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A GAP WITH A DEFICIT OF LARGE GRAINS IN THE PROTOPLANETARY DISK AROUND TW Hya
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ABSTRACT

We report ~3 au resolution imaging observations of the protoplanetary disk around TW Hya at 145 and 233 GHz
with the Atacama Large Millimeter/submillimeter Array. Our observations revealed two deep gaps (~25%—50%)
at 22 and 37 au and shallower gaps (a few percent) at 6, 28, and 44 au, as recently reported by Andrews et al. The
central hole with a radius of ~3 au was also marginally resolved. The most remarkable finding is that the spectral
index a/(R) between bands 4 and 6 peaks at the 22 au gap. The derived power-law index of the dust opacity G (R) is
~1.7 at the 22 au gap and decreases toward the disk center to ~0. The most prominent gap at 22 au could be caused
by the gravitational interaction between the disk and an unseen planet with a mass of 1.5 Myeptune» although other
origins may be possible. The planet-induced gap is supported by the fact that 3 (R) is enhanced at the 22 au gap,
indicating a deficit of ~millimeter-sized grains within the gap due to dust filtration by a planet.
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1. INTRODUCTION

Protoplanetary disks are the birthplaces of planets. The
complex structures of protoplanetary disks such as spiral arms,
inner holes, and gap and ring, recently reported by high-
resolution infrared observations (e.g., Espaillat et al. 2014 and
references therein), are believed to be potential evidence of
unseen planets in the disk. Most recently, high-resolution
observations with Atacama Large Millimeter/submillimeter
Array (ALMA) have found multiple gaps and rings in a disk
even at submillimeter wavelengths (ALMA Partnership
et al. 2015). Since submillimeter emission better traces the
midplane density structures than infrared, the gaps and rings
are thought to be direct evidence of the absence and
enhancement of disk material, and therefore related to the
planet formation process. The origin of multiple gaps and rings
is still under debate: several theoretical studies predict a
formation scenario due to material clearance by planets
(Dipierro et al. 2015; Dong et al. 2015; Kanagawa et al.
2015, 2016; Tamayo et al. 2015; Jin et al. 2016), growth and
destruction of icy dust aggregates near the snow lines of major
volatiles (Zhang et al. 2015; Okuzumi et al. 2016), baroclinic
instability triggered by dust settling (Lorén-Aguilar & Bate
2015), or secular gravitational instability (Youdin 2011;
Takahashi & Inutsuka 2014).

TW Hya is a 0.8 M, T Tauri star surrounded by a disk at a
distance of ~54 pc (e.g., Andrews et al. 2012). Since the disk is
almost face-on with an inclination angle of 7° (Qi et al. 2004),
TW Hya is one of the best astronomical laboratories to
investigate the radial structure of protoplanetary disks. The disk
mass has been measured to be >0.05M; from HD line

observations by the Herschel Space Observatory, indicating
that it is massive enough to form a planetary system (Bergin
et al. 2013). Recently, a gap in the dust emission has been
found at 20-30 au by submillimeter and near-infrared observa-
tions (Akiyama et al. 2015; Rapson et al. 2015; Debes
et al. 2016; Nomura et al. 2016; Zhang et al. 2016), which is
possibly associated with the CO snow line (Qi et al. 2013).
Most recently, Andrews et al. (2016) reported the existence of
multiple, axisymmetric gaps at 1, 22, 37, and 43 au at a spatial
resolution of ~1 au. The depth and width of the submillimeter
gap at 20-30au are consistent with clearing by a super-
Neptune-mass planet (Nomura et al. 2016). However, addi-
tional information on the dust size distribution with comparable
spatial resolution is required to address the physical structure of
the gap. In this Letter, we report multi-frequency observations
of the disk around TW Hya with ALMA to probe the detailed
disk structure and the change of dust spectral index across the
dust gaps and rings at a spatial resolution of ~3 au.

2. OBSERVATIONS

High-resolution continuum observations at Bands 4 and 6
(145 and 233 GHz) with ALMA were carried out on 2015
December 1 and 2 (2015.A.00005.S). In the observation
period, 36 of the 12m antennas were operational and the
antenna configuration was in transition from C36-7 to C36-1,
resulting in maximum baselines of 6.5 and 10.4 km for Bands 4
and 6, respectively. We employed the Time Division Mode of
the correlator, which is optimized for continuum observations.
The correlator was configured to detect dual polarizations in
four spectral windows with a bandwidth of 1.875 GHz each,
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resulting in a total bandwidth of 7.5 GHz for each observed
band. The amplitude and phase were calibrated by observations
of J1103-3251, and J1037-2934 was used for absolute flux
calibration. The observed passbands were calibrated by
5 minute observations of J1037-2934 and J1107-4449 for
Bands 4 and 6, respectively.

