius 

of R0=2.7mm. The initial length 0L  of the cylindrical test specimen was controlled by 

adding an appropriate mass of sample into the mold. The aspect ratio 0 0 0/  L R   ranged 

between 0.41 and 0.56. The samples were pre-stretched to a radius pR   ranging from 1.2 to 

2.4 mm at 180°C prior to the extensional experiments. After pre-stretching, the 

measurements were carried out in nitrogen atmosphere at the same temperature and the 

force ( )F t  was measured by a load cell whereas the specimen diameter 2 ( )R t  at the mid-

filament plane was monitored by means of a laser micrometer. Note that during the startup 

of elongational flow, part of the force comes from the radial variation due to the shear 

component of the deformation field. This effect may be non-negligible for small strains 

only and in that case it is compensated by a correction factor. The Hencky strain H  and 

the mean value of the stress difference over the mid-filament plane can be calculated from 

( )R t and F(t) as: 

( )
( ) 2ln

 
    

 
H

p

R t
t

R
          (1) 
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
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where fm  
 
is the mass of the filament, and g  is the gravitational acceleration. The stretch 

rate /Hd dt    can remain constant by means of a control scheme [38] and the 

extensional stress growth coefficient is defined as  /el zz rr      . In the stress 

relaxation phase following the startup of uniaxial extension, the mid-diameter of the 

filament is kept constant by the control scheme, giving   = 0. The extensional stress decay 

coefficient is defined as /el zz rr      , where   is the strain rate in the startup of the 

flow. 

 

II.3.2. Simple shear: Measurements were performed in a strain-controlled ARES rheometer 

(TA Instruments, USA) equipped with a force rebalance transducer (2KFRTN1). Linear 

and nonlinear measurements were performed with a homemade cone-partitioned plate 

(CPP) fixture in order to avoid experimental artefacts associated with edge fracture. The 

particular CPP used is described in detail in Costanzo et al.  [30].  All tools used were made 

of stainless steel. The inner partition has a diameter of 6 mm while the outer partition has 

an inner diameter of 6.2 mm and an outer diameter of 20 mm. The role of the partition is to 

delay the onset of edge fracture propagating inside and protect the measured part of the 

sample (adhering to the inner plate). The cone used has an angle of 0.1 rad and a truncation 

of 51 ȝm. The CPP geometry was inserted into the ARES convection oven, hence a 

temperature control of ±0.1ºC was achieved. Nitrogen flow reduced the risk of degradation.  

The lowest attainable shear rate with this geometry was 0.01 s-1. Nonlinear start-up tests 

with sample G3 were carried out at 180ºC. The measurements with sample G4 at the two 

lowest shear rates (0.001 and 0.003s-1) were performed at 200ºC and then shifted to 180ºC 

using the horizontal shift factor of the linear viscoelastic data  [19]; measurements at larger 

rates were performed at 180ºC.  

 

II.4. Modeling:  In view of the lack of mesoscopic models predicting the rheology of 

generic unentangled (or barely entangled, as here) branched polymers, we used the BoB 

model [8,24,40] in order to describe the flow properties of the Cayley tree polymers. 

Computational rheology [24,41,42] follows coupled relaxation in time of a numerical 

ensemble of molecules after a small, affine, step strain. For a Cayley tree molecule, the 

relaxation starts by arm retraction [43,44] of the outermost segments with one free end. The 

relaxed segments act like solvent for the yet to be relaxed segments [45], and thus coupling 
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the relaxation of all the molecules considered in the calculation. The inner segments can 

only relax (by Rouse-like explorations as described below) once the outer segments have 

relaxed completely and their relaxation is slowed due to the localized friction at the branch 

points (which is accounted for).   Hence, inner segments become gradually available for 

branch-point withdrawal. The time at which certain part (of inner segment) becomes 

available for relaxation is assigned as its stretch relaxation time. Relaxation of such 

compound segments that contain one or more localized friction points is described by a 

multi-dimensional first-passage problem and is simplified by considering the portion of this 

compound arm that can move coherently with the chain end at a given time and assigning a 

dynamics to this effective pivot point of a compound segment [24]. Specifically, when the 

first two generations have relaxed, there are two localized friction points in the 

“compound” arm.  We consider contour length fluctuations in arm retraction that is limited 

to the length available via the above mentioned Rouse process. In general, the final 

unrelaxed material behaves like a linear polymer and the terminal relaxation is via 

reptation. However, for the symmetric molecules considered here, reptation plays no role.  

We used a value for the dilution exponent Į=1 and branch point hopping parameter 

p2=1/40.  Concerning the latter,  we note that it is significantly smaller than more 

commonly chosen value of p2 = 1/12 [46,47], but this choice was found to simultaneously 

fit all rheological data of asymmetric star and other branched polymers  [6,23,24,48,49]. 

