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Abstract—This paper describes a novel method to
approximate instantaneous frequency of non-stationary
signals through an application of fractional Fourier
transform (FRFT). FRFT enables us to build a compact
and accurate chirp dictionary for each windowed signal,
thus the proposed approach offers improved computa-
tional efficiency, and good performance when compared
with chirp atom method.

I. INTRODUCTION

Recently, compressive sensing (CS) has attracted
much interest as a technique for time-frequency (TF)
signature reconstruction of non-stationary signals. It is
based on the fact that these signals are locally sparse in
the TF domain. Also, incomplete or random sampling
can frequently happen due to noisy measurement
removals, hardware impairments, sampling frequency
limitations [1], [2], [3]. A straightforward solution is
to perform sparse reconstruction from time windowed
signals, employing sinusoidal dictionary [4]. However,
this approach means contradictory demands on the
number of measurements for exact recovery and spar-
sity. It also suffers from the picket fence effect [5].

Now, the chirp approach can mitigate these issues,
and obtain more accurate approximation by deploying
chirp atoms for each window position to determine
the signal’s instantaneous frequency [6]. This chirp
atom method, nevertheless, uses a very large dimen-
sion measurement dictionary. Since there are two
parameters to be estimated (i.e. the chirp rate and
the initial frequency), the dictionary dimension can
be equal to the square of the dimension compared
to using the sinusoid atom. This very large atom set
results in a much heavier computation and longer
calculation time. Thus, we propose a compact chirp
atom set built via the FRFT. Basically, FRFT can
deliver the TF signature of non-stationary signal by
tuning the FRFT angle φ [7]. However, in case of
compressed observations and unknown number of
signal components, the FRFT is incapable of giving

reliable results as missing samples introduce noise
obscuring the desired information. In this paper, in
each signal window, the FRFT is employed to obtain
the corresponding initial frequency for each chirp rate.
This leads to a much simple chirp atom set. As the
FRFT can be executed in a similar time to the Fourier
transform (FT), the advantage of this approach is
that we obtain the same performance as compared
to the chirp dictionary method but with an improved
computational efficiency.

The paper is organized as follows. Section II
describes the FRFT and its application in estimation
of the chirp parameters. Section III proposes a method
for TF representation sparse recovery using a FRFT
based chirp dictionary. Section IV includes simulation
results. Finally, conclusions are given in section V.

II. CHIRP RATE AND INITIAL FREQUENCY
ESTIMATION OF CHIRPS USING FRFT

A. FRFT

The FRFT is a linear, energy preserving sig-
nal transformation that generalizes the conventional
Fourier transform (FT) via an angle parameter φ [8],
[9], [10]. For each fixed value of φ, the correspond-
ing FRFT “rotates” a time domain signal counter-
clockwise by an angle φ. As a result, for φ = 0,
one obtains the time domain (t) representation of
the signal. And for φ = π/2, the FRFT simplifies
to the FT, providing the usual frequency (f) domain
representation. For other values of φ, the FRFT allows
signals to be transformed into a fractional domain,
which is an intermediate domain between the time and
frequency domains. Denote (x, y) the axes of the new
reference plane, then the FRFT is illustrated in Fig.1,
from which we can see the (x, y) axes are equal to
the (t, f) axes rotated counter clockwise by an angle
φ.



Fig. 1. Counter clockwise rotation of the time-frequency plane
(t, f) by an angle φ, forming a new reference plane (x, y).

The FRFT of a time domain signal s(t) is defined
as [8], [9], [10]:

(Fφs)(x) = Sφ(x) =

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s(−x), φ = (2l + 1)π,
(1)

where F
φ is the FRFT operator associated with angle

φ, Sφ(x) denotes the fractional Fourier transformed
signal, l is an integer, t is time and x is the fractional
variable.

B. CHIRP RATE AND INITIAL FREQUENCY ESTI-
MATION OF CHIRPS

Consider a discrete single chirp of length T = 1
(second) expressed as:

s(n) = exp

[

j2π

(

α1
n2

2F 2
s

+ β1
n

Fs

)]

, (2)

where Fs is the sampling frequency, α1, β1 are values
of the chirp rate and the initial frequency, n =
0, 1, ..., ⌊T/Ts⌋, and Ts = 1/Fs. Our task is to
estimate α1, β1 by the FRFT. The principle is that we
tune the FRFT angle φ. When φ = φopt, the fractional
axis x is matched to the chirp rate of the signal (see
Fig. 2), or the chirp becomes a sinusoid in the new
plane (x, y). And thus, the magnitude response (i.e.
the absolute value of the FT of the FRFT) reaches its
maximum. The initial frequency is determined by the
position of the peak in the magnitude response.

