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Abstract

We conjecture that (when the notion of Hadamard state is suitably adapted to space-
times with timelike boundaries) there is no isometry-invariant Hadamard state for the
massive or massless covariant Klein-Gordon equation defined on the region of the Kruskal
spacetime to the left of a surface of constant Schwarzschild radius in the right Schwarzschild
wedge when Dirichlet boundary conditions are put on that surface. We also prove that,
with a suitable definition for ‘boost-invariant Hadamard state’ (which we call ‘strongly
boost-invariant globally-Hadamard’) which takes into account both the existence of the
timelike boundary and the special infra-red pathology of massless fields in 1+1 dimensions,
there is no such state for the massless wave equation on the region of 1+1 Minkowski
space to the left of an eternally uniformly accelerating mirror – with Dirichlet boundary
conditions at the mirror. We argue that this result is significant because, as we point out,
such a state does exist if there is also a symmetrically placed decelerating mirror in the
left wedge (and the region to the left of this mirror is excluded from the spacetime). We
expect a similar existence result to hold for Kruskal when there are symmetrically placed
spherical boxes in both right and left Schwarzschild wedges. Our Kruskal no-go conjecture
raises basic questions about the nature of the black holes in boxes considered in black hole
thermodynamics. If true, it would lend further support to the conclusion of B. S. Kay
‘Instability of enclosed horizons’, Gen. Rel. Grav. 47, 1-27 (2015) (arXiv: 1310.7395) that
the nearest thing to a description of a black hole in equilibrium in a box in terms of a clas-
sical spacetime with quantum fields propagating on it has, for the classical spacetime, the
exterior Schwarzschild solution, with the classical spacetime picture breaking down near
the horizon. Appendix B to the paper points out the existence of, and partially fills, a gap
in the proofs of the theorems in B. S. Kay and R. M. Wald, ‘Theorems on the uniqueness
and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a
bifurcate Killing horizon’, Phys. Rep. 207, 49-136 (1991).

1 Introduction

Thanks to a number of results obtained in the 1990’s, it is known1 that (leaving aside some
technicalities) if one quantizes a linear scalar field on a globally hyperbolic spacetime with
a one-parameter group of isometries possessing a bifurcate Killing horizon, then there is at

1Actually, while we were writing the present paper, we discovered – see Footnote 20 – a gap in the reasoning
in [KW91] which however (for all the spacetimes mentioned in this paragraph) we fill in Appendix B in the
present paper. So, strictly, the results we describe as previously ‘known’ and ‘proven’ in this paragraph and the
other footnotes thereto rely on the results in Appendix B here as well as on the papers we cite.
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most one2 state which is invariant under those isometries and which is (locally) Hadamard.3

Furthermore, for some notable cases, such as Kerr and Schwarzschild-de Sitter, it was proved
in [KW91] that there is no such state.4 For Kerr, this was a consequence of superradiance;
for Schwarzschild-de Sitter, one argument for the no-go result was based on the fact that,
should such a state exist, the Hawking temperatures associated with the black hole horizon
and the cosmological horizon would be different. Another argument relied on what, in quantum
information theory, is now known as monogamy (although this notion had not yet been coined
at the time).

In the present paper, we conjecture, and give heuristic arguments for, a further such non-
existence result which concerns a massless or massive linear scalar field on a spacetime which
one might think would represent a spherically symmetric maximally extended black hole in
equilibrium in a spherical box. Namely, the region of the Kruskal spacetime to the left of a
stationary hypersurface at some fixed Schwarzschild radius R represented by the hyperbola in
Figure 1 (where, as usual, each point represents a two-sphere).5 I.e. we argue that, completing
the specification of the system by imposing (say) Dirichlet boundary conditions at the box,
there is no Schwarzschild-isometry invariant Hadamard state on this spacetime (when the
notion of ‘Hadamard’, usually applied to globally-hyperbolic spacetimes, is suitably adapted
to the presence of a timelike boundary). As we discuss below, this conjecture raises obvious
questions about the nature of the black holes in boxes considered in the subject of black hole
thermodynamics [Haw76, GH93].

The basic plausible expectations about the space of classical solutions, from which we will
argue for this no-go conjecture in the next section, are that, on the one hand,

(a) the reflection at the box in the right wedge will cause solutions which ‘fall entirely through’
(see Section 2) the right A-horizon (HR

A in the Penrose diagram, Figure 2) to coincide with
solutions which ‘fall entirely through’ the right B-horizon (HR

B in Figure 2).

On the other hand,

(b) there exist solutions (one such suffices for our argument) which are non-vanishing on the
left B-horizon but which vanish on the entire A-horizon.

The plausibility of Property (b) is particularly easy to see for the massless case since, in
fact, any solution, φ, with non-zero Cauchy data on I − (see the Penrose diagram, Figure 2)
and zero Cauchy data on HA would be expected to have a non-zero value on HB expressing

2In fact, such a uniqueness result was proven in [KW91] under the restriction that the state in question be
quasi-free (with vanishing one-point function) [KW91, Haa92, BR97] and with the local Hadamard condition
replaced by a certain global Hadamard condition (see next footnote). However, in [Kay93] a general result was
obtained which enabled one to drop the quasi-free restriction while, as conjectured in [Kay88, GK89] and proved
in [RV96, Rad96, Rad92] on any globally hyperbolic spacetime, locally Hadamard states are necessarily globally
Hadamard. See also Footnote 20 and Appendix B.

