
This is a repository copy of A Systematic Approach for Designing Mutation Operators for
MDE languages.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/106909/

Version: Published Version

Conference or Workshop Item:
Alhwikem, Faisal Haji M, Paige, Richard Freeman orcid.org/0000-0002-1978-9852, Rose,
Louis Matthew orcid.org/0000-0002-3419-2579 et al. (1 more author) (2016) A Systematic
Approach for Designing Mutation Operators for MDE languages. In: UNSPECIFIED.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Systematic Approach for Designing Mutation

Operators for MDE languages

Faisal Alhwikem ∗, Richard Paige †, Louis Rose ‡, Rob Alexander §

Department of Computer Science, University of York, United Kingdom

Email: {∗fhma500, †richard.paige, ‡louis.rose, §rob.alexander}@york.ac.uk

Abstract—Testing is an essential activity in software
development, used to increase confidence in the quality of
software. One testing approach that is used to evaluate the
quality of testing inputs for a particular program is mutation
analysis. The most important step in mutation analysis is the
process of defining mutation operators that mimic typical errors
of the users of a language. There is a wide variety of mutation
operators that have been designed for a number of languages
including C, Java, and SQL. However, the design of mutation
operators is rarely systematic, which may result in passing over
crucial operators for specific features of languages.

This paper describes a way to apply mutation analysis in the
context of Model Driven Engineering (MDE). In particular, the
paper proposes a systematic approach for designing mutation
operators for MDE languages. The systematic approach is
demonstrated for the Atlas Transformation Language (ATL) and
the result is a list of mutation operators that includes previously
designed ones for ATL from the literature.

I. INTRODUCTION

Testing is an essential practice that can be used to assess

the quality of software. It can involve running a program

against a set of test cases in order to reveal defects. Hence,

the quality of test cases is crucial in raising the confidence

of the quality of a program. One evaluation approach that

is used to measure the quality of the test cases is mutation

analysis, where defects are seeded deliberately into a program

using mutation operators to generate faulty versions known

as mutants [1]. Mutants are then executed against a set of

test cases in order to study their ability of detecting those

introduced defects and to compute a mutation score (the

number of detected mutants over the number of total mutants).

There are a number of mutation operators that have been

defined for a number of languages such as Java, C#, and

SQL. Operators are usually designed by examining elements

of the languages, or motivated from other mutation operators

designed for similar languages. Although there are systematic

approaches for deriving mutation operators for Java in [2]

and the Goal Agent Language in [3], the design of mutation

operators is rarely systematic, and there are few principles

and practices to explain how to generate operators from

language definitions or previously harvested operators. As

such, the design process for mutation operators may overlook

crucial operators or may generate poor designs, which can

result in ineffective tests. In particular, mutation operators are

meant to be carefully designed such that they give realistic

errors and to force the test developer to deal with such errors

either by adding or enhancing existing testing inputs. Hence,

a systematic approach for designing mutation operators can

ensure the coverage of a language’s features as well as

designing operators that more likely to reflect realistic errors.

Model Driven Engineering can contribute to this challenge

because languages in MDE can be models and structured

according to some modelling concepts and therefore they are

amenable to systematic and automated analysis. Furthermore,

those modelling concepts are usually specified using a

common metamodelling language (e.g. Ecore) and hence, we

have the opportunity to define a set of mutation operators

systematically that is applicable to a set of MDE languages

that are derived from that common language.

This paper is structured as follows. Section II gives an

overview of related work and section III presents our system-

atic approach for designing mutation operators. In section IV,

we illustrate the application of the systematic approach to

Ecore metamodelling language and discuss some findings

in section V. Section VI presents our application of the

systematic approach on ATL (Atlas Transformation Language)

and compares our list of mutation operators with already

defined ones found in the related literature. Section VII gives

our conclusion and future work.

