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ABSTRACT

Aims. We investigate the nature of transverse kink oscillations of loops expanding through the solar corona and examine how can
oscillations be used to diagnose plasma parameters and the magnetic field. In particular, we aim to analyse how the temporal depen-
dence of the loop length (here modelling the expansion) will affect the P, /P, period ratio of transverse loop oscillations.

Methods. Due to the uncertainty of the loop’s shape through its expansion, we discuss separately the case of the loop that maintains its
initial semi-circular shape and the case of the loop that evolves into an elliptical-shape loop from a semi-circular shape. The equations
that describe the oscillations in an expanding flux tube are complicated due to the spatial and temporal dependence of coefficients.
Using the WKB approximation, we find approximative values for periods and their evolution as well as the period ratio. For small
values of time (near the start of the expansion), we can employ a regular perturbation method to find approximative relations for
eigenfunctions and eigenfrequencies.

Results. Using simple analytical and numerical methods, we show that the period of oscillations are affected by the rising of the
coronal loop. The change in the period due to the increase in the loop’s length is more pronounced for loops that expand into a more
structured (or cooler) corona. The deviation of periods will have significant implications in determining the degree of stratification in
the solar corona. The effect of expansion on the periods of oscillations is considerable only when the loop is expanding but not after
it has reached its final stage.

Conclusions. The present study improves our understanding of the complexity of dynamical processes in the solar corona, in partic-
ular the changes of periods of kink oscillations due to temporal changes in the characteristics of the coronal loop. Our results clearly
show that the problem of expansion of coronal loops can introduce significant changes in the period of oscillations, with consequences
on the seismological diagnostics of the plasma and magnetic field.
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1. Introduction

Dynamical processes and transients observed in solar and space
plasmas have received considerable attention due to their abil-
ity to help scientists to diagnose remotely the parameters of
the medium (temperature, scale-height, density, transport co-
efficients, etc.) in which these events occur, the magnitude
and structure of the magnetic field, and the stability of the
plasma. Seismological techniques and methods, imported from
Earth’s seismology and helioseismology, assume the combi-
nation of high-resolution observations (amplitude, wavelength,
propagation speed, damping time/length) with theoretical mod-
els (dispersion and evolutionary equation) to derive quantities
that cannot be measured directly or indirectly. In particular,
coronal seismology has emerged as one of the most dynam-
ically developing methods of solar physics (see, e.g. Roberts
et al. 1984; Nakariakov et al. 1999; Ruderman & Roberts 2002;
Andries et al. 2005, 2009; Ballai et al. 2005; Banerjee et al. 2007;
Verth et al. 2007; Ballai 2007; Ruderman et al. 2008; Morton &
Erdélyi 2009; Ruderman & Erdélyi 2009; Wang et al. 2012, etc.).

One important candidate in coronal seismology are trans-
verse kink oscillations, i.e. oscillations that exhibit periodic
movement about the loop’s symmetry axis. Recent Coronal
Multi-Channel Polarimeter (CoMP) observations (Tomczyk
et al. 2007) showed that the predominant motion of coronal loops
is the transverse kink oscillation, which is also the easiest to gen-
erate. The triggering of these oscillations can be through a lateral
forcing process at arbitrary height of the loop by a blast wave
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(or EIT wave) that emanates as a result of a sudden energy re-
lease by a flare and/or CME (see, e.g. Ballai 2007; Ballai et al.
2008). Kink oscillations can also be triggered by the transverse
motion of footpoints due to the granular buffeting of flux tubes in
the photosphere. This scenario is true not only for coronal struc-
tures, but also for all magnetic entities in the solar atmosphere
that can serve as waveguides. Global EIT waves can additionally
interact with prominence fibrils to generate kink waves and os-
cillations in prominences, as observed by, e.g. Ramsey & Smith
(1966) and more recently by Eto et al. (2002), Jing et al. (2003),
Okamoto et al. (2004), Isobe & Tripathi (2007), and Pintér et al.
(2008) (for a comprehensive review see, e.g. Arregui et al. 2012).

The dispersion relations for many simple (and some quite
complicated) plasma waves under the assumptions of ideal mag-
netohydrodynamics (MHD) are well known; they were derived
long before accurate EUV observations were available (see,
e.g. Edwin & Roberts 1983; Roberts et al. 1984) using sim-
plified models within the framework of ideal and linear MHD.
Although the realistic interpretation of many observations is
made difficult by the insufficient spatial and temporal resolu-
tion of present-day satellites, considerable information about the
state of the plasma and the structure and magnitude of the coro-
nal magnetic field can still be obtained.