Part of the reason for smaller value of the chosen parameter is because we consider that the 

friction from a relaxed side-arm is set by the tube diameter at the time-scale of branch-point 

retraction. The exact numerical value probably is of no great significance. Rather this is a 

fit parameter that would have been different, had we made different choices for complete 

branch retraction. Note that the default choice in BoB is to consider branch-point retraction 

only when the chain end visits the origin; in this work we consider complete retraction 

when the chain end reaches 0.15 times the current effective tube diameter.  This change 

was necessary in order to describe both the resins with a single value of the entanglement 

molar mass. We have chosen this small value of effective entanglements as the criteria for 

complete branch-withdrawal to ensure that results for well entangled polymers remain 

unchanged.  

For reasons still not fully resolved, small side-arms (of the order one entanglement or even 

less than an entanglement) have been found to provide significantly larger friction than 

tube theory predictions based on long side-arms [48,50]. Recent molecular dynamics 

results also suggest that entanglement constraints at the branch-points are stronger than 
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those for linear polymers  [49]. For this reason, we have decided not to have a cut-off 

function at order one entanglement like in the hierarchical model  [40,41]. Having a zero 

(as in the original BoB model) or a small value (as in the present work) allows us to predict 

rheology of branched polymers with segment lengths down to order one entanglement.   To 

predict the nonlinear flow response, we resolve the linear relaxation as a set of pom-pom 

modes and the procedure is described in III.2.  

 

 

III. Results and discussion  

 

III.1. Linear viscoelasticity. As reference, we present first the linear viscoelastic (LVE) 

data of the two samples in Figure 2. The master curves are taken from van Ruymbeke et al. 

(2010) and shifted to the reference temperature Tref =180ºC and are shown in separate plots 

(Figs. 2a and 2b for G3 and G4, respectively) in order to appreciate the BoB predictions. 

The shift factors are discussed in reference  [19]. In fact, we have re-measured the 

frequency-dependent dynamic moduli at 180ºC and our results were identical to those of 

van Ruymbeke et al. (2010), hence confirming that the samples were not degraded. We 

remind here the main outcome from the linear data (not shown in the separate plots of Fig. 

2): time-temperature superposition works remarkably well, high-frequency data collapse 

for G3 and G4 having the same glass temperature (of about 100ºC), the plateau G’ 

(corresponding to about 102 rad/s) is identical for the two samples and typical of that of 

linear atactic PMMA. Continuous decrease of G’ with decreasing frequency reflects the 

dynamic dilution due to relaxation of branches of different generations from outer 

proceeding inwards  [19,44]. Finally, the terminal relaxation of G4 is slower than that of 

G3.  In particular, the respective terminal moduli crossover frequencies are 0.005 rad/s and 

0.03 rad/s. Regarding the nonlinear rheology that follows, the imposed shear and 

extensional rates cover the range from 3x10-1 to 10-3 s-1. This is a rather wide range given 

the experimental limitations, and at the same time very useful as it encompasses the 

transition from rubbery (deformed polymers) to terminal response, respectively, in Figure 

2. 
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Figure 2: Linear viscoelastic master curves from van Ruymbeke et al.  [19], depicting G’ 

(closed circles), G’’ (open circles) and tan(į) (crosses) versus shifted frequency (Ȧ.aT) at a 

reference temperature Tref=180ºC for G3 (a) and G4 (b). For both graphs, black lines are 

predictions from BoB model (G’, dash-dotted line; G’’, dashed line; tan(į), solid line). 

 

For BoB modelling, we chose Me=5000 g/mol (slightly higher than that reported 

in  [19]) and Ĳe=2.5 ms (consistent with  [19] when the experimental temperature of 180ºC 

is considered). The plateau modulus is independently set at 0.98 MPa. Though the ‘bare’ 

molar masses of all the segments of the molecules are greater than 2 entanglements, the 

‘diluted’ lengths of the inner generation segments are significantly smaller than one 

entanglement. However, the relaxation of the inner segments remain dominated by branch-
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point friction and constraint release Rouse processes, and a description based on relaxation 

of entangled polymers provides a reasonable description for the stress relaxation of the 

current Cayley trees. The linear viscoelastic responses (lines in Figure 2) for both G3 and 