The visibility data were reduced and calibrated using the
Common Astronomical Software Application (CASA) pack-
age, version 4.5.0. After flagging bad data and applying the
calibrations for bandpass, complex gain, and flux scaling, the
corrected visibilities were imaged by the CLEAN algorithm.
The visibilities at Band 6 with uv lengths >3000 kA were
flagged out because of significant phase noise. The uv sampling
for baseline <400 m was particularly sparse along the north—
south direction (i.e., v-axis of the wuv coverage), which
corresponds to <180 and <300 kA for Bands 4 and 6,
respectively. We have combined Band 6 archival data
(2012.1.00422.S), in which the maximum baseline is ~500
k), with our Band 6 data after applying a phase shift to account
for proper motion and different input phase centers. There were
no available short-baseline data at Band 4; hence, only the
long-baseline data were used for imaging.

To improve the image fidelity, we performed the iterative
self-calibration imaging for each band data using the initial
CLEAN image as a model image. The interval time to solve the
complex gain was varied from 600 to 90 s for Band 4 and from
1200 to 240s for Band 6. The resultant images after self-
calibration were made by adopting briggs weighting of robust
parameters 0.5 and 1.0 for Bands 4 and 6, respectively. We also
employed the multiscale clean with scale parameters of [0, 100,
300] and [0, 50, 150] mas for Bands 4 and 6, respectively, for
better reconstruction of extended emission. The spatial
resolutions of the final images are 88.1 x 62.1 mas with a
position angle (PA) of 57°8 and 75.4 x 55.2 mas with a PA of
38?0 for Bands 4 and 6, respectively. The noise levels of the
Band 4 and 6 images are 124 and 28.7 uJybeam ',
respectively.

To deduce the spectral index between the Bands 4 and 6 and
to obtain a combined image around the center frequency
(190 GHz), we also used the multi-frequency synthesis (MFS)
method using all of the corrected visibilities after the iterative
self-calibration imaging (nterm = 2 in CASA CLEAN task; see
Rau & Cornwell 2011 for the MFS method). Briggs weighting
with robust = 0.0 was employed for the deconvolution, and we
also employed the multiscale option with scale parameters of 0,
60, and 180 mas. Using the MFS method, we obtain the
combined image and the map of the spectral index at 190 GHz.
The combined image achieves a better fidelity than the
individual images since the observed data are combined to fill
the gap in each other’s uv coverage. The achieved spatial
resolution of the combined image is 72.7 x 47.8 mas, with a
PA of 52?9, corresponding to 3.9 x 2.9 au. The noise level is
15.9 pJy beam ™.

3. RESULTS

Figures 1(a) and (b) show the constructed continuum maps at
Bands 4 and 6, respectively. Both images show circular
multiple gaps and rings even though the resolution of the Band
4 image is ~1.3 times larger than that of Band 6. The total flux
densities are 152.0 + 0.3 and 558.3 £ 0.7 Jy for Bands 4 and
6, respectively.
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Figure 1(c) shows the combined image of the Band 4 and 6
data with the MFS method (hereafter MFS image). The MFS
image shows circular symmetric multiple gaps and rings. In
addition, we have resolved an inner hole with radius ~3 au as
predicted from an earlier analysis of the spectral energy
distribution (SED; Calvet et al. 2002; Menu et al. 2014). This
corresponds to the drop in the brightness temperature of dust
continuum map recently found by Andrews et al. (2016). The
total flux density integrated over the region with S/N > 10 is
360.3 £+ 0.5 mJy at 190 GHz (S/N ~ 150), which agrees well
with the previous estimation at submillimeter wavelengths (Qi
et al. 2004; Andrews et al. 2012). There is no appreciable
deviation from circular symmetry in the gaps, rings, and
spectral index «. Ellipsoid fittings of gaps and rings show the
deviation between major and minor axes is within the
errors (S5%).

To confirm the gap structures, we plot the deprojected radial
profile of the continuum emission in the top panel of Figure 2.
The flux density is converted to the brightness temperature
using the Planck function. There are two prominent gaps at 22
and 37 au, and relatively weak decrements are also seen at 6,
28, and 44 au. These observed features agree with those found
by recent high-resolution (~1 au) observations at Band 7
(Andrews et al. 2016). The FWHM and the relative depth are
roughly 7 au and 50% for the 22 au gap if the background with
a power-law form is assumed, and 3 au and ~20% for the 37 au
gap. The depths are deeper than that of the gaps at Band 7
(Andrews et al. 2016), while the widths are comparable. Both
the emission at Bands 4 and 6 show comparable brightness
temperature inside R ~ 15 au, the value of which is consistent
with that of the Band 7 emission (Andrews et al. 2016). This
result indicates that the disk is (at least moderately) optically
thick in this region.