3A (locally or globally) Hadamard state for a linear quantum field theory is a state whose two-point function
has the (local or global) Hadamard property – local Hadamard meaning roughly that its short distance singularity
should be the appropriate generalization to a curved spacetime of the short-distance singularity of the two-
point function of the vacuum state and of other physically relevant states in Minkowski space, while the global
Hadamard condition on a globally hyperbolic spacetime also rules out the possibility of singularities for spacelike
separated pairs of points. For full definitions, see e.g. [KW91] or the recent review [KM15]. See also the important
microlocal reformulation of the global Hadamard condition in [Rad96] and see [Mor03] for spacetime dimensions
other than 1 + 3.

4We remark that, as pointed out in [KW91], to prove such a no-go result, it suffices to prove that there is no
such quasi-free state, since if there was such a state at all, the quasi-free state with the same two-point function
(and zero one-point function) – i.e. the ‘liberation’ in the sense of [Kay93] – would also be such a state.

5Our no-go conjecture for Kruskal in a box applies equally to the part of the globally-hyperbolic region of non-
extremal Reissner-Nordström spacetime to the left of a similar stationary hypersurface at fixed Schwarzschild
radius R but, for simplicity we shall only refer to the Kruskal case in the main text.
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Figure 1: This is a dual purpose figure. In one interpretation, it represents the Kruskal spacetime
bounded by a single box in the right wedge (region I) at r = R (with r the Schwarzschild coordinate
and each point representing a two-sphere). In another interpretation, it represents (1+n)-dimensional
Minkowski space to the left of a hypersurface (referred to in the text as a ‘mirror’) at some constant
Rindler spatial coordinate r in the right Rindler wedge (in this case each point represents an (n-1)-
plane). The hyperbolae in regions II and IV are only relevant to the Kruskal interpretation, in which
case they portray the future and past singularities at r = 0.
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Figure 2: Penrose diagram for the region of the Kruskal spacetime bounded by a single box, cf. Figure
1. C is an initial-value surface on which the Cauchy-Dirichlet problem for the Klein-Gordon equation
is well-posed. The shaded area represents the support of the solution φ discussed in Sections 1 and 2.
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the fact that not all of the solution would be scattered back out to infinity, but rather, some
of it will fall through HL

B into the black hole. (Whether or not this property holds obviously
doesn’t depend on whether or not the spacetime is cut off at a box-wall in the right wedge.) For
massless and massive fields, one can rely, instead, e.g. on the existence of wave operators, Ω±

0

and Ω±
1
6 for the scattering theory on exterior Schwarzschild demonstrated in [DK87, DK86]

together with the expectation that the S-matrix component (Ω+
1 )

∗Ω−
0 will not be zero. In fact

this is now rigorously established in the massless case in Theorem 10 of [DRSR14a].7

We remark that if there is also an image box in the left wedge (located at the wedge-
reflected set of spacetime points to those occupied by the right-wedge box – below we shall
refer to this as the case of two boxes) we expect that there will exist an isometry-invariant
Hadamard state on the region between the two boxes. Indeed, we expect the latter to be a
counterpart to the Hartle-Hawking-Israel state [HH76, Isr76, San15] in maximally extended
Kruskal. Thus our no-go conjecture is reliant upon there being just one box rather than two.

Geometrically, this setup appears analogous to Minkowski spacetime (of any dimension)
to the left of a hypersurface at some constant Rindler spatial coordinate in the right wedge
(see Figure 1), i.e. to the left of a uniformly accelerating mirror (assumed to be ‘planar’ and
infinitely extended in the spatial dimensions suppressed in Figure 1). Here, Schwarzschild-
isometry invariance is replaced by boost invariance. One might therefore think that a similar
non-existence result would hold for boost-invariant Hadamard states for Klein-Gordon fields
on such spacetimes. And, in the absence of a rigorous proof of our conjecture for Kruskal, it
would obviously be of interest if one could more easily give a rigorous proof of the non-existence
of boost-invariant Hadamard states for some such Minkowskian system. However, Property
(b) above only holds for scalar fields in Minkowski space when those fields are massless and the
Minkowski space is 1+1 dimensional. This is because, except in this special case, a solution to
the Klein-Gordon equation in Minkowski space (say with compact support on spacelike Cauchy
surfaces) which vanishes on a single null plane, vanishes everywhere. See e.g. pages 109–110
in Section 5.1 in [Wal94] where this is proven for the case of massless fields and spacetime
dimension greater than 2. It is also stated there that the same statement presumably also
holds for massive fields and one of us [Lupa] has recently proven this.