II. RELATED WORK

There have been a number of attempts to define mutation

operators to MDE languages. Mottu et al. [4] have proposed a

set of generic mutation operators that can be applied to model

transformations. They argue that their operators are based on

the core activities of model transformation: 1) the navigation

of models via relations between classes defined in input and

output metamodels, 2) the filtering of a collection of objects,

3) the creation and modification of output models. Based

on these generic mutation operators, they have proposed a

set of 10 mutation operators that are defined specifically for

model transformation. Although no systematic approach has

been used for generating those mutation operators, they were

widely used as a set of formalised mutation operators for

much work as in [4], [5], [6], [7], [8], and [9].

A close work to ours is presented by Troya et al. [10].

They introduce a systematic approach for generating mutation

operators for ATL by examining its metamodel and manually

applying three mutation operators; namely addition, deletion

and modification to some concepts of the language. As a result

of their application, they have constructed a set of 19 mutation

operators. However, they only considered 5 modelling con-

cepts of ATL, while one of our goals is to cover the entire

language. Furthermore, their approach is only dedicated to

ATL, whilst we are interested in a an approach that derives

a set of mutation operators that can be used across different

MDE languages.

III. SYSTEMATIC APPROACH FOR DESIGNING MUTATION

OPERATORS

Our systematic approach of generating mutation operators

in the context of MDE relies on examining a common meta-

metamodel of a number of metamodels. In particular, we

have chosen Ecore as a meta-metamodel for this, because it is

used to express models of a number of popular metamodels

such as ATL, Epsilon Object Language (EOL) 1, and Epsilon

Transformation Language (ETL) 2 metamodels.

Ecore consists of a number of concepts that can be used

to define a metamodel. A metamodel consists of a number

of concepts that can be used to represent a particular model.

Usually, models can be mutated by using the concepts of

its metamodel. Hence, metamodels can be mutated by using

the concepts of their meta-metamodel (i.e. Ecore). Thus, we

believe that it is possible to generate a number of mutation

operators that can be used to mutate arbitrary models by

examining their metamodel, using the concepts provided by

its meta-metamodel.

In this paper, we introduce the term mutation actions to

refer to a set of common mutation actions derived from

examining a list of mutation operators of a number of

languages discussed thoroughly in the literature. These

mutation actions are addition, deletion, and replacement.

The addition action is used to introduce additional data to a

particular feature of an object, while the deletion action is

used to do the opposite. The replacement action is used to

replace existing values.

The process of this approach is to examine each modelling

concept of a metamodel, apply the mutation actions to it,

and try to generate all applicable mutation operators for that

particular concept. By applicable mutation operator, we mean

an operator that when applied, does not generate a model that

does not conform to its metamodel. For instance, the modelling

concept sections in listing 1 is to represent at least one instance

of a type Section for a specific Chapter as imposed by the

multiplicity specified in line 7 (i.e. [1..*]). When the delete

mutation action is applied, it involves deleting one instance of

Section from a list of instances represented by it. In the case

1http://www.eclipse.org/epsilon/doc/eol/
2http://www.eclipse.org/epsilon/doc/etl/

that there is only one instance of Section represented, it is

possible when applying the action, an invalid mutant might be

generated. Hence, defining mutation operator for a modelling

concept should be governed by defining preconditions to each

concept to minimise the generation of invalid mutants.

Listing 1. A metamodel of a book using Emfatic

1
2c l a s s Book {
3a t t r S t r i n g a u t h o r ;
4v a l C h a p t e r [1 . . ∗] c h a p t e r s ;
5}
6c l a s s C h a p t e r {
7a t t r S t r i n g t i t l e ;
8v a l S e c t i o n [1 . . ∗] s e c t i o n s ;
9}
10c l a s s S e c t i o n {
11a t t r S t r i n g c o n t e n t ;
12r e f S e c t i o n [0 . . ∗] r e f e r s T o ;
13}

We have applied the systematic approach to Ecore gener-

ating a set of mutation operators that are abstract and thus

applicable to various Ecore-based models (i.e. metamodels).

This is describe in the following section.

IV. APPLYING THE SYSTEMATIC APPROACH TO ECORE

A. Ecore Overview

Eclipse Modelling Framework (EMF) 3 is a framework

created by the Eclipse Foundation 4 that brings support for

MDE. It provides a number of facilities for modelling and

models interchange [11]. One of these facilities is Ecore, a

meta-metamodel language that provides modelling concepts

that can be used to describe metamodels. Figure 1 shows the

core modelling concepts of Ecore, as follows:

• EClass is used for modelling classes or types. A class

may have a name, a number of structural features, and a

number of super-types.