The mathematical description of waves and oscillations in
solar structures is, in general, given by equations whose co-
efficients vary in space and time. It has been recognised by,
e.g. Andries et al. (2005) that the longitudinal stratification (i.e.
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along the longitudinal symmetry axis of the tube that coincides
with the direction of the magnetic field) is modifying the peri-
ods of oscillations of coronal loops. Accordingly, in the case of
kink waves, these authors showed that the ratio P, /P, (where P,
refers to the period of the fundamental transverse oscillation,
while P, describes the period of the first overtone of the same
oscillation) can differ, sometimes considerably, from the canon-
ical value of 2, that would be recovered if the loops were homo-
geneous. These authors also showed that the deviation of P;/P,
from 2 is proportional to the degree of stratification. This prob-
lem was also discussed in other studies, such as Dymova &
Ruderman (2006), Diaz et al. (2007), McEwan et al. (2008),
Ballai et al. (2011), Orza et al. (2012), etc. In a recent analysis,
Ballai et al. (2011) discusses the ambiguity of the period ratio
seismology, since other effects could result in the observation of
multiple periods and each interpretation yields in different value
for the magnetic field and/or degree of stratification.

Studies by, e.g. Verth et al. (2007) later showed that not
only density stratification can modify the P,/P, period ratio
as the variation of the loop’s cross section area also has an ef-
fect on the period ratio. While density stratification tends to de-
crease the period ratio, a modification of the cross section (i.e.
when the magnetic field is flaring up as we approach the apex)
tends to increase the P;/P; value.

The investigation of properties of oscillations of coronal
loops when equilibrium parameters of the plasma depend on
time is a relatively new area of dynamical studies in the so-
lar atmosphere, in particular for coronal seismology. Morton &
Erdélyi (2009) and Morton et al. (2010) studied the effect of
cooling (i.e. temporal dependence of temperature) on the dynam-
ics of kink oscillations and travelling waves. They found that the
cooling of the plasma results in period decrease and amplifica-
tion of oscillations and is thus a mean to dissipate the energy
stored in waves propagating in an unbounded plasma. The same
idea was used later by Morton et al. (2011) to study the prop-
erties of torsional Alfvén waves in coronal loops. The problem
was recently reconsidered by Ruderman (2011a), who showed
that the cooling also generates an amplification of kink oscilla-
tions. This amplification appears to be a competing effect with
the damping due resonant absorption, as shown by Ruderman
(2011b).

The problem of loop emergence and expansion through the
solar atmosphere is one of the most challenging topics of so-
lar physics because it involves analysing of the evolution of the
magnetic field in different regions of the solar interior and at-
mosphere, where conditions can change from region to region.
According to the standard theory, the magnetic field produced
by the dynamo action in the tachocline is transported through
the solar convective zone towards the solar surface by magnetic
buoyancy coupled with convective motion (Parker 1955, 1988).
Once at the surface, the emerged flux tube creates sunspots and
bipolar active regions (Zwaan 1987). In the solar atmosphere,
the rise of the flux tube continues due to an excess of the mag-
netic pressure inside the loop (e.g. Archontis et al. 2004). For the
purpose of our investigation, we will assume that this excess is
balanced at the transition region (TR) and that from this height
the expansion is no longer a driven problem instead, the loop
moves through the corona in the virtue of its inertia. During the
emergence and expansion phase, the flux tube can interact with
existing magnetic structure in the solar atmosphere, which might
be responsible for the appearance of small-scale (e.g. compact
flares, plasmoids, X-point brightenings) and large-scale events
(flares and CMEs), as suggested by Archontis (2004). Loop
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emergence often is associated with strong upflows, as observed
by, e.g. Harra et al. (2010, 2012).

It is straightforward to imagine what happens with oscilla-
tions in a loop when the length of the loop is increasing. As
the length becomes larger, the frequency of oscillations becomes
smaller, i.e. the periods of oscillations are expected to grow. In
an inhomogeneous waveguide, however, particular periods will
be differently affected by the combined effect of inhomogeneity
and loop length increase. Therefore, we expect that the period
ratio of oscillations will change not only with the degree of in-
homogeneity but also with time.