In view of the above, and aside from making our above conjecture for the Kruskal case,
the main purpose of the present paper is to prove a rigorous version of such a non-existence
result for this latter 1+1 massless system with Dirichlet boundary conditions. Even for this
much simpler problem, it will turn out that we have to deal with a number of complications
which arise from the well-known special infra-red pathology [Sch63, Wig67, SW70, Kay85,
FR87, DM06] of the 1+1 massless Klein-Gordon field as well as with complications due to the
presence of a boundary. In fact, even in the absence of boundaries, because of that special infra-
red pathology, there are several inequivalent mathematical notions which could be regarded
as making the phrase ‘boost-invariant Hadamard state’ precise for the massless scalar field in
1+1 Minkowski space. What we succeed in doing (with Theorem 4.7 in Section 4.3) is to prove
that, with a particular such notion, when suitably adapted to the presence of a single mirror –
namely what we call the ‘strongly boost-invariant globally-Hadamard’ property of Definition
4.6 in Section 4.3 – then (in the presence of a single mirror) there is no state which has this
property.

We believe this no-go theorem deserves to be regarded as a suitable counterpart to the no-

6Ω±
0 maps solutions of the Klein-Gordon equation on Minkowski space into solutions on exterior Schwarzschild

(identified here with our Kruskal left wedge) which resemble them at late/early times and Ω±
1 maps solutions of

the massless ‘wave equation’ in 1+1 Minkowski space times the bifurcation 2-sphere into solutions on exterior
Schwarzschild and (as explained in [DK87]) effectively solves the characteristic initial-value problem for data on
the future/past horizon.

7We thank Mihalis Dafermos for drawing this to our attention.
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go result we conjecture for Kruskal because, as we will also point out in Section 4.3, there does
exist a strongly boost-invariant globally-Hadamard state both in full 1+1 Minkowski space
and in the case where there is a second mirror located at the wedge-reflected set of spacetime
points to those occupied by the right-wedge mirror, and the region to the left of this mirror
is excluded from the spacetime. The state in the former case is a suitably defined version of
the usual Minkowski vacuum state, while the state in the latter case – which we shall call the
case of two mirrors – was constructed in [Kay15]. Also, we think that the method of proof
of our no-go theorem should provide useful lessons towards a proof of our conjecture about
the Kruskal case. Note that our notion of ‘strongly boost-invariant globally-Hadamard’ makes
precise the notion of ‘boost-invariant global Hadamard state’ since, for reasons we will explain
in Section 4.2, we do not know if a local-to-global result (see Footnote 3) applies in the 1+1
massless case.

Our conjecture in the Kruskal case has an obvious application to understanding the nature
of the idealized black holes in boxes which play a basic role in black hole thermodynamics
[Haw76, GH93]. A natural question is whether a black hole in equilibrium in a box8 has a
semiclassical description in terms of a fixed Lorentzian classical spacetime together with a
Hadamard state of a quantum field defined on it – where both the classical spacetime and the
Hadamard state are isometry-invariant. Amongst the various possibilities one can imagine for
the background spacetime, and ignoring back reaction, one might consider the following three:
(A) the region of Kruskal to the left of a single box as in Figures 1 and 2; (B) the region of
Kruskal between two boxes as in Figure 3; (C) the region of exterior Schwarzschild alone to the
left of a single box (i.e. the right wedge of any of the figures 1, 2 or 3). An earlier paper [Kay15]
of one of us argued that both (A) and (B) should be ruled out due to the existence of classical
and/or quantum small perturbations such that, as a consequence of reflection at the box, their
(renormalized) stress-energy grows arbitrarily large near the future horizon(s) and/or near
the bifurcation surface and argued in favour of (C) with the proviso that the region near the
horizon be considered to be essentially quantum-gravitational and non-classically describable
rather as envisaged in ‘t Hooft’s ‘brick wall’ model [tH85]. However the arguments against (A)
in [Kay15] were less strong than the arguments against (B). Our conjectured no-go theorem,
if true, tells us that, on the background (A), no isometry-invariant Hadamard state is possible
and this reinforces our reasons for rejecting (A).

It is also of interest to compare our no-go result for the massless scalar field in 1+1
Minkowski with claims made in the literature (see e.g. [FD76, DF77, BD84]) concerning radi-
ation by accelerating mirrors in 1+1 dimensions. As pointed out in that work, a mirror which
starts out inertial – with the state of the field the initial vacuum state – and later undergoes
uniform acceleration doesn’t radiate during the period of uniform acceleration. This might
seem to suggest that there would be a quantum state of the field such that an eternally accel-
erating mirror wouldn’t radiate at all and that might, in its turn, seem to suggest that there
would exist a boost-invariant Hadamard quantum state. And one might think that there would
in fact exist a strongly boost-invariant globally-Hadamard state in the sense of the present pa-
per. But we prove that there isn’t one; for there to be such a boost-invariant Hadamard state,
it would seem to be required for there to be a symmetrically placed uniformly decelerating

