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ABSTRACT 

Photodynamic therapy (PDT) uses photosensitizers (PS) which only become cytotoxic 

upon light-irradiation. Transition metal complexes are highly promising PS due to 

long excited state lifetimes, and photostability. However, these complexes usually 

absorb higher-energy UV/Visible light, whilst the optimal tissue transparency is in the 

lower-energy NIR region. Two-photon excitation (TPE) can overcome this 

dichotomy, with simultaneous absorption of two lower-energy NIR-photons 

populating the same PS-active excited state as one higher-energy photon.   

 We introduce two low-molecular weight, long-lived and photostable iridium 

complexes of the [Ir(N^C)2(N^N)]+ family with high TP-absorption, which localise to 

mitochondria and lysosomal structures in live cells. The compounds are efficient PS 

under 1-photon irradiation (405 nm) resulting in apoptotic cell death in diverse cancer 

cell lines at low light doses (3.6 J cm–2), low concentrations, and photoindexes of up 

to >555. Remarkably 1 also displays high PS activity killing cancer cells under NIR 

two-photon excitation (760 nm), which along with its photostability indicates 

potential future clinical application.  

 

Main text 

Photodynamic therapy (PDT) is a light-activated treatment offering reduced side 

effects compared to traditional therapy[1]. The PDT agent, a photosensitizer (PS), is 

only activated upon targeted irradiation by light of a PS-specific wavelength which 

promotes the PS to its excited, high-energy state (*PS).  

In oxygen-dependent PDT, cellular oxygen and *PS interactions allow excited-state 

energy transfer, regenerating the ground state of the PS and producing reactive 

oxygen species (ROS) including singlet oxygen (1O2), with subsequent reactions with 

the intracellular components leading to cell death. Targeted intracellular localisation 

of the PS is important for maximum effect with organelles situated nearest to *PS 

being the most affected.[2] 
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The photophysical properties of many transition metal complexes make them ideal PS 

candidates. Their key advantage over organic molecules is the heavy atom effect 

which favours fast singlet to triplet intersystem crossing (ISC). The longer lifetimes 

which result from ISC lead to high yields of 1O2 and/or other ROS. The ease of 

chemical modification and photostability adds to the appeal of these complexes. 

Accordingly, an increasing number of transition metal complexes have been 

investigated for use in PDT including those of Pt(IV), Pt(II), Ru(II), Re(I)[3] and 

Ir(III).[4] 

 

One limitation to the clinical use of metal complexes investigated for PDT has been 

their absorption of light in the UV/Vis region, whilst the optimal tissue penetration 

window is 700 – 900 nm. Two-photon excitation (TPE), or two-photon PDT (TP-

PDT) can overcome this barrier. Compounds with high PDT activity under one-

photon excitation at a particular wavelength in the UV/visible region, should 

theoretically show PDT-activity under TPE in the low-energy NIR region, with the 

simultaneous advantages of the range of relative tissue transparency, increased 

potential depth of tissue penetration, and increased spatial targeting.[5] TP-PDT 

requires high two-photon absorption cross-section and exceptional photostability 

ruling out current clinical photosensitizers. A number transition metal complexes[3c, 6] 

have been developed as two-photon agents, some of which have been shown to 

induce TPE cell killing in vitro using cell cultures.[3c, 6a, 7]  

 

We present here two low-molecular weight, mitochondrial and lysosomal targeting, 

iridium complexes which display good PS activity under one-photon excitation in a 

number of cancer cell lines. Remarkably, one of the complexes is also an efficient PS 

inducing cell death under TPE, and thus displays highly promising results for TP-

PDT.  

 

The new iridium complexes 1 and 2 (Figure 1) are members of the [Ir(N^C)2(N^N)]+ 

family and closely related to the complex [Ir(ppy)2(pybzH)]+.[8] 1 and 2 feature bis-

benzimidazole and its N,N-dimethylated derivative, respectively, as the N^N ligand 

(Figure 1). The complexes were prepared as their hexafluorophosphate salts from the 

chloro-bridged dimer [Ir(ppy)2(µ-Cl)]2, by reaction with 2,2'-bisbenzimidazole or 1,1'-
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dimethyl-2,2'-bisbenzimidazole (for 1 and 2 respectively), (S3 – S5). The absorption 

spectra of 1 and 2 show moderately intense absorbtion bands in the visible region due 

to MLCT transitions (Figure S2). The emission quantum yields are 0.33 and 0.24 

respectively, Emission lifetimes of the order of a microsecond indicate the triplet 

nature of the emissive state. Importantly, the complexes phosphoresce intensely also 

under NIR TPE; and 1 has an appreciable two-photon cross-section of 112 GM at 

760 nm (Figure S2). 

The TPE phosphorescence imaging of 1 and 2 demonstrate cellular uptake (Figure 

S3) with cytoplasmic localisation, similar to that of the previously reported bis-

cyclometallated iridium complexes.[4b, 4d] Co-localisation experiments with organelle-

specific fluorescent dyes demonstrate mitochondrial and lysosomal localisation. 

Within 4 h of exposure, mitochondrial localisation is observed with a Pearson’s 

correlation coefficient r=0.547 (Figures 2A and S4). Additionally, from 2 h increasing 

lysosomal staining occurs. By 24 h the lysosomal localisation of 1 becomes dominant 

with Pearson’s correlation coefficients of r=0.387 compared to 0.19 for the 

mitochondrial staining (Figures 2B and S4). 