G4 are predicted satisfactorily. The predicted high-frequency regime (before the onset of 

entanglements) substantially deviates from the data, but this is typical problem and 

attributed both the tube-modeling (does not apply there) and experiments (segmental 

dynamics region approached)  [47,51].   Relaxation of each generation introduces separate 

features in the linear relaxation (most easily seen in the phase angle). The predicted 

features are sharper than the experimental observations. This may be explained by the 

inevitable presence of slight polydispersity in molecular structure, which is not uncommon 

in complex model polymers [2,52] (see also section II.1 above). The experimental elastic 

modulus for G4 fails to reach the terminal slope at the lowest frequency probed. This likely 

reflects the presence of small fraction of side-products  [19,32,36], as already discussed 

above (section II.1). An important remark concerns the actual relaxation which, based on 

BoB occurs well after the moduli crossover (due to relaxation of diluted inner segments), as 

seen clearly in Fig. 2.  In fact, the predicted longest relaxation times are about 419 s and 

1677 s for G3 and G4, respectively. These values differ sharply from the inverse G’-G’’ 

crossover to the terminal region (33.3 and 200 s, as mentioned above). Given the lack of 

experimental data at low enough frequencies, we shall use below the terminal crossover as 

a measure of characteristic terminal time for extracting the Weissenberg number.  

 

III. 2. Transient uniaxial extension and shear: Data and modeling.  In Figure 3, the 

transient data for G3 are depicted.  The stress growth coefficient in Fig.3a exhibits strain 

hardening even at rates as low as 3x10-3 s-1. This remarkable finding confirms the earlier 

results of van Ruymbeke et al.  [19]  . It is interesting to note that this lowest rate is below 

the terminal rate for G3 (around 2x10-2 rad/s, see Figure 2), and of course also below the 

estimated “bare” Rouse rates of the dendritic polymer (about 0.28 s-1) or the outer branch 

(about 20 s-1) [19]. In the former case, the bare Rouse time was considered as the time for 

the molecule to diffuse its own size with the friction given by monomer friction, and 

estimated as ĲR= r Ztot
2 Ĳe =3.6s, with Ztot being the total molar mass divided by the 

entanglement molar mass and r is the radius of gyration contraction factor [32]. Note that 

the expected stretch relaxation time is much longer than this “bare” Rouse time, because 

the important stretch relaxation process is determined not from monomer friction, but from 

the friction of branch-point hopping. The calculation to obtain this longer stretch relaxation 



 12 

time also is like a “Rouse calculation”, in which the monomer friction is replaced by 

branch point friction (and this is the route taken in BoB to calculate the stretch relaxation 

time). For the sake of clarity, in order to avoid confusing the two different Rouse times , we 

refer always to the Rouse time based on monomer friction as the “bare” Rouse time, whilst 

the longer relaxation time is called the “stretch relaxation time.”  Viewed this way, the bare 

Rouse time is for the whole molecule and the dilution does not play any role.  Concerning 

the outermost segments, their Rouse (or stretch) relaxation time is (star-like) Ĳs=4Zseg
2 Ĳe = 

0.05s, with Zseg being the effective number of entanglements per segment.  Further and 

more importantly, we can clearly observe in Fig.3a the steady state is reached at long 

enough times, hence Hencky strains (see also Figure 5 below). The unique relaxation data 

in this Figure were performed after stopping the extensional deformation at the same 

Hencky strain (İH = 3) for all strain rates investigated, before however steady state is 

attained. This will be further discussed below.  

The respective shear data are depicted in Fig.3b. The transient shear viscosity 

exhibits well-known features of polymers  [30]. In particular, it greatly depends on the 

imposed shear rate. At early times, the data collapse into the linear viscoelastic envelop, 

whereas later they depart. With increasing shear rate, a viscosity overshoot appears before a 

steady state value is reached, and becomes stronger at higher rates. The available data do 

not show any evidence of undershoot proceeding steady state. Moreover, there is no 

evidence of strain hardening in shear. The latter was reported for an entangled solution of 

multiply branched comb-like polystyrene, having long branches with about 10 

entanglements each in the bulk, at Weissenberg numbers (based on terminal time) of 

O(104), which were achieved by measuring at different temperatures [9].   The relaxation 

data (obtained by stopping the shear flow once the accumulated strain reached a value of 

about 20) suggest that viscosity relaxes faster in shear compared to uniaxial extension 

(Fig.3a), and this will be further discussed below.   

Same remarks hold for the compiled elongational and shear data of Figure 4 for G4 

(with the lowest imposed rate being 10-3 s-1, and the accumulated strain being about 20 for 

the two lower and 25 for the two higher shear rates). Here, the bare Rouse time is estimated 

to be about 10.6 s. We note further, that the absolute values of stress growth coefficient are 

larger compared to G3, and this is expected since the structure of the latter consists of small 

number of segments between branches.  
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Figure 3: (a) Stress growth coefficient of G3 at different elongational rates (indicated in 

the plot) and its relaxation, at 180ºC. The gray data show the data from experiments 

performed up to steady state in uniaxial extension. The blue data show data on growth up 

of certain value (before steady state) and subsequent relaxation. The black dashed line is 

the LVE envelope (from Figure 2). (b) Respective start-up data in shear, indicating the time 

evolution of the transient viscosity (blue). The black dashed linear depicts the LVE 
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envelope. The viscosity relaxation data are recorded after steady state is attained and flow 

is subsequently stopped (see text).  Black solid lines are predictions from BoB model. 