8Here we leave aside the issue that a Schwarzschild black hole in equilibrium in a box is believed to be
thermodynamically unstable [Haw76]. We remark that, as explained in [Kay15], the Schwarzschild anti-de Sitter
spacetime (where, for certain values of the parameters, one has thermodynamic stability) is, when maximally
extended, analogous to the region of Kruskal between two boxes – i.e. what we call in the main text, ‘case (B)’ –
and thus the results of the present paper are not relevant to it; however the results in [Kay15] suggest that this
maximal extension also suffers from the same problems as case (B) for Schwarzschild black holes and therefore
that a physical Schwarzschild anti-de Sitter black hole will be a single Schwarzschild-anti de Sitter wedge with a
non-classically describable region near the horizon analogously to what we argue for Schwarzschild black holes.
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Figure 3: Penrose diagram for the region of the Kruskal spacetime bounded by two boxes, possibility
(B) in Section 1. We conjecture that a ‘Hartle-Hawking-Israel–like’ state exists for the Klein-Gordon
field on this spacetime when Dirichlet conditions are imposed at the boundary.

image mirror in the left wedge.
An outline of the structure of the rest of the paper is given in the paragraph preceding

Equation (3) in Section 2.
There are two Appendices. The purpose of Appendix A is explained in the above-mentioned

paragraph. Appendix B points out the existence of, and partially fills, a gap in the arguments
in the 1991 paper [KW91] of B.S. Kay and R.M. Wald. It is included here because (see Footnote
19) the gap became apparent while we were doing this work. However its content is logically
independent of the rest of the paper.

2 Basic idea of our argument for our Kruskal conjecture and
for our 1+1 no-go theorem

We next wish to explain the basic idea behind both our no-go conjecture for (massive or
massless) Klein-Gordon on Kruskal and our proof of our analogous no-go result for the massless
1+1 Minkowski one-mirror system. In Kruskal we take our equation to be

Pφ = (�g +m2)φ = 0 (1)

where m is a non-negative mass. (One could add a term proportional to the Ricci scalar, R, to
m2, but this of course vanishes in Kruskal.) In our 1+1 Minkowskian theorem we insist that
m be zero.

In both cases, we rely on the well-posedness of the Cauchy problem for (1) when supple-
mented by Dirichlet boundary conditions at the box/mirror. Of course, neither the region of
Kruskal to the left of our box, nor the region of 1+1 Minkowski space to the left of our mirror
are globally hyperbolic and thus neither have Cauchy surfaces in the strict sense. However,
with our boundary conditions on the box/mirror, one expects the Cauchy problem to be well
posed, at least in the sense of uniqueness, for data on initial-value surfaces which are the
restrictions, to the region to the left of the box/mirror, of Cauchy surfaces for the whole of
Kruskal/Minkowski. Indeed, this can easily be verified in the 1+1 Minkowski case; for the
Kruskal case we expect a suitable extension of known results on the mixed Cauchy-Dirichlet
problem (see e.g. Theorem 24.1.1 in [Hör07] or the monograph [GV96]) to apply. And it will

6



still to be possible to define, in each case, the space S of smooth (real-valued) solutions of this
mixed Cauchy-Dirichlet problem whose restriction to all such initial-value surfaces9 has com-
pact support, analogously to the definition of S in [KW91]. And this space will be equipped
with a manifestly antisymmetric bilinear form σ defined, in terms of an arbitrary (possibly
partially null) smooth initial-value surface C , by

σ(φ1, φ2) :=

∫

C

naj
a[φ1, φ2] dµC , (2)

where ja[φ1, φ2] := φ1∇aφ2 − φ2∇aφ1, C is given the induced orientation as the boundary
of J−(C ),10 and the forms n and dµC are such that, on C , n ∧ dµC equals the volume form
dµg induced by the spacetime metric. The independence of the right-hand side of Equation
(2) from the initial-value surface C is a consequence, using Gauss’ theorem, of the fact that
∇aj

a[φ1, φ2] = 0 whenever φ1 and φ2 are solutions to Equation (1), together with the fact that,
due to the Dirichlet boundary conditions, no boundary terms arise from integrating along the
spacetime boundary. One expects that, once a full characterization for the allowed initial data
for solutions in S is available, it will be possible to show that σ is in fact non-degenerate on
S, and therefore a symplectic form.

Similarly to in [KW91] – and proceeding, in the case of Kruskal, under the same fiction
explained in the note added in proof at the end of [KW91] (see the discussion at the end of
this section) – an important role will be played by ‘subspaces’, SA and SB, of S which consist
of solutions which ‘fall entirely through’ the A- and B-horizons HA and HB respectively.
Precisely, a solution φ belongs to SA if its support intersects HA in a compact set and if φ
vanishes outside the union of the causal past and causal future of this set (and one defines
SB analogously). For a massless scalar field in 1+1 Minkowski space without any mirrors,
SB would consist of right-moving solutions and SA of left-moving solutions. When we have
our mirror in the right wedge, SB consists of solutions which are right-moving to the causal
past of the B-horizon, and SA consists of solutions which are left-moving to the causal future
of the A-horizon as explained in more detail in Section 4.1. We also define SR

A to consist of
solutions in SA whose restrictions to the A-horizon are compactly supported to the right of
(and strictly away from) the bifurcation surface, and also define SL

A, S
R
B and SL

B similarly with
obvious changes.