The aim of this paper is to investigate the effect of loop ex-
pansion through the solar corona on the period ratio P, /P, and
the consequences of the inclusion of the length of the loop as
a dynamical parameter on estimations of the degree of density
stratification. The paper is structured in the following way: in
Sect. 2, we introduce the mathematical formalism and obtain an-
alytical results for an expanding loop that initially starts from a
semi-circular shape, which is preserved throughout the expan-
sion. In Sect. 3, we generalise our findings by assuming that the
expansion of the loop in the solar corona does not occur with the
same speed in the horizontal and vertical direction. In this case,
the initial semi-circular loop transforms into a loop with elliptic
shape. Our results are summarised in the last section.

2. The mathematical formulation of the problem

In our analysis, we will capture the dynamical behaviour of
the loop once it has reached the transition region (TR). At this
height, the loop can interact with a blast wave propagating in the
low solar corona. This instigator could be easily identified with
an EIT wave that propagates in the low corona over very large
distances. EIT waves are known to be one of the major sources
for kink oscillations of coronal loops (see, e.g. Ballai 2007).
We assume that the height at which the loop starts its journey
through the corona is at 3 Mm above the solar surface. A typical
loop length is of the order of 300 Mm. For practical reasons, we
consider that the height of the loop in its final position would be
about 97, Mm resulting in a loop length of about 305 Mm.

The raising speed of loops is generally taken to
be 10—15 kms™' (Chou & Zirin 1988; Archontis 2008).
Consequently, the time needed for the loop to travel the distance
from the TR to its steady position can easily be estimated to be
between 3.4 and 5.2 h. This time is at least two orders of mag-
nitude larger than a typical period of kink oscillations, so there
is enough time for the development of oscillations. Higher rising
speeds are also possible. Recently, Schmidt & Ofman (2011) re-
ported expansions of a post-flare loop with speeds of hundreds
km s~!. Standing waves are formed if the speed of change in the
length of the loop is smaller than the period of oscillations. This
condition is easily satisfied for fast kink oscillations. We assume
that the loop expands into the “empty” corona, i.e. it will not
encounter any interaction with existing magnetic elements.

In the first instance, we assume that the semi-circular shape
of the loop at the TR is preserved throughout the expansion.
Assuming an initial height of 3 Mm above the surface, the dis-
tance between the footpoints of the loop is 6 Mm. When reaching
the final height of 190 Mm, the footpoints travel over a distance
of 197 Mm. In addition, we assume that the expansion occurs
at constant temperature (isothermal process) and that the expan-
sion the loop maintains its cross section constant throughout the
expansion. Due to the increase in the volume of the loop, a pres-
sure difference is generated. This means that the plasma flows
along magnetic field lines, resulting in a density that depends
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not only on the height, z, but also on time. As it raises through
the solar corona, the tangent to the loop is also changing mono-
tonically. Therefore, the momentum equation in an equilibrium
state becomes

ou ou apo

— +poU—— = ——— — cos S,
Pog +pous 5 9Po B
where the angle 3 is a function depending on time and space, u is
the equilibrium flow of the plasma, py and p are the equilibrium
density and pressure, and ¢ is the gravitational acceleration. In
coronal loops, the flows are of the order of a few tens of km s~!.
As aresult, in Eq. (1) we can neglect the terms on the left-hand
side because
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that is, two order of magnitude smaller than the terms on the
right-hand side. We can write pressure as

kgT, Z,t
po(z.1) = %0()

where kg is the Boltzman constant, 7 is the constant tempera-
ture and m is the mean atomic mass per particle. Introducing this
expression into the RHS of Eq. (1), we obtain that

i% N cosfB(z, 1) _

2
po 0z H 0, 2)

where H is the constant density scale-height. Focussing on the
density distribution inside the loop, we can integrate the above
equation to obtain

Z /,t ,
pPi = prexp [_f Mdz } .
0

i 3)

Assuming that the loop is semi-circular, we obtain that S(z, 1) =
nz/L(t), so that the density inside the coronal loop becomes

[ L(t) . nz ]
pi = prexp |——= sin ,

<1 T “

where pr is the density of the plasma at the footpoint of the loop.
For simplicity we will assume that the external density can sim-
ply be written as p. = Dp;, where throughout our calculations,
we consider D = 0.5. Figure 1 depicts schematically the change
of the equilibrium density, both in space and time. Here, length
was normalised to the length of the loop at the start of the emer-
gence (considered Ly = 37 Mm), and time (here denoted by 1)
was normalised to the quantity Ly/v,, where v, is the vertical
rising speed of the loop considered v, = 15 kms~'. According
to our expectations, the density of the loop decreases with time.
We assume that the flux tube is thin, even at the beginning of its
expansion.