Figure 1(d) shows the spatial variation of the spectral index
« (see Equation (2) for its definition). The distribution seems to
be axisymmetric, and therefore we make the radial profile of «
averaged over the full azimuth angle as shown in Figure 2. The
spectral index « radially decreases approaching the disk center.
There is a prominent peak around 22 au with o ~ 3.0, which
coincides well with the position of the gap. The enhancement in
« is possible evidence of large grain deficit since « is related to
the power-law index of the dust mass opacity if the emission is
optically thin. The rapid decrease of « inside the 22 au peak is
partly due to increase of optical depth and partly due to
decrease of the power-law index of (3, namely, the existence of
larger dust grains near the central star (see the next section).
There seems to be two weak (<10%) bumps at 37 and 44 au
that are coincident with the locations of gaps in the intensity
profile as for the 22 au gap, implying that there is a correlation
between the surface brightness and «.

The error bars in Figure 2 are determined from the standard
deviation determined by the azimuthal averaging. This is a
conservative way of determining the error because it is the most
dominant source of the deviation at >5au. In fact, the
uncertainty map for o produced by CASA shows an error is
lower than the standard deviation. The uncertainty in the
absolute flux density does not affect the shape of the « profile,
but the absolute scale of «. If the accuracy of the absolute flux
scale is assumed to be ~10%, the « scale would have an
associated error of Aa ~ 0.4. Therefore the weighted mean
value is estimated to be («) = 2.42 + 0.42, which agrees well
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Figure 1. (a) and (b) ALMA continuum images at 145 GHz (Band 4) and 233 GHz (Band 6), respectively. The ellipse at the bottom left corner in each panel shows the
synthesized beam. (c) Combined image of Bands 4 and 6 with the MFS method. The inset indicates a close-up view (0”3 x 0”3) for emphasis of the central structure.

The contour indicates 130, 140, and 150c¢. (d) Spectral index map derived from the MFS method.

with previous measurements for the entire disk (Menu et al.
2014; Pinilla et al. 2014).

4. DISCUSSION
4.1. Radial Profiles of Dust Optical Depth and Opacity (3

The intensity I, (R) and the spectral index o (R) are related to
the dust temperature T;(R), the optical depth 7, (R), and the

dust opacity index (G (R) by

1I,(R) = B, (Ts(R))(1 — exp[—7,]) 1)

and

hy e /ksTa(R)

kgT;(R) e"/ksTa®) _

n(R)
R

dlog(l,)
dlogv

a(R) =
)

Here, B, (T) is the Planck function, % is Planck’s constant, c is
the speed of light, and kp is Boltzmann’s constant. The optical
depth is assumed to have the form
7,(R) = Tigo gz (R) (/190 GHz)”. There are three unknown
variables in Equations (1) and (2), which are T; (R), Ti90 guz (R),
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Figure 2. (Top) Radial profiles of the brightness temperature averaged over full
azimuthal angle. The black line indicates the MFS combined image, and the
lines in magenta and cyan show the Bands 4 and 6 data, respectively. The bars
at the bottom left corner show the spatial resolutions. The error bar is
determined from the standard deviation through the azimuthal averaging. The
orange dashed lines indicate the assumed temperature profile of the dust disk
when Tjp = 22 and 28 K with ¢ = 0.4. (Bottom) Radial profile of the spectral
index o The resolution is shown at the bottom right corner in the panel. The
error bar follows the same manner as the top panel.

and (G (R). If we assume one of them, we are able to derive the
rest of them by using the observation data of ,(R) and «/(R).
Here, we  assume that T;(R) is given by
T;(R) = Tio(R/10 au)™9. We vary Tjo from 22 to 30 K and
g from 0.3 to 0.5 to see how the temperature affects the derived
physical quantities. This assumption is based on our fitting to
the temperature profile at the disk midplane in Andrews et al.
(2012, 2016). The temperature profile models are chosen so
that the observed brightness temperature does not exceed the
kinetic temperature. The assumed temperature profiles, how-
ever, have no great impact on the following conclusions as
shown in Figure 3.

Figure 3 shows the radial profiles of 7199 gy, (R) and 5 (R).
The errors are estimated in a conservative way in which the
combination between the maximum and minimum values of
the error bars in the intensity and a/(R) profiles is used for
determining the maximum range of the error. The disk is
optically thin at R > 15 au in all the cases and marginally
optically thick at R < 15 au. This is in contrast with HL Tau

TSUKAGOSHI ET AL.

(ALMA Partnership et al. 2015; Pinte et al. 2016), where an
optically thick region extends out to R < 40 au. We see a
prominent drop in the optical depth at R < 5 au, which likely
corresponds to the inner hole derived from the SED (Calvet
et al. 2002) and to the drop in the brightness temperature of the
dust continuum map recently found by Andrews et al. (2016).
The optical depth profiles have two dips at R ~ 22 au and
~37 au. Note that although ( can not be determined where the
optical thickness is considerably high, the [ profile at <15 au is
still accessible because 7 is of order unity.