In Appendix A, we will recall the general theory of the quantization of linear Bose systems
via the so-called Weyl-algebra approach. In particular, we will review the standard definitions
for the notions of state, quasifree state and one-particle structure. In Section 3, we will recall
how this theory is applied to the case of Klein-Gordon fields on general globally hyperbolic
spacetimes, where the class of Hadamard states (see Footnote 3) plays a special role, and we
will sketch a strategy for adapting this theory to situations with timelike boundaries so as to
properly define the notion of ‘Hadamard state’ and, thereby, to be able to formulate in a precise
way our conjecture that there is no isometry invariant Hadamard state on Kruskal in a box.
Then Section 4 will show how to implement this strategy for massless fields on 1+1 Minkowski
with a mirror in a way which also copes with the special infra-red pathology, thereby enabling
us both to properly formulate and prove our no-go theorem. For us to explain the basic idea
behind our conjecture and theorem in the present section, however, all that we shall rely on
are the following two facts:

• First, just as in the globally hyperbolic case mentioned in Footnote 4, to show that there

9These initial-value surfaces should be understood to contain the relevant boundary points and therefore not
as being entirely contained in the interior of the spacetime.

10I.e. the boundary orientation for which Stokes’ Theorem applies. Here, J± of a subset of a spacetime denotes
its causal future/past [HE73]
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is no isometry-invariant Hadamard state, it suffices to show there is no isometry-invariant
quasi-free Hadamard state (with zero one-point function), see Appendix A.

• Second, as explained in Appendix A, to every quasi-free state of the theory there cor-
responds a one-particle structure, (K,H ). That is a, Hilbert space (the one-particle
Hilbert space), H , and a real-linear map, K : S →H , such that KS + iKS is dense in
H , which is symplectic in the sense that

2Im 〈Kφ1 | Kφ2〉 = σ(φ1, φ2) (3)

for all pairs of classical solutions, φ1, φ2 ∈ S.
Furthermore, and similarly to Kruskal without a box or (1+3)-dimensional Minkowski

without a mirror, we expect that the existence of an isometry-invariant Hadamard state for
Kruskal with our box implies, by similar arguments to those given in [KW91], the following
explicit formula for

〈
Kφ1B

∣∣ Kφ2B
〉
for any φ1B, φ

2
B ∈ SB:

〈
Kφ1B

∣∣ Kφ2B
〉
= − 1

π
lim
ε→0+

∫
f1(u1, s)f2(u2, s)

(u1 − u2 − iε)2
du1 du2 d

2s, (4)

where f1 is the restriction of φ1B and f2 the restriction of φ2B to the B-horizon, and this is
coordinatized in the usual way by affine parameter, u,11 and the usual set of angular variables,
denoted by s, and the integration can be thought of as over two copies of the real line and one
copy of the bifurcation sphere.

For our massless scalar field in 1+1 Minkowski with a mirror, it turns out that the existence
of an isometry-invariant state which is Hadamard in the precise sense we will define (i.e. the
‘strongly boost-invariant globally-Hadamard’ property of Definition 4.6 in Section 4.3) entails
a similar formula, with the dependence on s and the integration over s removed. And of course
there will be a similar formula, for φ1A and φ2A and the A-horizon.

As discussed in [KW91] (cf. Equation (1.1) there; we refer also to Observation 6.1 and
Proposition 7.2 in [DK87]), Equation (4) tells us that the restriction of the two-point function
for the u derivative of the field to the B-horizon can be identified (up to a trivial dependence
on s) with the restriction of the two-point function for the u derivative of a free massless real
scalar field in 1+1 Minkowski space (without a mirror) to the null line t = −x, where u is
now identified with t− x, and where t and x are the usual Minkowski coordinates. In view of
this (or directly from the formula) one can conclude (see again [KW91]) the following crucial
facts12

(A) KSA and KSB are dense in complex-linear subspaces HA and HB of H (respectively).
As explained in Appendix A of [KW91], and reproduced in Appendix A to the present
paper as Proposition A.3, this is equivalent to the fact that the state restricted to fields
‘symplectically smeared’ with solutions in either SA or SB is a pure state. In the special
case of 1+1 Minkowski (without a mirror) it corresponds to the fact that the Minkowski
vacuum is a pure state when restricted to either the left or right-moving sector.

(B) KSR
A + iKSR

A is dense in HA and KSR
B + iKSR

B is dense in HB. This corresponds
to the fact that the (massless) 1+1 Minkowski vacuum, restricted to sums of products

11Aside from having the opposite signature convention to [KW91], we (and also [Kay15]) differ from [KW91]
by denoting affine parameter on our horizons by u and v, rather than U and V .

12Actually in our proof of our no-go theorem, i.e. of Theorem 4.7 in Section 4.3, facts (A) and (B) about
the one-particle structure (K,H ) are arrived at by directly relating it to the one-particle structure (KM,HM)
associated to the vacuum state, ωM, on the ‘physical’ Weyl algebra for the massless wave equation in (1+1)-
Minkowski space by a somewhat different version of the argument which doesn’t (need to) refer to the formula
(4).
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of (derivatives of) fields restricted to a single null line has the Reeh-Schlieder property
[SW00] for fields localised on a half null-line. Cf. Proposition A.4 in Appendix A.