 

100 101 102 103 104105

106

107

108

109

 



el
 [P

a.
s]

0.03s-1

 Uniaxial extension
 Stress relaxation
 LVE envelope
 BoB prediction

 

t [s]

0.001s-1

0.003s-1

0.01s-1

(a)

 

 

100 101 102 103 104104

105

106

107

108

 Shear data
 LVE envelope
 BoB prediction

 

 


  [P

a.
s]

0.03s-1

 

t [s]

0.001s-1

0.003s-1

0.01s-1

(b)

 

Figure 4: Respective data of Figure 3 for the transient response of G4 in uniaxial extension 

(a) and simple shear (b).  The same temperature of 180ºC, rates and symbols are used, but 

different colors (here growth-relaxation cycle is depicted by red). Black solid lines are 

predictions from BoB model. 
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To predict the nonlinear flow behaviour, we aim to assign equivalent pom-pom 

modes [13] that describe the linear relaxation of the molecules and contain stretch and 

orientation relaxation times of the molecules (which are relevant to nonlinear flow 

properties). A pom-pom molecule is characterized by a modulus (g), the maximum stretch 

that the backbone can support before branch points start withdrawing in the backbone tube 

(q, also the number of side arms in each side of the backbone for a symmetric pom-pom 

molecule), the stretch relaxation time (Ĳs), and the orientation relaxation time (Ĳo). In the 

differential version of the pom-pom model, the pre-averaged stretch Ȝ satisfies the 

following equation  [5,44]  

 ௗ஛ௗ௧ ൌ ɉ ۹ ׷ ܂܁  െ  ሺ஛ିଵሻத࢙  exp ቔ ଶ୯ ି ଵ ሺɉ െ ͳሻቕǤ       (3) 

 

Here, K and S are the deformation rate and the pre-averaged backbone orientation tensor, 

respectively. The evolution of the orientation tensor is conveniently described by the 

auxiliary tensor A with ؠ ܁  :ሻ and satisfying equation (4)ۯ୲୰ሺۯ 

 ௗۯௗ௧ ൌ  ۹ Ǥ ۯ ൅ Ǥ ۯ  ܂۹  െ  ଵத೚  ሺۯ െ ૚ሻǤ       (4) 

 

The stress evolution is given by the following equation: 

 ો ൌ ͵ g ɉଶሺݐሻ܁ሺݐሻǤ         (5) 

 

The advantage of using the set of evolution equations (3)-(5) is that, for both uniaxial and 

shear start-up the evolution of A and hence the orientation tensor S can be solved 

analytically. On the other hand, the evolution of the stretch is solved numerically. In a 

multimode pom-pom description, a set of such pom-pom molecules is considered, and the 

stress is calculated by a simple sum over stress from each of the pom-pom modes. The 

numerical calculation for the linear rheology prediction offers a natural choice to resolve 

the molecules in terms of multiple independent pom-pom modes [8,40]: the parts of the 

molecules relaxing at a certain time tc have orientation relaxation time Ĳo = tc ; the time at 

which these parts (segments) can move coherently with the chain ends define the stretch 

relaxation time Ĳs.  In addition, the branching topology from the currently relaxing 

segments define the maximum stretch q as the priority variables [53], and the modulus 
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relaxed in this time interval sets the modulus of the pom-pom mode. Based on the pom-

pom model  [13], equating the maximum tension with the tension along the backbone gives 

a maximum stretch of q.  In the present case of Cayley tree, we consider any molecular 

segment between two branch points being equivalent to an effective backbone in pom-pom 

molecule. At each time interval, separate pom-pom modes are used to describe relaxation 

due to chain escape from the confining tube and due to the constraint release on the chains 

still confined in the tube potential at this time. 

When the flow rate is much slower than the stretch relaxation time, the geometric criteria 

for assigning the maximum stretch lead to an over-prediction of the extensional hardening 

for randomly branched polymers, hence flow-dependent modifications of the priority 

variables are required in order to describe the experimental data [8,40]. However, the 

available approximation for this flow modification requires vastly different relaxation times 

(as in industrial randomly branched low density polyethylene) and is not valid for 

symmetric model polymers. Fortunately, at the flow rates considered, the bare priority is 

found to describe the amount of extension hardening reasonably well for the two 

dendritically branched polymers considered here. 