In the thin flux tube approximation, the dynamics of trans-
verse kink oscillations is given by (see, e.g. Ruderman 2010,
2011a)

2 2
4]
,01(2 + Uig) Tl+pe(— + Ueg) n

2B% 0%y ~ 0
ot 0z ot 0z

= 5
Ho 072 )

where U; and U, are the internal and external flows, B is the
magnetic field strength (here assumed to have identical value
inside and outside the loop), o is the magnetic permeability of
the free space, and 7 is a complex valued displacement of the
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Fig. 1. Schematic representation of the evolution of the equilibrium den-
sity measured on the vertical axis in the units of density at the foot-
point. Here, lengths are given in units of the loop length at the start of
the expansion in the corona (Lj), and time is given in units of Ly/v,,
where v, is the constant rising speed in the vertical direction (here taken
tobe 15 kms™).

loop, with n = ng + in;. In Cartesian coordinates, the loop’s
displacement in the x and y directions, £, and &, is given by

&x = MR, §y =N

We assume a quasi-stationary equilibrium, so that the character-
istic time variation of equilibrium quantities (#.;) is much longer
than the period of kink oscillations (P), and introduce the small
parameter €, so that P = ef,. Using the definition of the period
of oscillations, we can write

L(popen)'* el = B = ¢! L(uopen)'?
et CAR = | 0P

, (6)
BO Ich

meaning that we can introduce a scaled magnetic field, so
that By = €By. As a result, the equation describing the dynamics
of the kink oscillations can be written as

(N

8\ 2¢2B? 0%
n- =0
ot 0z

.2+U422 + 2+U_ P
pi i5;) MEpe gt Ve P

The above equation must be solved subject to standard boundary
conditions, i.e.

n(z=0,z=L)=0.

Following the solution method proposed by Ruderman (2011a),
we will solve Eq. (7) using the Wentzel-Kramers-Brillouin
(WKB) method (see, e.g. Bender & Orszdg 1987) and assume
that the solution of the equation will be of the form

n= Z €Sz, 1) exp [iecb(t)] . 8)
k=0

In the first order of approximation (often called geometric op-
tics), Eq. (7) reduces to

%S, Q?
g = +=-S0=0, 9)
< K
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where
do(z 2B?

Q= do ), o = .

dr Ho(pi(z, 1) + pe(z, 1))
Equation (9) must be solved subject to the boundary condi-
tion So = 0 when z = 0 and z = L. Together with the line-tying
condition, Eq. (9) forms an eigenvalue problem, in which Q is
the eigenvalue and Q? is a real function.

In the next order of approximation (also called the approxi-
mation of physical optics), Eq. (7) reduces to

oS, Qo _2Q[05) SodQ  pili+peUedSo
o2 @' T @ e T2ad T piipe 0z

. (10)

which has to be solved subject to the boundary condition S ;(z =
0,z = L) = 0. The boundary-value problem determining S| has
a solution only when the RHS of Eq. (10) satisfies the compat-
ibility condition, i.e. the orthogonality to S. After the RHS of
Eq. (10) is multiplied by S and integrated with respect to z in
the interval (0, L), the compatibility condition reduces to (similar
to Ruderman 2011a)

L SZ
04, _
w —zdz = const., (11)
0 Cg
where
_ 1 _
w=€ Q, cx=€

As a consequence, the dynamics of kink oscillations in coronal
loops is fully described by the system of Egs. (9) and (11). In
deriving Eq. (11), we took into account the mass conservation
equation, relating the plasma flow and its density

ot dz

Let us now discuss a special case when the density depends on
time only. This case would correspond to an initial expansion
of the loop, when the height of the loop is less than the scale-
height (assuming expansion into an isothermal 1 MK corona,
this height would correspond to 47 Mm). In this case, we may
expect that the amplitude of oscillations increases as the loop
expands. Indeed, it is easy to show that the amplitude of oscilla-
tions behaves as

1/2 I 12
a0 =20(5G) =a0(zg)

where A(0), cx(0) and Ly are the amplitude of oscillations, the
kink speed and the length of the loop at t = 0.

A particular case worth discussing separately is when the
expansion of the loop occurs linearly with time and we write
that

L(t) = Ly + v,t, (13)

where L is the length of the loop at the initial time, i.e. at the
TR level (Ly = 37 Mm), and v, is the rising speed, here assumed
constant. Accordingly, the kink speed becomes

0.