Cellular uptake was not observed at 4°C indicating that 1 is actively taken up rather 

than entering cells by passive diffusion (Figure S5). A number of cellular uptake 

pathways were inhibited to determine the uptake route (Figure S5). Only valinomycin, 

which is known to cause an increase in the membrane potential of cells, had an 

inhibitory effect on the uptake of 1 (Figure S5). Thus uptake of 1 appears to largely 

occur via a cell membrane potential-dependent pathway which is consistent with it 

being a singly-charged cation.  

Clonogenic survival assays in the cervical cancer cell line, HeLa demonstrate that 1 

and 2 show high light cytotoxicity giving LD50 values of 0.3 µM and 0.5 µM 

respectively (405 nm, 3.6 J cm-2) (Figure 3 and S6). 1 shows low dark cytotoxicity, 

with an LD50 of >100 µM, whilst 2 shows a much higher dark cytotoxicity, LD50 = 6.2 

µM. Comparative PDT activity of a compound can be estimated by the value of the 

phototoxicity index (PI), PI = LD50
dark/LD50

light.  The lowest estimated PI for 1 in 

HeLa cells is >333, but only 12.4 for 2 due to its high dark cytotoxicity, hence 2 was 

not investigated further. The increased dark toxicity of 2 compared to 1 is likely due 

to the presence of N-Me-groups, which would rule out H-bonding and profoundly 
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affect intermolecular interactions within the cells. 1 also shows photosensitizing 

effects in a number of cancer cell lines (Figure S6), demonstrating the potential broad 

applicability of 1 for PDT.  

 

To evaluate the importance of oxygen in cell killing by 1 and 2, the yield of singlet 

oxygen generation was measured. In air-equilibrated dichloromethane, high Φ(1O2)  

of 42% and 40% for 1 and 2 respectively were determined directly from the emission 

of the 1
Δg state of O2 in the NIR (λem 1275 nm) under 355 nm irradiation, 

demonstrating the ability of the complex to generate singlet oxygen. In a cellular 

environment, singlet oxygen immediately reacts with the surroundings, from this 

point of view, the detection of ROS in cells is an important measurement as it 

confirms an increase of cellular ROS concentration in the presence of the 

complex. Here, an approximate 8-fold increase in ROS was detected in cells treated 

with 1 and light (405 nm) compared to cells treated with light alone (Figure S7). 

Efficient intracellular ROS production and 1O2 production in solution are suggestive 

of an oxygen dependant mechanism of cell killing. 

The mechanism of cell death was determined to be apoptosis (Figure S6). It is 

proposed that apoptotic cell death after light treatment is associated with localisation 

of photosensitizers to both the mitochondria and the lysosomes[9]. Here similar 

photosensitizing efficacy is seen when the cells were exposed to light following a 2 hr 

incubation – where mainly mitochondrial localisation is seen, or a 24 hr incubation – 

where mainly lysosomal localisation is seen (Figure 3). We therefore suggest that 

light induced cell death by 1 may be due to disruption of one or both of these 

organelles, which can trigger apoptotic cell death. 

The photosensitizing activity of 1 under TPE with 760 nm light was investigated in 

HeLa cells (Figure 4). The resulting images show apoptosis (green) and cell death 

(red) induced by TPE photosensitization. The 1-exposed cells within the irradiated 

square clearly show apoptosis/cell death, whilst the surrounding non-irradiated cells 

do not. Little to no killing of cells is seen in the absence of 1 with light power as high 

as 25 mW which under these conditions relates to a dose of 2720 J cm–2, this is the 

lower end of light doses reported to date for two-photon photosensitizers.[7a-c] This 
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result therefore demonstrates the potential of 1 as a specific two-photon-activated PS 

at low concentrations and at doses of light that, alone, are not harmful to cells. 

In summary, we introduce two novel small-molecule Ir(III) complexes, which are 

cell-permeable, easy to synthesize, possess long-lived triplet excited states, high linear 

absorption cross sections in the visible range, and high two-photon absorption cross 

sections in the NIR range of the spectrum. 1 has low dark toxicity and is rapidly and 

actively taken up into a diverse range of cancer cell types, where localisation is 

primarily in the mitochondria and lysosomes. High PS activity of 1 has been 

demonstrated in a number of cancer cell lines under one-photon excitation with 405 

nm light, with an impressive PI index of >333 and up to 555 depending on cell line 

(lower limit estimate). Remarkably, 1 is also active in photosensitizing cell death via 

apoptosis under NIR TPE (760 nm), at low concentrations and light doses.  

Overall, the results demonstrate the exciting potential of 1 as a future two-photon 

PDT agent, and illuminate the potential of Ir(III) complexes as TP-PDT agents.   
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SCHEME AND FIGURE LEGENDS 

Figure 1. Complexes 1 and 2.  
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Figure 2. Sub-cellular localisation of 1. U2OS cells following 4 or 24 hour 

incubation with 1 (green), colocalised with (A) Mitotracker orange (red) or (B) 

Lysotracker (red). Zoomed sections are shown as insets. Scale bars = 20 µm.  
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Figure 3 One-photon-induced PS activities of complexes 1 and 2. (A) Survival of 

HeLa cells pre-incubated for 2 or 24 h with complexes 1 or 2 +/- light. (B) Anexin V 

staining in HeLa cells (C) Survival of bladder (EJ), osteosarcoma (U2OS), melanoma 

(A375) and colorectal (HCT116) cancer cells 1 +/- light treatment. 
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Figure 4 Two-photon-induced PS activity of 1. HeLa cells treated with 1 or DMSO 

2 h before irradiation of a central square with 760 nm multiphoton laser. After 24h 

cells were stained with markers for apoptosis (Annexin V – red) and cell death 

(propidium iodide - green). All images are 450x450 µm except those in the 0 mW 

column which are 900x900 µm. 
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