 

When the flow is stopped, the stress evolution from equation (5) is asymptotically 

equivalent to:  

 ௗ܁ௗ௧ ൌ െ ଵ ୆ த೚  ቀ܁ െ ૚ଷ ቁ         (6) 

 

with B ൌ trሺۯሻ [54,55]. The trace of the auxiliary tensor has no physical significance and 

can become arbitrarily large. We chose to work with the tensor A during the start-up flow, 

and construct the orientation tensor S at the start of the cessation of the flow. Subsequent 

relaxation in the absence of flow is calculated from equation 6 with the choice B ൌ ͳ. Other 

commonly used variant of stress evolution equations considers B ൌ  ଶ  [54] that couples theߣ

orientation and the stretch evolution together and requires both of these to be solved 

simultaneously numerically. The origin of such a coupling can be rationalized by 

considering the increase in the reptation time of the pom-pom backbone in the stretched 

backbone tube in the absence of constraint release. Since our pom-pom modes describe 

relaxation of different parts of a dendritic molecule, if such orientation-stretch coupling is 

important, its form should be different from B ൌ  ଶ.  Here, the choice of B= Ȝ2 does notߣ
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affect the approach to steady state and predicts only marginally higher steady state stress. 

The stress decay, especially at high rates, is delayed significantly compared to the 

experiments (and compared to the B=1 choice used here). 

 

The solid lines in Figures 3 and 4 depict the predicted uniaxial stress growth/decay 

coefficients for G3 and G4, respectively. Except for the lowest flow rate for G3, the stress 

growth coefficient for uniaxial extension is described reasonably well without any 

adjustable parameter. The initial relaxation after uniaxial relaxation is also described well. 

But eventually, in all cases, the experimental relaxation becomes much slower than 

predicted. The experimental long-time relaxation is approximately power-law decay (linear 

in log-log plot). Such a non-exponential behaviour may reflect coupling between different 

modes (see also discussion on the parameter B  above): the stretches in different segments 

of the dendritic macromolecule are coupled, hence describing them as relaxing 

independently is not completely correct [15,44]. Once stretched, the stretch of inner 

segments can only relax once the stretches in the outer segments had already relaxed. This 

sets a formidable challenge for future work.  We further note that the start-up shear 

predictions (in Figures 3b and 4b) show significant overshoots absent in the experimental 

data. The physical origin of such overshoot in the pom-pom model is due to stretching of 

the tubes as they start orienting along the flow. We conjecture that the short segments in the 

experimental system prohibit such stretch and stress overshoot. The steady state shear 

stress is described reasonably well. The stress relaxation after shear cessation is described 

well except for the high rates for G4, but as already mentioned, there is a possibility of 

structural polydispersity in the dendritic polymers, which can affect flow properties in 

different ways. 

 

III.3. Compilation of data and scaling. A phenomenological analysis of the evolution of 

material functions in uniaxial extension and shear is presented in Figure 5. A measure of 

the level of strain hardening achieved can be obtained by the strain hardening factor, which 

is defined as the ratio of the stress growth coefficient el(t, )   to the respective LVE value, 

el LVESHF (t, ) / (t)     and is plotted in Figure 5(a) for the different values of strain rates 

used for G3 and G4. The onset of strain hardening is marked by the departure of SHF from 

1. The stronger hardening of G4 compared to G3 at the same stretch rate is evident.  On the 

other hand, focusing on the G3 data, there is an unambiguous non-monotonic dependence 
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of SHF and in particular its peak value on stretch rate.  First, we note that at rates 0.03 

s-1, i.e. above the terminal moduli crossover where the segments are not fully relaxed (Fig. 

2), the SHF is expectedly enhanced with increasing rate.  On the other hand, as the stretch 

rate decreases below its terminal value, an increase of SHF is observed. The latter is a 

consequence of the definition of the SHF and the shape of the LVE envelope. Eventually, 

at lower rates SHF will drop to 1, at the linear envelope. The (fewer) data with G4 are 

consistent with this picture. The important message is that these dendritically branched 

polymers strain harden significantly even when stretched at rates below their terminal rate, 

in sharp contrast to linear or star polymers [56]. Furthermore, in Figure 5(b) we plot the 

fractional overshoot in shear viscosity max steady(t, ) / ( )      against WiD, for G3 and G4. 