• EDataType is used to represent types that are not mod-

elled as classes. For example, it is used to model primitive

types such as integer and float or object types such as

String and Map defined in Java. A data-type can have a

name.

• EAttribute is used to model an attribute feature of a class.

It is defined by a name and it has a data-type represented

by eAttributeType

• EReference is used to model associations between classes.

It is defined by a name and a type that must be an EClass

represented by eReferenceType

Ecore has a number of core aspects that can be used in mod-

elling. One of these aspect is inheritance, where the features

of a parent (super) class can be obtained by its child class.

Another aspect is that the structural features (i.e. attributes

and references) of a class can be characterised by a number

characteristics [12] (c.f. fig 1). For instance, the lowerBound

and upperBound characteristics can be used to specify the

multiplicity of a modelling feature. Another characteristic is

3https://eclipse.org/modeling/emf/
4http://www.eclipse.org

Fig. 1. The core elements of Ecore meta-metamodel adapted from [12]

changeable which indicates whether the value of a modelled

feature is editable or read-only. The derived characteristic

can specify whether the value of a modelled feature is to

be computed from other, related data. Finally, the transient

characteristic is used to specify whether a modelled feature is

to be dropped at the serialisation of its containing object (i.e.

class). All mentioned characteristics can be important when

applying the systematic approach.

The three mutation actions have been applied upon

certain concepts of Ecore to generate possible mutation

operators for each one. In our application, we have ignored

concepts that specified as unchangeable (i.e. read-only),

derived, or transient. For instance, we ignored unchangeable

concepts because their values are not modifiable and thus

there is no benefits in defining mutation operators for such

concepts. Derived modelling concepts as mentioned before

are computed from other values. Hence, it makes sense to

mutate only those values which they derived from and avoid

defining redundant mutation operators. Finally, transient

modelling concepts are eliminated during the serialisation of

their contained model and hence any modification to those

special concepts’ values are trivial and serve no purpose as

persisting of models (i.e. mutants) along with its modified

data is essential task in mutation analysis. Specifically, in

mutation analysis, mutants are usually saved for further

analysis; for example run them against test cases, compare

them with original models, and/or use them to evaluate the

mutation operators that generated them.

For each considered modelling concept in Ecore, we define

possible information based on the type of the modelling

concept. For an EClass (c.f. fig 1), we define 1) name of

the instance, 2) its super-types, and 3) list of its features.

For an EDatatype instance, we define manually a set of

mutation operators that are applicable to it when applying the

mutation actions. For example, applying the mutation actions

to Ecore Integer data-type would generate three mutation

operators: adding an integer value to previously existing

value, subtracting an integer value from an existing value, and

replacing an existing integer value with a new one. For each

EStructuralFeature of an EClass, we define 1) name of the

feature, 2) its type (whether its a class or a data-type), and 3)

its multiplicity (i.e. the lower and upper bounds constraints

of the feature).

Furthermore, each considered modelling concept can inherit

a set of mutation operators designed for its super-types. For

instance, the EClassifier (see Ecore meta-class diagram figure

at 5) can acquire all sets of mutation operators defined for its

super-type ENamedElement. The latter also inherits mutation

operators defined for its super-type EModelElement. The

benefit of applying this mechanism is to cover all features of

a particular object including the inherited ones.

The downside of this process is the generation of a large

set of mutation operators that may produce a great number

of mutants; an issue that may lead to an expensive mutation

analysis. However, the approach that we are proposing can pro-

duce a complete set of operators; including crucial operators

that might have been overlooked using unsystematic design of

mutation operators. Moreover, there are many cost reduction

techniques (e.g. mutants sampling and mutation selection)

that have been widely used in the context of programming

languages to tackle the issue of expensive mutation analysis;

which can be adapted and implemented in the context of MDE.