According to [11], the discrete FRFT rotates the
time frequency plane around the point, C, defined by
the intersection of the zero-frequency axis with half
of the total duration of the time domain signal. Based
on the rotation point C, the schematic illustrating the
geometry for calculations α1 and β1 is plotted, and
displayed in Fig. 2. Fig. 2 gives the relation between

Fig. 2. Geometric schematic for calculating chirp rate α1 and
initial frequency interpretation β1.

the chirp rate (α1) and the optimum FRFT angle
(φopt), which is expressed as [7]:

φopt = arctan(
α1δf

δt
)

= arctan(
α1N

F 2
s

)
(3)

where N is the number of samples, δf = Fs/N is the
frequency resolution and δt = 1/Fs is time resolution.
In the case that N = Fs, the optimum FRFT angle
simplifies to φopt = arctan(α1/Fs). According to
Fig.2, the initial frequency β1 is estimated by:

β1 = d/ cos(φopt)− α1/2, (4)

where d is the position of the maximum peak of
|FT(Sφopt(x))| in the new plane (x, y). This method
works perfectly in the case that we have a large
number of samples, and no missing entries, and the
number of signal components is a known a-priori.
When only limited observations are available, the
method is unable to deliver accurate results because
the magnitude responses do not always obtain a max-
imum when φ = φopt. For illustration, we use a
signal composed of two chirps whose chirp rate values
are −0.3Fs, and 0.2Fs, Fs = 128. The maximum
values of the magnitude response corresponding with
different values of the FRFT angle φ or different
values of the chirp rate (in the cases of full and
missing data) are plotted in Fig. 3. It can be seen
that in the latter case, it is incapable of estimating
the two chirp rate values. Therefore, we propose
using the FRFT to build the chirp dictionary for
sparse reconstruction, which can reduce the chirp atom
dimension compared with the full chirp dictionary [5],
[6]. Moreover, the discrete FRFT algorithm proposed
in [12] has a computational load of O(N logN) for a
discrete-time signal of length N , which is same as the
conventional FT. Therefore, the proposed method is
more computational efficient than the full chirp atom
approach.



(a) (b)

Fig. 3. The maximum values of the magnitude response versus
chirp rate values or FRFT angle values (i.e. see 3): (a) Full length
signal N=128; (b) Windowed signal of length Nw = 64, and
randomly missing 50% of data.

III. SPARSE RECONSTRUCTION OF
NON-STATIONARY TIME FREQUENCY

SIGNATURE BASED ON THE FRFT

Consider an arbitrary continuous-time, non-
stationary signal sc(t), which consists of K compo-
nents:

sc(t) =

K
∑

k=1

Ak(t) exp (jϕk(t) + vc(t)) , 0 ≤ t < T

(5)
where Ak(t) and ϕk(t) are the time-varying positive
amplitude and phase of the kth component, vc(t) is
an additive white noise, and T is the total observation
interval. The continuous-time instantaneous frequency
(IF) of the kth component is defined as:

Fk(t) =
1

2π

dϕk(t)

dt
. (6)

We assume that it is known a-priori that the absolute
IFs do not exceed Fmax i.e. |Fk(t)| ≤ Fmax, where
Fmax is the maximum frequency of the signal sc(t).
Sampling sc(t) at its Nyquist rate Fs(Fs = 2Fmax),
then we have:

s(n) =
K
∑

k=1

Ak(nTs) exp(jϕknTs) + v(n), (7)

where n = 0, 1, ..., ⌊T/Ts⌋, and Ts = 1/Fs.

Similar to the chirp dictionary method, this ap-
proach also approximates the windowed signal by the
sum of piece-wise chirps. The mth signal segment of
length Nw is obtained by:

sm(n− u(m− 1)) = s(n)h(n− u(m− 1)), (8)

where n = u(m − 1), u(m − 1) + 1, ..., u(m − 1) +
Nw − 1, u(1 ≤ u ≤ Nw) is the shift between two
consecutive windows, m is the window index, and

h(n) is a rectangular window which is non-zero only
for 0 ≤ n ≤ Nw − 1.

Then the chirp-approximated mth signal segment
of s(n) is written as:

sm(n) ≈

K
∑

k=1

Ak,m exp

{

j2π

[

αk,m

n2

2F 2
s

+ βk,m
n

Fs

]}

+ vm(n)
(9)

where 0 ≤ n ≤ Nw − 1, Ak,m, αk,m, βk,m are
respectively the complex amplitude, the chirp rate,
and the initial frequency of the kth chirp over the mth

window.

Since |Fk(n)| ≤ Fmax, the chirp rate α, and the
initial frequency β have to satisfy:

{

|β| ≤ Fmax,

|α| ≤ FmaxFs/Nw.
(10)

In vector form, the signal over the mth window
can be expressed as:

Sm = ΨXm +Vm (11)

where Sm = [sm(0), ..., sm(Nw − 1)]T , Vm =
[vm(0), ..., vm(Nw−1)]T . The dictionary matrix, Ψ, is
designed by uniformly sampling the chirp rate space.
Let I denote the total number of chirp rate values,

α̃i is ith chirp rate value in the dictionary, and β̃i is
corresponding initial frequency value for each α̃i in
the dictionary. The chirp atom Ψ = [ψψψ1,ψψψ2, ...,ψψψI ] is
obtained by:

PROCEDURE: For each value of α̃i

1) Calculate FRFT angle φ̃i =
arctan α̃iNw

F 2
s

(3).