WiD is the Weissenberg number based on a characteristic time D , extracted from the 

inverse moduli crossover frequency as discussed above), D DWi   . The viscosity 

overshoot is a measure of maximum shear deformation of the dendritic polymers at steady 

state. For comparison we include in this figure data from the literature [30] with linear 

polystyrene of molar mass 185k (about 14 entanglements). First, we note that at low rates 

(up to about WiD=1) there is no overshoot (see also Figures 3b and 4b). We further observe 

that the data for both G3 and G4 are very close, almost collapse (given the experimental 

uncertainties) and exhibit a different (stronger) dependence on WiD compared to entangled 

linear polymers (which exhibit a power-law with exponent 0.25). However, the available 

dendritic data are not enough in order to extract a reliable power-law exponent. The value 

of shear strain at the viscosity overshoot is plotted against WiD for G3, G4 and the linear 

polystyrene in Figure 5(c). First, at low WiD the data are constant, indicating a saturation of 

peak strain (which is the maximum instantaneous shear deformation). For linear polymers 

this value is 2.3 and known to reflect segmental orientation as predicted by the tube model. 

For comb polymers this value is also about 2.3 as reported by Snijkers et al. [37]. For the 

dendritic Cayley trees here, the available experimental data suggest a value of 2.6 (Figure 

5(c)). Further, with increasing WiD the peak strain increases, reflecting stronger 

deformation (stretching). It follows a power-law with exponent of 0.33 for linear polymers 

and much smaller (0.1) for both dendritics. This result reflects the molecular structure 

which makes it more difficult to deform a Cayley-tree (more) compact structure compared 

to a linear flexible polymer. 
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Figure 5: (a) Ratio of the stress growth coefficient to the respective LVE value at different 

stretch rate for G3 (gray) and G4 (black) (b) Normalized peak viscosity and (c) peak strain 

at the maximum viscosity as functions of the Weissenberg number based on the inverse 

terminal G’G’’ crossover (see text). In (b) and (c) we show for comparison data with linear 

polystyrene LinPS185k, whereas the lines are drawn to guide the eye (see text).  

 

Since the issue of steady state is one of the challenges, we elucidate this further in 

Figure 6 below, where the tensile stress for both G3 and G4 is plotted against the Hencky 

strain for the different values of Hencky strain rate tested (in Figures 3 and 4). Indeed, this 

figure demonstrates the attendance of steady state for both polymers. Steady state is 

reached at lower values of Hencky strain for larger Hencky strain rates. Moreover, for the 

two larger rates of G3 one may note the appearance of a broad overshoot. Such overshoot 

has been reported for branched polymers  [19] but here the limited data do not allow further 

discussion. Understanding the extensional overshoot remains a challenge in the field, 

however the present polymers are not amenable to the currently available experimental 

window.   

 

The steady state extensional and shear viscosities are plotted together versus the 

respective Hencky strain and shear rates in Figure 7, along with the dynamic viscosity data 

(versus oscillatory frequency. The latter are multiplied by 3 (Trouton ratio). It is noted that 

the empirical Cox-Merz rule validated for this class of hyperbranched polymers. This is not 

expected to a first sight since branching contributes to deviations from this rule  [57], 

however we note that the branches are barely entangled and this may be at the origin of the 
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good agreement of dynamic and steady shear data. Moreover, both shear/dynamic and 

extensional data exhibit thinning with increased rates. In the former case, the shear data 

follow a scaling law with thinning slope of -0.7 for both generations, which is smaller than 

the usual slope of about -0.82 which has been reported for entangled linear 

polymers [30,16]. On the other hand, the extensional data exhibit a thinning slope of -0.5, 

again for both G3 and G4, with the latter having higher values (see also Figures 3 and 4). 

This complies with the BoB predictions and further confirms earlier findings with linear or 

pom-pom polymers  [10] and is explained in the context of tube modeling  [58]. Finally, 

the shear/dynamic data are always below the respective extensional data, due to strain 

hardening in this range of rates (see Figures 3 and 5a). Furthermore, we remark that the 

extensional data do not show a tendency to overlap the dynamic and shear data at low rates, 

as is normally expected. However, it is reported that for branched polymers the steady 

viscosity in uniaxial extension is constant at low stretch rate (overlaps with 3Ș*), then it 

exhibits extension thickening and after an overshoot it thins at higher rates  [59]. Based on 

this, we conjecture that the data of Figure 7 are in the thinning regime past but close to the 

peak, and they are above the level of the zero-rate viscosity (not reached) which is expected 

to coincide with the zero-shear dynamic and shear viscosities, accounting for the Trouton 

ratio. 
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Figure 6: Net tensile stress for G3 (gray) and G4 (black) versus Hencky strain for different 

values of the imposed Hencky strain rate, at 180ºC. 
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Figure 7: Steady-state data on extensional viscosity (open symbols), shear viscosity 

(crosses and stars) and dynamic complex viscosity (solid lines, multiplied by the Trouton 

ratio 3) plotted against Hencky strain rate, shear rate and oscillatory frequency, 

respectively, on the same axis. Data are shown for G3 (gray) and G4 (black). The dashed 

lines through the extensional data have a slope of -0.5. 