We are now in a position to explain the basic idea behind both our hoped-for proof of our
no-go conjecture for Kruskal in a box and our proof of our no-go theorem for our massless field
in 1+1 Minkowski with a mirror.

First we point out that, for the 1+1 Minkowski case, the two ‘basic plausible expectations
about the space of classical solutions’ discussed in Section 1 are both satisfied, and may be
reformulated in terms of our subspaces of solutions as follows:

(a) SR
A = SR

B ;

(b) There exists a φ ∈ S such that σ(φ, φLB) 6= 0 for some φLB ∈ SL
B, but for which σ(φ, φA) = 0

for all φA ∈ SA.

Combining the (purely classical) statements in (a) and (b) with (A) and (B) above quickly
leads to a contradiction, as we will now explain. By the first part of (b) and Equation (3),
Kφ cannot be orthogonal to KSL

B and hence, a fortiori it cannot be orthogonal to KSB –
so, by (A), it cannot be orthogonal to HB. On the other hand, Equation (3) and the last
part of (b), together with (A), imply that Kφ is orthogonal (in the Hilbert space H ) to
HA. To see this, we will use the following general observation: If H is a complex Hilbert
space, and K ⊆ H is a real-linear subspace whose closure is complex -linear, then, for any
Φ ∈ H , 〈Φ | K 〉 = {0} if and only if Im 〈Φ | K 〉 = {0} if and only if Re 〈Φ | K 〉 = {0}.
[Proof of first ‘if’: Suppose that Im 〈Φ | K 〉 = {0}. Note that Re 〈Φ | K 〉 = Im 〈Φ | iK 〉.
Under the assumptions on K , iK ⊆ K , whereupon a simple limit argument shows that
Im 〈Φ | K 〉 = {0} =⇒ Im 〈Φ | iK 〉 = {0} and we are done. The proof of the second ‘if’ is
analogous.] By (B), to say that Kφ ⊥ KSA is tantamount to saying that it is orthogonal to
KSR

A+iKSR
A . But, by (a), this is the same thing as saying that it is orthogonal toKSR

B+iKSR
B ,

which, by (B), has the same closure as KSB, namely HB. Thus, on the assumption that there
exists a stationary Hadamard state, Kφ is both not orthogonal to HB and orthogonal to HB

– a contradiction.
For Kruskal in a box, Property (a) above cannot strictly hold since we would expect a

solution which falls entirely through the right B-horizon to have a restriction to the right A-
horizon which fails to be supported away from the bifurcation point and moreover we would
expect it to fail to be compactly supported, but rather to have a tail at large v. However, we
conjecture that the closure in H of KSR

A will equal the closure in H of KSR
B (or rather an

appropriate substitute for this statement will hold when one removes the fiction we referred
to above and discuss further below). It is easy to see that this ‘closure conjecture’ would
immediately lead to the same contradiction.

The fiction we referred to above concerns an error in the original version of [KW91] which
we have also (knowingly) made above. As was pointed out in the note added in proof in that
paper, the notion of ‘C∞ solutions which fall entirely through one of the horizons’, as in the
apparent ‘definitions’ of SA etc. in that paper and above in the Kruskal case, is problematic
since a solution which actually falls entirely through one of the horizons in the sense explained
above cannot be C∞ – smoothness failing when one crosses from one side of the horizon to
the other. The note added in proof of [KW91] showed how one can repair this error while
maintaining the spirit of the basic arguments there by working with a certain class of solutions
(which are everywhere C2) and end up with rigorous results with essentially the same physical
content as those originally announced. In particular, the no-go results in that paper continue
to hold with thus-corrected arguments. We remark that, in a recent paper [San15], K. Sanders
has pointed out that some of the arguments in the note added in proof may possibly be made
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simpler using an approach [Hör90] to the characteristic initial-value problem due to Hörmander
(see also [BW15]). However, to our knowledge, this idea has not been pursued in detail. Some
new alternative ways to deal with some of the technical issues in the note added in proof in
[KW91] are also indicated in Appendix B here.

Clearly, in the case of Kruskal, what we have written above, while we find it highly plausible,
falls considerably short of being a rigorously stated theorem and proof. To have a rigorously
stated theorem one would need to show that the expectations mentioned in Section 3.2 below
hold so that the strategy we sketch there for defining what is meant by a Hadamard state
can be implemented. And then to turn the above-explained idea for a proof into a rigorous
proof one would need to remove the above fiction, presumably with similar methods to those
introduced in the note added in proof in [KW91], prove the above ‘closure conjecture’ or some
effective replacement for it, and justify in detail the various statements made above which were
described as ‘expectations’. As we anticipated in the Introduction, in the absence of all that,
what we can and do provide, in Section 4, is a rigorous formulation and proof of our no-go
result for a massless field in 1+1 Minkowski with a mirror.