12)

Ly + vt nz
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P1 and P2 for 7=(0.0,10.0)
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Fig. 2. Variation of the periods of the fundamental mode and its first
harmonic with the dimensionless time variable 7 for three different val-
ues of stratification: H = 70.5 Mm (dotted line), H = 47 Mm (solid
line), and H = 23.5 Mm (dashed line).

Returning to the general case, the equations describing the dy-
namics of kink oscillations are

8250 w2 L G2

=+ —250 =0, w —zodz = const. (15)
0z CK 0 Ckg
Let us introduce a new set of dimensionless quantities
Z vt . wL - S
f=— T=7, o=—, So=— (16)
Ly Ly CKf Ly

In the new variables, the equations to be solved transform into

08¢ —Lo(l+7) . 7€ | 4
98 +exp[ — s1n1+T 0°Sy=0, (17)
and
I+7
~ —Lo(1
(Dj(; Séexp[ LO7(rH+ L sin 17:§‘r d¢ = const., (18)

which should be solved subject to the boundary conditions
So(€ =0;¢ =1+ 1) = 0. The solution of the system (17)—(18)
can be found numerically using, e.g. the shooting method. In
Fig. 2, we display first the variation of periods of oscillations
of the fundamental mode and its first harmonic for three differ-
ent values of H in terms of the dimensionless time variable, 7.
The bands for each period are clearly labelled in the figure. The
three distinct value of periods were obtained for three values of
scale-height, keeping the initial length of the loop at 37 Mm. The
dotted line corresponds to a scale-height of 70.5 Mm, which, as-
suming a plasma in hydrostatic equilibrium, would correspond
to a plasma temperature of 1.5 MK. The solid line is plotted for
a loop expanding into a corona where the constant scale-height
is 47 Mm, corresponding to a 1 MK hot plasma. Finally, the
dashed line stands for an expansion of the loop into a plasma,
where the density scale-height is 23.5 Mm, corresponding to
a plasma temperature of 0.5 MK. The two bands for the pe-
riods clearly show that the two oscillations are differently af-
fected by the expansion, i.e. change in the length of the loop.
This is also obvious in Fig. 3, where we plotted the ratio of
the periods of the fundamental and first harmonic as a function
of the time variable 7. The plot clearly shows that the oscilla-
tions of a loop expanding into a “hot” plasma (i.e. large scale-
height) are the least affected, but in all three cases, the period
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P1/P2 for 7=(0.0,10.0)
T T

2.00[ T
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Fig. 3. Variation of the P,/P, period ratio with respect to the dimen-
sionless parameter 7, for a loop expanding in the solar corona with per-
sisting semi-circular shape. The meaning of each line-style is identical
to Fig. 2.

ratio decreases with time. We should note here that the peri-
ods shown in Fig 2 do not start at the value of 2 because at
the start of their expansion through the solar corona, they are
already stratified and the least stratified is the case that corre-
sponds to H = 1.5 MK. We ought to note that in observations,
the identification of periods in coronal loops is a dynamical pro-
cess, i.e. in EUV the intensity is measured in one location (or
mega-pixel to reduce errors) for a long time-period. The duration
of observation varies, and this duration is mostly driven either by
the availability of the instrument or by the limited lifetime of os-
cillations before they are damped by, e.g. resonant absorption.
Observations show, however, that not all loop oscillations damp
(probably these oscillations are maintained by a constant lateral
buffeting). Typically, for damped oscillations, the detection time
is a few periods with a range of 6.7—90 min (Aschwanden 2004).
In terms of the dimensionless quantity 7, this range would corre-
spond to 7 = 0.64—8.6. Although the lower limit is too small to
count in the effect of expansion, a duration of 7 = 8.6 would add
an important effect in studying the transverse kink oscillations.
Figure 3 shows that for one given value of internal structuring,
the value of the period ratio can also change because of the ex-
pansion of the loop. Although the periods shown in Fig. 2 display
a monotonic increase with the parameter 7, in reality these values
will saturate, with saturation occurring faster for those modes
that propagate in a highly structured plasma (e.g. for the case
of H = 23.5 Mm, the saturation value of periods is about 400 s
and saturation starts at about 7 = 20). In addition, the period
ratio for all cases discussed here tends to same value (near 1)
for large values of 7. Significantly, the effect of expansion on the
periods of oscillations and the period ratio is relevant only in the
expansion phase of the loop.