 

III.4. Stress relaxation upon flow cessation. Figure 8 reports the stress relaxation data upon 

cessation of shear or extensional flow, for the two dendritic PMMAs, G3 (a) and G4 (b). In 

the latter case, stress relaxation was recorded after cessation of steady shear flow. In the 

former case, the extensional flow was arrested before (albeit close to) the steady state and 

at nearly the same deformation in terms of Hencky strain (values reported in the caption). 

In the same figure we plot the relaxation modulus G(t) extracted from the linear 

viscoelastic data of Figure 2. Finally, four dashed vertical lines are plotted, representing the 

characteristic Rouse time of an effective outer branch (arm) (߬ோಲೝ೘) and the whole 

dendrimer (߬ோಳೌೝ೐), as well as the characteristic terminal times extracted from the low-

frequency crossover (߬஽಴ೀ)   and from BoB modelling (߬஽ಳ೚ಳ).  These times are discussed 

in section III.1 above. We observe that the nonlinear stress relaxations in shear and 

extension are very different from the linear relaxation. In shear, for a wide range of times, 

up to about 1 s, the stress is almost constant (this is more evident in Figure 9 below due to 



 23 

different scale). Subsequently, relaxation becomes more pronounced, and beyond ߬஽ಳ೚ಳ   the 

stress for both G3 and G4 becomes essentially independent of the rate (i.e., the material 

loses its memory) and relaxes by linear mechanism as G(t). Indeed, one expects that after 

nonlinear deformation polymer reorganizes and relaxes thermally according to its G(t) in 

the end. The situation is different for the extensional data. Similarly to the shear case, the 

net tensile stress relaxation data remain distinct for different stretch rates at short times, 

suggesting that the nonlinear induced state of the material has not relaxed during the 

experiment, whereas they virtually collapse (especially for G3) at longer times above ߬஽ಳ೚ಳ. Remarkably, even if at these times the polymeric response is linear, it is evident 

from both Figures 8(a) and 8(b) that complete relaxation of this stress is slower than G(t). 

This suggests the strong effects of initial extensional deformation, even at very low stretch 

rates.  Note in particular, that  the two lowest rates used with G4 (10-3 and 3x10-3 s-1) are 

below the Rouse rate of the outer segment, yet strong strain hardening is observed (Figure 

4) and strong nonlinear effects dominate the subsequent relaxation. It is evident that the 

extensional relaxation is much broader than the respective linear and nonlinear shear, and 

as a consequence the extensional stress will relax well after complete relaxation of G(t). As 

already noted above in conjunction with the description of the data of Figs. 3 and 4, this 

interesting effect should reflect the coupling of stretch in different parts (generations) of the 

dendritic macromolecule, and is of course much more significant in extensional 

deformation, in the examined parameter range.  As a result of this coupling, the stress 

relaxation upon cessation of uniaxial extensional flow is expected to be substantially 

delayed. For completeness, we note that a similar behavior was reported recently for 

bidisperse blends of long and short linear polystyrenes undergoing relaxation after uniaxial 

extension was stopped  [26]. In particular, for a blend of 50% short (7 entanglements) -50% 

long (41 entanglements) linear polystyrene chains, the elongational stress relaxation 

exhibited power-law with an exponent of about -1 and appeared slower than that of either 

component. This was attributed to the remaining, persistent flow induced orientation of 

initially retracted long chains in a sea of relaxed short chains. The analogy with the present 

work is that the induced orientation can be considered as coupling of stretch in different 

chains. Concerning the present data, given the small range of times we refrain from 

considering power laws. Unfortunately, we do not have independent information of the 

flow-induced stretching in different generations and respective relaxation upon flow 
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cessation (in fact, very limited data exist in general  [7,12,60]) since this requires 

deuterated samples which are not available currently.  

To further elucidate the different relaxation after shear and extensional flow, we 

represent the data of Figure 8 in normalized form in Figure 9. In particular, the decreasing 

transient  stresses ( )el t  for extension or ı-(t) for shear, are normalized by the 

corresponding values of extensional stress growth coefficient when extensional flow was 

stopped (at almost the same value of Hencky strain İH=3 for G3 and steady stress for G4) 

or shear stress at steady state (albeit at constant shear strain of 20). The broader and slower 

relaxation of extensional stress compared to shear stress is unambiguous for both G3 (a) 

and G4 (b). We note further that elongational flow (with zero vorticity tensor) deforms the 

polymer more severely than shear, despite the lower strain. Concomitantly, the viscosity is 

much higher in the former case due to hardening (Figure 7). Concerning G4 (Figure 9b), 