B. Example of Applying the Systematic Approach

In this example, we illustrate the application of the system-

atic approach to one of Ecore’s modelling concept - EPackage.

Since this particular concept is an EClass, we define the

following:

1) Name: EPackage

2) Super-type: ENamedElement

3) EStructuralFeatures: EString nsURI, EString nsPrefix,

EClassifier eClassifiers, EPackage eSubpackages, ES-

tring name, EAnnotation eAnnotations

In this section, we will only show the mutation operators for

nsURI and eClassifiers features. The former feature is used to

hold the namespace URI (Uniform Resource Identifiers) of a

specific package while the latter feature represents the package

classifiers (i.e. classes and data-types). The mutation operators

for other features are quite similar. For example, the features

nsPrefix and name have similar data-type and multiplicity

of the feature nsURI. Likewise, the feature eSubpackages

and eAnnotations have identical lower and upper bounds of

the feature eClassifiers. Therefore, we list here the mutation

operators that we manually designed for feature nsURI and

eClassifiers as an examples of the implementation of the

systematic approach.

• EAttribute[EString nsURI], lowerBound=0, upper-

Bound=1: based on the multiplicity imposed by the lower

and the upper bounds, this feature can hold a single value

5goo.gl/KjIAGR

and can take the following mutation operators defined for

EString data-type.

– ADD(EString nsURI, EString toAdd): Appends to the

value of nsURI the value specified by toAdd.

Preconditions:
∗ nsURI.isDefined() & toAdd.isDefined()

Check that both nsURI and toAdd are valid and defined.

∗ toAdd.length ≥ 1

For the changes to take place (or mutation), it is essential to

ensure that this operator modifies existing value (i.e. nsURI)

with at least one character.

– DEL(EString nsURI, Integer toRemove): Removes

randomly a number of toRemove characters from

nsURI.

Preconditions:
∗ nsURI.isDefined() & toRemove.isDefined()

Verify that both values represented by nsURI and toRemove
are valid and defined.

∗ nsURI.length ≥ toRemove ≥ 1

Ensure that the value represented by toRemove, which is the

number of characters to be removed from nsURI , is less than

or equal to the entire string size of nsURI and greater than

0.

– REP(EString nsURI, EString newValue): Replaces

the value of nsURI with the value of newValue.

Preconditions:

∗ newV alue.isDefined() & nsURI 6= newV alue Check

that newV alue is defined (i.e. not null) and its value is equal

to nsURI in order to generate a valid mutation.

• EReference[EClassifier eClassifiers], lowerBound=0,

upperBound=*: based on the multiplicity introduced by

the lower and the upper bounds, this feature can hold

multiple values and can take the following mutation

operators.

– ADD(EClassifier eClassifiers, Integer index, EClas-

sifier extra): Inserts extra at the specific position in

the list eClassifiers.

Preconditions:
∗ eClassifiers.isDefined() & extra.isDefined()

Ensure that both objects are valid (i.e. not null).
∗ NOTeClassifiers.include(extra)

Check whether the value represented by extra is not already
exist in the list of eClassifiers because the addition is meant
to add only a new instance to the list.

∗ extra.isKindOf(eClassifiers.getType())
Verify that extra is a valid instance of the same type of
eClassifiers.getType().

∗ lowerBound ≤ eClassifiers.size() + 1 ≤ upperBound
Check the size of eClassifiers after addition and does not
violate the lower and upper bounds constraint.

∗ lowerBound ≤ index < eClassifiers.size()

Make sure that index is within the range of indices.

– DEL(EClassifier eClassifiers, Integer index): Deletes

the element at the specific position in the list eClas-

sifiers

Preconditions:
∗ eClassifiers.isDefined()

Check whether eClassifiers is valid.
∗ lowerBound ≤ index < eClassifiers.size()

Ensure that index is within the list range of indices.

∗ lowerBound ≤ eClassifiers.size()− 1 ≤ upperBound

Verify the size of eClassifiers and check it does not violate

the lower and upper bounds constraint.

– REP(EClassifier eClassifiers, Integer index, EClas-

sifier newEClassifier): Replaces the value at the

specific position in eClassifiers with newEClassifier.