3 Quantization of Klein-Gordon quantum fields

3.1 Globally hyperbolic case

Let (M, g) be an oriented, time-oriented, globally hyperbolic spacetime of dimension 1 + n.
(We adopt the signature convention (+,−, . . . ,−) for the metric.) We recall that the vector
space, which we will denote by S, of ‘regular’ real-valued classical solutions to the Klein-Gordon
equation, Equation (1), is naturally equipped with a linear symplectic structure. Explicitly,
the symplectic product of any two such solutions φ1, φ2 is defined by Equation (2), where C

is any smooth Cauchy surface, and by ‘regular’ we mean that φ ∈ S should be (a) smooth
and (b) ‘spacelike compact’, i.e. compactly supported when restricted to any Cauchy surface
(equivalently, suppφ ⊂ J(K)13 for some compact set K). Denoting by P the Klein-Gordon
differential operator as in Equation (1), and by C∞

sc (M) the space of real-valued, smooth,
spacelike compact functions on M , this amounts to defining S as ker(P ↾C∞

sc (M)).
Standard theory [BGP07] guarantees that the Cauchy problem for Equation (1) in such a

spacetime is well-posed, and that there exist retarded/advanced fundamental solutions (Green’s
functions) E± : C∞

0 (M)→ C∞(M) which are uniquely determined by requiring that they

(i) be right inverses to P and left inverses to P ↾C∞
0

(M),

(ii) satisfy the support properties supp(E±F ) ⊆ J±(suppF ) ∀ F ∈ C∞
0 (M).

Letting E := E− − E+ : C∞
0 (M) → C∞(M), it is evident that E maps test functions to

elements of the space S defined above. We call E the causal propagator of the theory since
supp(EF ) ⊆ J(suppF ). Furthermore, the sequence of vector spaces

{0} −→ C∞
0 (M)

P−→ C∞
0 (M)

E−→ C∞
sc (M)

P−→ C∞
sc (M) (5)

is exact, implying in particular that E is onto S, that kerE = P [C∞
0 (M)] and therefore also

that S ∼= C∞
0 (M)/P [C∞

0 (M)]. One also verifies that, for any φ1, φ2 ∈ S,

σ(φ1, φ2) =

∫

M
F1φ2 dµg =

∫

M
F1(EF2) dµg =: E(F1, F2), (6)

13Throughout this paper, given a subset S of a spacetime, J(S) denotes J+(S) ∪ J−(S) where J±(S) is the
causal future/past [HE73] of S.
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where dµg denotes the metric volume form, and F1, F2 ∈ C∞
0 (M) are such that EF1 = φ1 and

EF2 = φ2.
The Weyl algebra recipe for quantization of general linear systems outlined in Appendix

A can now be straightforwardly applied to (S, σ), thus yielding a Weyl algebra of canonical
commutation relations A = W (S, σ). In view of the existence of the causal propagator E
relating test functions to solutions, if ω is a C2 state on A, then its two-point function λ2 (see
Appendix A) induces a bidistribution14 on M defined for all test functions F1, F2 by

Λ(F1, F2) = λ2(EF1, EF2). (7)

We will henceforth refer to λ2 as the ‘symplectically smeared two-point function’ and to Λ as
the ‘spacetime smeared two-point function’. In view of the general properties of C2 states listed
in Appendix A, of the sequence (5) and of Equation (6), Λ will satisfy for all F1, F2 ∈ C∞

0 (M):

1. (Commutation relations) Im[Λ(F1, F2)] = [Λ(F1, F2)− Λ(F2, F1)]/(2i) = E(F1, F2)/2;

2. (Positivity) ReΛ has analogous symmetry and positivity properties to (i)–(ii) in Appendix
A (with σ,Φ1,Φ2 replaced by E,F1, F2 respectively);

3. (Distributional bisolution property) Λ(PF1, F2) = Λ(F1, PF2) = 0.

For a state on A to be physically relevant, of course, not only must its spacetime smeared
two-point function, Equation (7), exist, but it must also satisfy the (local or global) Hadamard
condition. For general globally hyperbolic spacetimes, we refer to the discussion and references
in Footnote 3. In the present paper, the only case we will discuss in detail is the (1+1)-
dimensional massless case, the correct formulation of which will, in fact, be the focus of the
next section.

3.2 Case of spacetimes with timelike boundaries

We would next like to sketch how we expect the quantization procedure for Klein-Gordon fields
outlined above could be adapted to the case of ‘spacetimes with boundary’ (M, g), where M is
now a manifold with boundary whose boundary is timelike and (IntM, g↾IntM ) – where IntM
denotes the interior of M – is extendible to a globally hyperbolic spacetime. This class of
course includes our Kruskal-in-a-box or Minkowski-with-a-mirror spacetimes. We anticipate
that, with more work, all the expectations listed below will be fulfillable for Kruskal. Of our
1+1 Minkowski-with-mirror spacetime, we will demonstrate in detail in Section 4 that, and
how, they are indeed fulfilled so as to have a suitable rigorous treatment of the quantum theory
which takes into account the special infra-red properties of this case.