the relaxation is slower compared to G3 (Figure 9a) and again the broader relaxation in 

extension as opposed to shear is evident. Although the data can be agreed in this context, 

for quantitative analysis further work will be required in the future, especially accounting 

for the coupling of stretches as mentioned above.    
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Figure 8: Stress relaxation of G3 (a) and G4 (b) as a function of time after flow cessation. 
Interval time is the difference between the absolute time and the time when relaxation 
starts. Black curves depict the relaxation of G3 (a) and G4 (b) after extension, respectively. 
Gray curves show the relaxation of after shear in both cases. The applied rates and 
accumulated strain at cessation of flow are: (a) for shear, from top to bottom at short times 
0.3, 0.1, 0.03, 0.01 s-1 (20 strain units for each shear rate); for extension, from top to 
bottom: 0.1, 0.03, 0.01, 0.003 s-1 (3 strain units for each extension rate). (b) for shear, from 
top to bottom at short times 0.03, 0.01, 0.003, 0.001 s-1 (25 strain units for each shear rate); 
for extension, from top to bottom 0.03,0.01,0.003,0.001 s-1

 (corresponding strain units: 2.1, 
2.2, 3, 4.5, respectively). The relaxation modulus curve of the respective dendritic polymer 
is reported in both figures as a reference (dash-dot line). The characteristic Rouse times of 
the outer branch (߬ோಲೝ೘) and the whole molecule (߬ோಳೌೝ೐), as well as the characteristic 
terminal times from the low-frequency crossover (߬஽಴ೀ)   and from BoB modelling (߬஽ಳ೚ಳ)  
are reported as reference (see text). 
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Figure 9: Data of Figure 8 normalized by the respective values of shear  stress or stress 
growth coefficient when shear or extensional flow was stopped (see text). Characteristic 
times are reported for reference as in figure 8. 
 

 

 

IV. Concluding remarks 
 
 

We have investigated the growth, steady state and subsequent relaxation of 

viscosity during uniaxial extensional and shear deformation of model, well-characterized 

Caley-tree PMMA structures of third and fourth generation, having short, equal branches 

(about 2.4 entanglements each). The experimental data were obtained with state of the art 

instrumentation (FSR and CPP). The extension and shear rates cover a range extending 

from LVE terminal relaxation to rubbery regime. Despite the small values of the imposed 

rates, significant strain hardening was observed. At the same time, viscosity overshoots 

signaled the deformation of these polymers in shear as well. Extensional relaxation is 

broader and slower than in shear. The latter is different from that of the linear stress (or 

relaxation modulus G(t)) but at long times it appears to approach it. The unusual relaxation 

of viscosity upon cessation of uniaxial extensional is consistent with a stronger deformation 

in extension and the related strain hardening. The BoB framework based on independent 

pom-pom modes describes the experimental data in linear and nonlinear shear (growth and 

relaxation) and extension (growth and initial relaxation) reasonably well and without fit 

parameters. This is remarkable, considering the fact that a segment between two branches 

in these molecules is less than 3 entanglements long.  The slow relaxation upon cessation 
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of extensional flow may reflect coupling of the stretches in different generations. To 

describe it the pom-pom modes cannot be considered as independent, hence a modified 

model should be considered.  Whereas this calls for further investigations, it shows a way 

to use strong flows for tailoring properties of polymeric materials and effectively 

enhancing their ‘elastic memory’.  Furthermore, there is unambiguous evidence of steady 

state in extension. The small molar mass of branches appears to be responsible for the 

validation of the empirical Cox-Merz rule. At the same time the high-rate regime in 

extension follows a thinning slope of -0.5 in accordance with predictions and findings with 

linear and branched polymers. This power-law is virtually followed by the shear data as 

well.  

In general, at first sight it is a surprise that BoB does such a good job in predicting 

the linear and nonlinear viscoelasticity of such a polymer with barely entangled branches. 

We attribute this to the difference in the strength of the entanglement constraints at the 

branch point as opposed to the respective linear entangled polymers. This ensures that the 

dynamics of the inner segments remain dominated by the branch-point friction instead of 

the monomer friction and a framework based on well-entangled polymers continue to 

capture the relaxation of unentangled (in the dilated tube) inner segments. Actually, the 

present case may be thought as a limit of validity of the BoB model.  

It is hoped that the present unique data set can motivate further developments in 

modeling by testing the above stretch coupling idea and predicting viscosity relaxation 

consistently in shear and extension and eventually advancing constitutive modeling. At the 

same time, measurements of polymer conformation in-situ or ex-situ (via quenching below 

glass temperature) and attempts the probe nonlinear material functions (including normal 

stresses) at higher rates will further advance the field. 
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