Preconditions:
∗ eClassifiers.isDefined() &

newEClassifier.isDefined()
Ensure that both eClassifiers and newEClassifier are
valid and defined.

∗ newEClassifier.isKindOf(eClassifiers.getType())
Check whether newEClassifier is of the type or one of the
subtypes of eClassifiers.getType()

∗ lowerBound ≤ index < eClassifiers.size()
Verify that the value given by index is within the range of
indices.

∗ eClassifiers(index) 6= newEClassifier

Verify that newEClassifier does not equal to

eClassifiers(index). This would prevent the generation of

equivalent mutation.

Two features have been discarded from the list of features of

EPackage. Those are EReference[EFactory eFactoryInstance]

and EReference[EPackage eSuperPackage]. The former is a

transient feature and the latter is a transient and an unchange-

able feature.

V. ABSTRACT MUTATION OPERATORS

The application of the systematic approach to Ecore has

led to an important conclusion: the similarities between

Ecore modelling concepts that lead to the definition of

nearly identical mutation operators. In the previous example,

there were two identical mutation operators for different

modelling concept: EReference[EClassifier eClassifiers]

and EReference[EPackage eSubpackages]. This is because

the mentioned features have similar multiplicity values.

Furthermore, the modelling concepts of the same data-type

can use similar mutation operators designed for that common

data-type (as the case of nsURI, nsPrefix, and name from the

example above). To overcome this redundancy of mutation

operators, we construct a list of Abstract Mutation Operators,

where mutation operators have been abstracted to generalise

their implementation over similar modelling concepts. Those

abstract operators can be then used to mutate Ecore-based

models.

The abstraction of the mutation operators are based on

two specific characteristics: multiplicity and type of the fea-

ture. The multiplicity characteristic can be used to determine

whether a particular feature is single-valued or multi-valued.

For single-valued features, the type of the feature matters to

distinguish between attributes and references. If the type is

of a particular data-type, then a set of mutation operators

designed for that data-type is applied to this feature. However,

if the feature is a reference feature, then there is another set

of mutation operators designed for the single-valued refer-

ence features. Hence, we have defined three general Abstract

Mutation Operators (AMO): one for single-valued attributes,

and another one is for single-valued references. The last set

of abstract mutation operators are for multi-valued features

(whether attributes or references). These abstract mutation

operators are given below.

A. EAttribute - Single-valued (AMO:single-attr)

The abstract mutation operators for attributes that are single-

valued can take certain mutation operators based on the data-

type of feature (e.g. EString and EInt). Because of the limit

restriction of the paper, the list of mutation operators for Ecore

data-types were not listed here; they can be found at 6.

B. EReference - Single-valued (AMO:single-ref)

The abstract mutation operators for this type of features can

be:

• ADD(Type subject, Type extra): Assigns the value of

extra to subject.

Preconditions
– subject.isUndefined() & extra.isDefined()

Ensure that subject is not defined and only allowing new assign-
ment. However, extra must be valid.

– extra.isKindOf(subject.getType())

Check whether extra is instance of subject.getType() for valid

assignment.

• DEL(Type subject): Deletes the value of subject (i.e.

disjoint this feature from associated value).

Preconditions

– subject.isDefined() In order to disjoint this feature from

associated value, subject is checked to to be valid.

• :REP(Type subject, Type newValue): Replaces the

value of subject with the value of newValue.

Preconditions
– subject.isDefined() & newV alue.isDefined()

Ensure that both subject and newV alue are valid instances.

– newV alue.isKindOf(subject.getType())

Verify that newV alue is of the type or one of the subtypes of

subject.getType()

C. EFeature - Multi-valued (AMO:multi-feat)

The abstract mutation operators for features that are multi-

valued (whether attributes or references) can be:

• ADD(Type subjects, Integer index, Type extra): Inserts

extra at the specific position in subjects.

Preconditions
– subjects.isDefined() & extra.isDefined()

Ensure that both subjects and extra are both valid.
– NOTsubjects.include(extra)

Check whether extra is already exist in the list of subjects
because the addition operator is meant to add only a new instance
to the list.