2) Calculate the magnitude

response |FT(Sφ̃i(x))|.
3) Find value of y at which

|FT(Sφ̃i(x))| obtains a maxi-
mum. In another word, find d
(see Fig. 2).

4) Calculate the corresponding
value of the chirp rate

β̃i =
d

cos φ̃i

− α̃i

2
Nw

Fs

.

5) ψψψi = exp[j2π(α̃i
n2

2F 2
s

+ β̃i
n
Fs

)].

Since K < Nw ≪ I , Xm is highly sparse and
solving for Xm in equation (11) becomes a sparse
recovery (or CS) problem, which can be solved by:

X̂m = argmin ‖Xm‖1 s.t. ‖Sm −ΨXm‖22 ≤ ǫ
(12)

where ‖.‖1, ‖.‖2 denotes L1 and L2 norms respec-
tively and ǫ is the noise level. The solution for (12) can
be obtained by a greedy algorithm such as Orthogonal
Matching Pursuit (OMP) or linear programming. In
this paper, OMP is used.



IV. SIMULATION RESULTS

This section evaluates the performance of the
FRFT based chirp dictionary in sparse reconstruction
of non-stationary signals. We compare the proposed
method with the full chirp dictionary, sinusoidal atom,
and FRFT approaches. In the FRFT approach, in each
window, we only calculate the magnitude response of

the FRFT for angles φ̃i, and choose the values of φ̃i
or α̃i which have largest magnitude responses.

In the following examples, signals are sampled at
the Nyquist rate, then 50% of samples are randomly
removed. The sampling frequency Fs = 256, the total
signal length is N = 256. The observations are cor-
rupted by white Gaussian noise, and the signal to noise
ratio is set to SNR = 20dB. A rectangular window
of length Nw = 64 is applied. The resulting images
are normalized and transferred to energy versions for
display. A parameter of concentration level ζ is used to
assess the accuracy of the resulting TF representations.
So ζ is the ratio of the sum of pixel magnitude along
the actual instantaneous frequency, with respect to the
rest of the TF values. So, the higher ζ, the better is the
TF estimation. We assume that signals have K = 5
components.

In the first sample, the signal consists of two
crossing chirps, which is expressed as:

s(n) = exp

{

j2π[(0.1Fs)
n

Fs

+ (0.3Fs)
n2

2F 2
s

]

}

+

exp

{

j2π[(0.4Fs)
n

Fs

− 0.3Fs

n2

2F 2
s

]

}

+ v(n),

(13)

with n = 0, 1, ..., N − 1. The results are shown in
Fig. 4. The chirp dictionary and FRFT based chirp
dictionary provide perfect frequency localization with
ζ = ∞. The FRFT is unable to recover the TF
representation of the whole signal because of missing
data and noise, although one signal component is
accurately displayed with ζ = 3000. The sinusoidal
method reveals inaccuracies in the TF signature esti-
mation with ζ = 3 since besides insufficient sparsity,
it is also vulnerable to the picket fence effect [5], [6],
resulting in frequency contents at false locations.

Similar results are obtained in the second example
where we use a signal composed of three components
expressed as:

s(n) =

exp

{

j(0.1Fs) cos(2π
n

Fs

+ π) + j2π(0.2Fs)
n

Fs

}

+ exp

{

j(0.1Fs) cos(2π
n

Fs

+ π) + j2π(0.3Fs)
n

Fs

}

+ exp

{

j2π[(0.1Fs)
n

Fs

+ (0.3Fs)
n2

2F 2
s

]

}

+ v(n),

(14)
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Fig. 4. TF (frequency normalized) signature for s(n) in (13) with
50% data missing: (a) FRFT based chirp dictionary; (b) Sinusoidal
dictionary; (c) Chirp dictionary; (d) FRFT.

with n = 0, 1, ..., N − 1. The TF signature approx-
imations of the four methods are displayed in Fig.5.
The FRFT based chirp dictionary and the normal chirp
dictionary have pretty similar concentration levels of
ζ = 20, whereas the sinusoidal dictionary and the
FRFT have lower concentration levels with ζ = 3 and
ζ = 8, respectively.

V. CONCLUSION

A method for instantaneous frequency estimation
is presented. It deploys piece-wise chirp approxima-
tion to the TF signature of non-stationary signals
under incomplete and random sampling. The chirp
dictionary is built for each windowed signal, and for
each chirp rate, the corresponding initial frequency
is determined through the FRFT. Thus, compared
with the full chirp dictionary method, the atom set
dimension is much smaller. In addition, the discrete
FRFT can be executed in a similar time compared
to the ordinary FT, thus we can save calculation
time, but obtain the same performance. It means that
this algorithm can mitigate the picket fence effect,
and relax contradictory requests on the number of
measurements for exact recovery, and sparsity. Also,
the proposed method outperforms the the sinusoidal
dictionary method or FRFT with more accurate and
reliable results.
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Fig. 5. TF (frequency normalized) signature for s(n) in (14) with
50% data missing: (a) FRFT based chirp dictionary; (b) Sinusoidal
dictionary; (c) Chirp dictionary; (d) FRFT.
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