Analytical solutions of Eq. (17) can be obtained for the lim-
iting case of a loop at the beginning of its expansion through the
solar corona, i.e. small values of 7 (see Appendix). The results
confirm the tendency of periods to increase with time and of the
period ratio to decrease with time.

3. Noncircular emergence

In reality, the expansion of a loop in the empty corona so that
the semi-circular shape is preserved is unlikely since the foot
points have to move in a much denser plasma than the apex of

the loop. Consequently, in this section we will assume that the
expansion rate in the vertical direction is larger than the expan-
sion of footpoints in the horizontal direction. The expansion still
starts at the TR level, where the shape of the loop is semi-circular
and we assume that the process remains isothermal. As a result
of different expansion rates, the loop evolves so that the shape
becomes more elliptical. The properties of transverse loop os-
cillations in an elliptical coronal loop was studied recently by
Morton & Erdélyi (2009) who assumed that the semi-elliptical
shape is reached in the emerging stage, before reaching a semi-
circular shape. Although their topic is related to the research of
the present study, the problem of expansion is a dynamical pro-
cess that should be treated accordingly. They found that the dif-
ference in P, /P, period ratio between the circular and elliptical
shape is up to 6%.

Since the dynamics is going to be different over the two di-
rections, it is more convenient to introduce a polar coordinate
system in which
x =a(t)cosh, z=Db(t)sinb, (19)
with a(f) < b(r), the overdot denotes the derivative with respect
to time, and the length of the loop is covered by the parameter 6
that varies now between 0 and x. It is more convenient to use
the coordinates along the loop s, meaning that the dynamics of
transverse kink oscillations can be described by

(2 02Y pin(v0.2)
Pi ot 95 1+ Pe ot e5s n

2B2 9?
_22 0y

20
Mo Os? 0

A key parameter in our discussion is the arc-length, which is
defined as

ds _ \/a(t)2 sin 6 + b()2 cos? 6 = a6, 1). 1)

pri
In order to solve Eq. (20), we would need to express the density
as function of s and . However, it turns out that it is much easier

to deal with the variable 6 instead. Therefore, we express the
derivatives in the governing equation as

2 a 12 8_2 _ L 0> B sin 26(a(t)2 - b(t)z)ﬁ 22)
ds  add Hs2

a? 062 2a4 00

Assuming again a quasi-stationary equilibrium, described in
the previous section, and introducing the small parameter, e,
the governing equation for transverse kink oscillations can be
written as

on N 2 (piUi+peUe) an 1 [PiUizﬂLPeUez

o a 0i + Pe 000t  o? 0i + Pe
~ 2¢*B} @ ~ [zpiUi + peUe aisin® 6 + bb cos? 0
Ho(pi + pe) | 06° Pi + pe a’
N U? + peUg sin 26(a(1)* — b(1)?)
Pi + Pe 20t
_,_€°Bj sin26(a()’ - b(t)z)] mn _, (23)
Ho(pi + pe) 20 90

which has to be solved subject to the boundary conditions n(6 =
0,60 =m) =0.

Again, we will solve this equation using the WKB ap-
proximation presented earlier and suppose a solution identical
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to Eq. (8). In the first order of approximation we obtain the
equation

Sy sin26(a® b 8Sy Q2
- - So=0, 24
0 28 0 & e

together with the usual boundary conditions at the two ends of
the loop. In the next order of approximation, we obtain

%S| B sin 26(a*> — b*) @ (ZZQZS
96 22 90 & '
2iaQ % Q_S()@ +p—iU1+p°U6% . (25)
Ei ot 2Q ot pi+pe 00

This equation has to be solved subject to the boundary condi-
tion §1(6 = 0,0 = 1) = 0. Again, the equation for S; will
have a solution if the right-hand side of the above equation sat-
isfies the compatibility condition, i.e. the orthogonality to S.
Following the same solving procedure as presented earlier, it is
easy to show that the condition reduces to

7 Q2

S—20 dé = 0.

0 Cx

(26)

w

Therefore, the system of Egs. (24) and (26) will determine com-
pletely the dynamics of the expanding coronal loop.