– extra.isKindOf(subjects.getType())
Verify that extra is of the type or one of the subtypes of
subjects.getType()

– lowerBound ≤ subjects.size() + 1 ≤ upperBound
Check whether the size of subjects after addition does not violate
lower and upper bounds.

– lowerBound ≤ index < subjects.size()

Check that index is with range of indices.

6goo.gl/oyKhQH

• DEL(Type subjects, Integer index): Deletes the element

at the specific position in subjects.

Preconditions
– subjects.isDefined() Check that subjects is valid and not

null

– lowerBound ≤ index < subjects.size()
Ensure that index is within the list range of indices.

– lowerBound ≤ subjects.size− 1 ≤ upperBound

Verify that the size of subjects after deletion does not violate

lower and upper bounds.

• REP(Type subjects, Integer index, Type newValue):

Replaces the value at the specific position in subjects

with newValue.

Preconditions
– subjects.isDefined() & newV alue.isDefined()

Ensure that both subjects and newV alue are defined.
– newV alue.isKindOf(subjects.getType())

Check whether newV alue is of the type or one of the subtypes
of subjects.getType()

– lowerBound ≤ index < subjects.size()
Check that index is within the range of indices.

– subjects(index) 6= newV alue

Verify that newV alue does not equal to the one that replacing

with. This would prevent the generation of equivalent mutation.

VI. USAGE OF ABSTRACT MUTATION OPERATORS

Our set of abstract mutation operators can be used to

define specific mutation operators of a modelling language

(i.e. metamodel), which can then be used to mutate models

(or programs) described by that metamodel. In particular,

we have used those abstract operators to generate specific

operators for ATL and EOL (which are described by Ecore) by

considering every language concept in each. Furthermore, we

have investigated whether the set of ATL mutation operators

designed in [5], [13], [10], and [14] can be generated using

our set of abstract operators. In this paper in particular, we only

give the investigation of some mutation operators designed by

Khan and Hassine in [13] as an example. Those set of mutation

operators are (see fig 2 for ATL modelling concepts):

1) Matched to Lazy: this mutation operator can be imple-

mented using AMO:multi-feature:REP and applied to the

ATL language feature ModuleElement elements of the

containing object Module (c.f. fig 2). This should allow

the replacement of a target MatchedRule with an in-

stance of LazyRule. Elements of the target MatchedRule

should be copied over (where applicable) to the instance

of LazyRule.

2) Delete Attribute Mapping: this mutation operator can

be implemented using AMO:multi-feature:DEL and ap-

plied to the feature Binding bindings of the containing

object OutPatternElement. This should allow the dele-

tion of one of the instances represented by bindings.

3) Add Attribute Mapping: this mutation operator can

be implemented using AMO:multi-feature:ADD and ap-

plied to the feature Binding bindings. This should allow

the addition of one more attribute mapping.

4) Change Rule’s Source Type: this operator can be

implemented using AMO:single-ref:REP and applied to

Fig. 2. ATL metamodel

feature OCLExpression type of the containing object

OclVariableDeclaration of the InPatternElement. This

should allow the replacement of an existing value of

type with another one.

5) Change Execution Mode: from default to refin-

ing: this mutation operator can be implemented using

AMO:single-attr:Boolean and negate the value of the

feature isRefining of the containing object Module.

VII. CONCLUSION AND FUTURE WORK

Our application of the abstract mutation operators over ATL

and EOL has raised our confidence towards a comprehensive

set of operators for both languages. We believe that these

operators are complete since we considered all language

concepts. Furthermore, we have compared our set of operators

over previously designed ones that have been discussed in

the related literature, and have studied whether our operators

can cover them. Our initial analysis shows promising results

towards the validation of our approach. Hence, we believe that

our systematic approach can raise the confidence of covering

all features of a language and can facilitate the generation of

a set of complete mutation operators that will help the test

developer in improving the test suite. One considerable issue

here is that a large set of mutation operators can generate a

great number of mutants that can grow significantly as the

program scales up. Another issue that needs to be considered

is the efficiency of the generated operators. Both these

crucial issues can be addressed and resolved by studying the

effectiveness of a list of concrete mutation operators upon the

mutation score; a challenge that we are planning to tackle in

our future work.