Overall, 8 (R) increases from ~0 to ~1.7 with when moving
from the disk center to ~20 au, where the disk is marginally
optically thick. This implies that sufficient large dust grains
(= 10 mm) exist at 5-10 au. Radially increasing profiles of
B (R) are also seen in other T Tauri disks (e.g., Pérez et al.
2012), and compact distribution of the largest grains is
suggested in the TW Hya disk, too (Menu et al. 2014).

One of the most remarkable features of the 3(R) profile is
the peak at ~22 au, which corresponds to the location of the
gap in the surface brightness profile. This indicates that large
dust grains are less abundant within the gap compared to other
locations in the disk. We also tentatively see the increase in
B (R) near the 37 au gap (and perhaps also near the 44 au gap),
but further observations with better sensitivity is needed to
confirm this.

At R < 15 au where 7(R) ~ 1, B (R) is derived to be ranging
from 0.0 to 0.5, and according to the theoretical calculation of
dust mass opacity (Draine 2006), small § value suggests that
the power-law index of dust size distribution is very small and
and the maximum dust size is large (>a few cm). Also, the
result suggests that the column density would be at least an
order of magnitude higher than that at the 22 au gap, giving us
the column density with an power-law index of <—2. The
steep profile is consistent with the previous measurement that
large grains should be concentrated toward the inner disk
region to reproduce the 9 mm emission (Menu et al. 2014).

The discussions of 799 gz (R) and G (R) presented here are
based on the assumptions of smooth temperature profiles.
Observations at additional bands (preferably at lower frequen-
cies) may further constrain T;(R), 7, (R) and (3 (R) simulta-
neously. We note that our results are roughly consistent with
the Band 7 observations by Andrews et al. (2016).

4.2. Origin of the Gaps

The enhancement of ((R) indicates a deficit of large
(millimeter-sized) grains at the gap position. These facts
support the scenario that the gap is caused by planet—disk
interaction because it is consistent with the picture of dust
filtration and trapping due to a planet (Zhu et al. 2012). Using
the relationship that connects the gap shape with the planet
mass (Kanagawa et al. 2015, 2016), a planet with 1.5 Myeptune
may be responsible for the gap, assuming a viscosity parameter
a = 1073 and a disk aspect ratio of 0.05 (consistent with the
assumption of Tjp = 22 K). We note that similar values are
derived from both gap width and depth. This planet mass
should be considered as the upper limit since the formula by
Kanagawa et al. (2015, 2016) is for the gas gap and the actual
dust gap may be wider and deeper than the gas gap due to dust
filtration (Zhu et al. 2012).

Alternatively, the multiple ring structures might be related to
the snow lines of major volatiles (Zhang et al. 2015; Okuzumi
et al. 2016). TW Hya is suggested to have a CO snow line at
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Figure 3. (a) Radial profile of the optical depth at 190 GHz (top) and 3 (bottom). The cases for 7o = 22, 26, and 30 K when g is fixed to 0.4 are shown in blue, black,
and red lines, respectively. The error bar is shown for the case of 7y = 26 K representatively. The resolution is shown at the bottom left (top) or bottom right (bottom)
corner in the panel. (b) Same as (a), but for checking the dependence on ¢ from 0.3 to 0.5 when T} is fixed to 26 K are shown in blue, black, and red lines,

respectively. The error bar is shown for the ¢ = 0.4 case representatively.

~30au (Qi et al. 2013; Schwarz et al. 2016), and our
observations identify a bright dust ring near this snow line.
This is consistent with the dust ring formation scenario by
Okuzumi et al. (2016), in which icy dust aggregates experience
sintering, disrupt, and pileup near major snow lines. As noted
by Andrews et al. (2016), the 40au bright ring might
correspond to the snow line of N, which has a sublimation
temperature slightly lower than that of CO. However, the
model of Okuzumi et al. (2016) does not predict a strong radial
variation of (3 (R), thus not explaining the enhancement of G (R)
we found near the 20 au dark ring.

The multiple gaps with intervals of 5-10 au beyond the 22 au
gap (22, 28, 37, and 44 au) may be reminiscent of dynamical
instabilities within the disk such as zonal flow patterns driven
by MHD turbulence (Johansen et al. 2009), baroclinic
instability driven by dust settling (Lorén-Aguilar & Bate
2015), and/or the secular gravitational instability (You-
din 2011; Takahashi & Inutsuka 2014). Different dynamical
processes act under different physical conditions and therefore
better constraints on the dust disk physical structure based on
high-resolution observations at other bands (e.g., Andrews
et al. 2016), and constraints of the density and temperature
structures of gas component are essential in determining the
origin of such structures.
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