Let us assume that at ¢ = 0, the loop is semi-circular and its
length is Ly. In order to reproduce the different movement over
the two directions, we introduce two different expansion speeds
in the horizontal (v,) and vertical (vy) direction, so that v, < vy.
Again, we suppose that the motion occurs linearly in time and
write the dynamics over the two axes as

L
X = (E + vht) cosf, z= (—0 + vvt) sin 6. 27
s n
Let us introduce a new set of dimensionless quantities
Uyt wL a Uh & S
=2 =", a=—, U==2, §,==" (28)
Ly CKf Ly Uy Ly

In the new variables, the governing equations become

%8 1+ .
8620 + & @ exp [—% sin 6] So
. sin @ cos O[72n2(1 — U?) + 2tn(1 — U)]
1 + 7272(sin 6 + U? cos? ) + 27x(sin> 6 + U cos? 6)
a5,
X — =0, 29
20 (29)
and
(5
o f 2lag=o0, (30)
0 CK

where ¢k = ck/vy. Figure 4 displays the evolution of the period
of oscillations for the fundamental mode and its first harmonic
for three different values of Ly/H, similar values as used in the
previous section. Comparing the findings in Figs. 2 and 4, the ef-
fect of the expansion into an elliptical shape compared to the
constant semi-circular shape is evident. As time progresses, the
period of oscillations tends to a higher value for elliptical shape;
however, this conclusion is more true for the fundamental mode.
The period of the fundamental mode, corresponding to an ex-
pansion in a solar corona where scale height is only 23.5 Mm
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P1 and P2 for 7=(0.0,10.0)
1200 T T T T
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Fig.4. The same as in Fig. 2, but here we assume that the expan-
sion of the loop occurs such that the loop evolves into a loop with a
semi-elliptical shape. The meaning of different line-styles is identical
to Fig. 2.
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Fig.5. The same as in Fig. 3, but here we assume that the expan-
sion of the loop occurs such that the loop evolves into a loop with a
semi-elliptical shape. The meaning of different line-styles is identical
to Fig. 2.

(corresponding to a temperature of 0.5 MK in a loop in hydro-
static equilibrium), saturates rather quickly.

A more significant change is evident when comparing
the P, /P, period ratio of the expansion into an elliptical shape
(shown in Fig. 5) to the variation of the period ratio for a semi-
circular shape. For the same time interval, the decrease of the
period ratio is much more significant, and, similar to the previ-
ous case, the period ratio is more affected for the case of strong
stratification, i.e. small H.

4. Conclusions

The solar corona is a very dynamical environment, where
changes in the dynamical state of the plasma and field occur on
all sort of time scales. In the present study, we combined for the
first time two kinds of dynamical events: the time-evolution of a
coronal loop through its expansion into the “empty” corona and
the transverse kink oscillations of coronal loops. The emergence
and expansion of a coronal loop is a very complex phenomenon,
but here we reduced our model to a simplified process, where the
expansion is solely described by the change in the length of the
loop with an associated temporal equilibrium density variation.


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219650&pdf_id=4
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The governing equation for kink oscillations was solved in
the WKB approximation, when the boundary conditions are
time-dependent. As expected, due to the change in the length of
the loop, the amplitude and periods of oscillations increase with
time, while the period ratio of the fundamental mode and its first
overtone decreases. This last physical parameter is of paramount
importance for the remote determination of density structuring
of coronal loops with the help of seismological approaches. In
the first instance, we regarded the loop to have an initial semi-
circular shape that is maintained through the expansion phase.
Later, this restriction was lifted based on the natural assumption
that the expansion into the vertical direction (i.e. into the direc-
tion of density decrease) occurs much more easily than into the
horizontal direction. In this limit, the loop evolves into a semi-
ellipse, with the major axis in the vertical direction. Comparing
the results of the two approaches, it is clear that the behaviour of
the period ratio is sensitive to the geometrical shape of the loop,
a more significant drop in the P/P; ratio being achieved in the
second case. Although our numerical results were obtained for
three different structuring degrees (measured by the ratio of the
initial loop length to the density scale-height), it is also evident
that both the temporal change in the loop length and the stratifi-
cation will have the same effect upon the period ratio, resulting
in a mutual amplification of the effect.