For tool support, we are planning to develop a tool to

automate the generation of all specific mutation operators of

a given metamodel based on our presented approach.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2008.

[2] S. Kim, J. A. Clark, and J. A. McDermid, “The rigorous generation of
java mutation operators using hazop,” in 12th International Conference

on SOFTWARE and SYSTEMS ENGINEERING and their APPLICA-

TIONS (ICSSEA’99), 1999.
[3] S. Savarimuthu and M. Winikoff, “Mutation operators for the goal agent

language,” in Engineering Multi-Agent Systems: First International

Workshop, EMAS 2013, St. Paul, MN, USA, May 6-7, 2013, Revised

Selected Papers, M. Cossentino, A. E. F. Seghrouchni, and M. Winikoff,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 255–
273.

[4] J.-M. Mottu, B. Baudry, and Y. L. Traon, “Mutation analysis testing
for model transformations,” in Model Driven Architecture - Foundations

and Applications, ser. LNCS, A. Rensink and J. Warmer, Eds. Springer
Berlin Heidelberg, 2006, vol. 4066, pp. 376–390.

[5] P. Fraternali and M. Tisi, “Mutation analysis for model transformations
in atl,” in Model Transformation with ATL, 1st International Workshop,

MtATL 2009, F. Jouault, Ed., July 2009, pp. 145–149.
[6] S. Sen, B. Baudry, and J.-M. Mottu, “Automatic model generation

strategies for model transformation testing,” in Theory and Practice of

Model Transformations, ser. LNCS, R. F. Paige, Ed. Springer Berlin
Heidelberg, 2009, vol. 5563, pp. 148–164.

[7] J.-M. Mottu, S. Sen, M. Tisi, and J. Cabot, “Static analysis of model
transformations for effective test generation,” in Proceedings of the 2012

IEEE 23rd International Symposium on Software Reliability Engineer-

ing. Washington, DC, USA: IEEE Computer Society, 2012, pp. 291–
300.

[8] E. Guerra, “Specification-driven test generation for model transforma-
tions,” in Theory and Practice of Model Transformations, ser. LNCS,
Z. Hu and J. de Lara, Eds. Springer Berlin Heidelberg, 2012, vol. 7307.

[9] V. Aranega, J.-M. Mottu, A. Etien, T. Degueule, B. Baudry, and J.-L.
Dekeyser, “Towards an automation of the mutation analysis dedicated
to model transformation,” Software Testing, Verification and Reliability,
vol. 25, no. 5-7, pp. 653–683, 2015.

[10] J. Troya, A. Bergmayr, L. Burgueño, and M. Wimmer, “Towards sys-
tematic mutations for and with atl model transformations,” in Software

Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE

Eighth International Conference on, 2015, pp. 1–10.
[11] D. Gasevic, D. Djuric, and V. Devedzic, Model Driven Engineering and

Ontology Development, 2nd ed. Springer, 2009.
[12] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse

Modeling Framework, 2nd ed., E. Gamma, L. Nackman, and J. Wiegand,
Eds. Addison-Wesley, 2008.

[13] Y. Khan and J. Hassine, “Mutation operators for the atlas transformation
language,” in Software Testing, Verification and Validation Workshops

(ICSTW), 2013 IEEE Sixth International Conference on, March 2013,
pp. 43–52.

[14] P. Gómez-Abajo, E. Guerra, and J. de Lara, “Wodel: A domain-specific
language for model mutation,” in 31st ACM Symposium on Applied

Computing (SAC 2016), 2016.

	Introduction
	Related Work
	Systematic Approach For Designing Mutation Operators
	Applying the Systematic Approach to Ecore
	Ecore Overview
	Example of Applying the Systematic Approach

	Abstract Mutation Operators
	EAttribute - Single-valued (AMO:single-attr)
	EReference - Single-valued (AMO:single-ref)
	EFeature - Multi-valued (AMO:multi-feat)

	Usage of Abstract Mutation Operators
	Conclusion and Future Work
	References