Our model predicts that the amplitude of oscillations
increases with time, however, due to the particular choice of
density, damping processes were neglected. Once the density is
allowed to vary also in the radial direction, according to the the-
ory of resonant absorption (e.g. Goossens et al. 1992; Rudeman
& Roberts 2002), loops will damp very quickly with the reso-
nant position displaying a steady motion due to the change of
the length of the loop. The amplitude of oscillations can also be
damped because the cooling of the plasma (e.g. Morton et al.
2010), an effect that was also neglected here. In an expanding
loop, the growth of the amplitude due to emergence and the de-
cay of amplitude owing to resonant damping or cooling will be
competing processes. The competition between these two effects
will be discussed in a forthcoming paper.
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Appendix A: Solutions to the wave equation
in the case of the loop at the beginning
of its expansion

An interesting insight into the character of the solution of the
governing equation can be obtained analytically in the limiting
case of

¢ =Ly(1+7)/nH < 1,

i.e. we restrict ourselves to the first part of the emergence into
the solar corona. In this case the argument of the exponential
function in Eq. (17) can be expanded (keeping only the first two
terms) and the equation to be solved reduces to

e
%—;20 + (Z)ZSO = —sin lﬂfTé’So.
Since we are looking for periodic solutions and expect that both
the amplitude and frequency will depend on time, we will em-
ploy the Poincaré-Lindstedt method (Meirovitch 1970) to find
corrections to the eigenfunctions and eigenfrequencies (it can be
easily shown that this method is similar to the re-normalization

(A1)

technique used by Ballai et al. 2007, in the case of dispersive
shocks). We are looking for solutions in the form of series and
write

So= 3088, 0=3dam,
k=1 k=1

where the functions S; are periodic functions. We first
concentrate on the fundamental mode. After inserting the ex-
pansions (A.2) into the governing Eq. (A.1), we collect terms
proportional to subsequent powers of . In the first order of ap-
proximation, collecting terms ~O(°), results in

2 & 0)
08,

&2
Solving this equation, subject to the aforementioned boundary
conditions, yields in the case of the fundamental mode

(A2)

+ @5 = 0. (A.3)

SO sin T 50 = T (A4)

+7 l+7
In the next order of approximation (i.e. terms ~O({)) we obtain

a8 n? né 2n né
0 ~02g() _ ia2 ~ (1) o
— + S = - _—,
@20 (1+T)zsm T+7 1+70 7147
(A.5)

which has to be solved subject to the boundary conditions

SPE=0,6=1+n)=0. (A.6)

The last term in Eq. (A.5) will cause secular growth of the solu-

tion, rendering the solution S | nonperiodic. To suppress this pos-

sibility, we choose @; = 0. As a result, the solution of Eq. (A.5)

together with the boundary conditions is simply written as
né 3 né

~ ) 1 2né
SO < sin - 4 2cos 2o — (34 :
N T R S P STt

(A7)

In the next order of approximation, we collect terms O(Z?) and
obtain

3582) 0282 g T 0) ~(1) &)
—— +a0 8 = -0 %8 sm(1+ )—2&% @S, (A8)
T

Using the expression of @©, § E)O) and S (()1) determined earlier, the
RHS of the above equation can be written as

2 2
RHS = T _ e sin U +Asin2ﬂ—§
3(1+7)?2  1+71 l+71 l+71
2 3
+ Bsin a3 + Csin a3 s (A.9)
1+7 l1+71

where the coefficients of higher harmonics (A, B, and C) are not
needed for our discussion. In order to prevent nonperiodic be-
haviour, we need to impose the condition that the coefficient of
the first term is zero, leading to

~2_ T
6(1+1)

As aresult, the eigenfunction and eigenfrequency of fundamen-
tal mode oscillations can be written as

(A.10)

& né 3 né 1 2né
50—51n1+T+§2cosl+T 6(3+COSI+T s
B T , T

= A.l11
i P TS (A1)
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meaning that the change in the frequency due to expansion is
a second-order effect. It is easy to show that the period of the
fundamental mode in this approximation can be written as

C12(1+7)

Py = A.12
= er (A.12)

proving the increase of the period P; with 7 seen in Fig. 2.

Repeating the same method for the first harmonic, where the
eigenfunction and eigenfrequency in the zeroth-order approxi-
mation are

~ 2 2
So =sin Lg, oV = —”,
1+7 1+7
we obtain that
2m , 2
0 = + , A13
O T Ty (A.13)

meaning that the period of the first harmonic in this approxima-
tion behaves like

151+ 1)

= , A.l4
2T 5+ 2 (A-19)

showing an increasing tendency with respect to 7. Now, using
Egs. (A.12) and (A.14), we can calculate the period ratio of the
fundamental mode and its first harmonic as

P 2 LX(1 +71)?
LRy P =21—u, (A.15)
Pz 60 6071'2H2

so that the change in the period ratio is very small but decreases

with .
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