First, we expect that methods akin to those in [Hör07, GV96] will show that, with the
addition of suitable homogeneous boundary conditions on the timelike boundary, the Cauchy
problem is well-posed for suitable initial data on suitable initial-value surfaces, as already
discussed at the start of Section 2 for the case of Dirichlet boundary conditions. In particular,
such suitable initial data, when smooth and of compact support (where it is to be understood
that the support could include points on the timelike boundary), should be in one-to-one
correspondence with smooth spacelike-compact15 solutions to this mixed problem, and (once
the class of ‘suitable’ initial-value surfaces has been precisely identified) these should in turn be

14Henceforth, for a manifold (without boundary) N , we use the word ‘bidistribution on N ’ to simply indicate
a bilinear functional C∞

0 (N)× C∞
0 (N) → C, without any continuity requirements.

15Just as in the globally hyperbolic case, a spacelike-compact function φ onM is one such that suppφ ⊆ J(K)
for a compact set K, however in this case we allow K to contain points on the timelike boundary.
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equivalently characterized as being the smooth solutions whose restriction to all suitable initial-
value surfaces has compact support. Defining S as the space of spacelike-compact smooth
solutions to this mixed problem, we then expect, as discussed in Section 2, that Equation (2)
will define a symplectic form σ on S.

Furthermore, we expect that one will be able to construct retarded and advanced Green’s
operators E± which, in addition to satisfying the same requirements as the analogous objects
in the globally hyperbolic case – listed as (i)–(ii) in the previous section – are such that
E±F ↾∂M satisfies the given boundary conditions. The domain of E± here should at least
include F ∈ C∞

0 (IntM). In the next section we will explicitly construct such objects in the
case of the massless wave equation in the region of (1+1)-dimensional Minkowski spacetime
to the left of a uniformly accelerating mirror. As we will observe in that case, in general the
analogous sequence to (5) will no longer be exact since the kernel of E = E− − E+ will be
strictly larger than the image of P . Furthermore, both in that case and in the general case
one doesn’t expect that E will be onto S.16

Assuming that the expectations in the previous paragraphs are fulfilled, we propose that
a state on the Weyl algebra W (S, σ) be called Hadamard if its symplectically smeared two-
point function exists and if its spacetime smeared two-point function, defined at least on
C∞
0 (IntM)× C∞

0 (IntM) by Equation (7), satisfies the following condition:

Definition 3.1. A bidistribution on IntM will be said to be globally Hadamard if, for any
causally convex open subset O of IntM which, when equipped with the restriction of the metric
to IntM , is a globally hyperbolic spacetime in its own right, the restriction of Λ to smearings
with test functions supported inside O is globally Hadamard in the standard sense of [KW91]
mentioned in Footnote 3.

Here we recall that a subset U of a spacetime (N, g) is called causally convex if, whenever
two points x, y ∈ U can be connected by a causal curve γ in N , then the portion of γ between
x and y is entirely contained in U . Notice that, if O is a causally convex globally hyperbolic
subset of IntM , then denoting by E±

O : C∞
0 (O)→ C∞(O) the unique retarded/advanced Green

operators for the Klein-Gordon equation on O, it is easy to verify that, for all F ∈ C∞
0 (O), we

will have
[E±F ]↾O = E±

OF. (8)

Indeed, that this will be the case follows since, as it is easy to check, E± followed by restric-
tion to O will have, as an operator on C∞

0 (O), the support properties and left/right inverse
properties which uniquely determine the retarded/advanced Green operators on O.

The above proposal fits nicely with the paradigm of locally covariant (quantum) field theory
proposed by Brunetti, Fredenhagen and Verch [BFV03] and indeed allows an extension of that
paradigm to include spacetimes with (timelike) boundaries. Physically, since a spacetime
boundary can only be detected by sending a signal to it and receiving one in return, our
requirement corresponds to saying that, if we localize the quantum state by only performing
measurements within globally hyperbolic regions O which do not ‘causally intercommunicate’
with the boundary – i.e. such that there are no future-directed piecewise smooth causal curves
which begin in O, hit the boundary and then return to O – we should not be able to tell whether
our universe possesses a real boundary, or whether we are witnessing an ‘unusual’ state on a
different, unbounded spacetime. A similar ideology was already contained in [Kay79], where
it was pointed out that such a view is necessary in order to clarify the conceptual issues
underlying the Casimir effect. It also appeared in [FOP07] in the context of the investigation
of quantum energy conditions for spacetimes with boundaries.

16It is an interesting open question (as far as we know) – again both in the general case and in the (1+1)-
dimensional example we will study – whether the domains of E± can be suitably extended in such a way that
the resulting advanced-minus-retarded propagator is onto S.

12



4 No-go result for massless fields in 1+1-dimensions with a

mirror

4.1 Classical theory

In this section we consider in detail the classical theory of a massless real scalar field on the
spacetime with boundary, (M,η), consisting of the portionM of (1+1)-dimensional Minkowski
spacetime ‘to the left of’ (and including) the worldline of a point-like mirror on a timelike
trajectory of uniform and eternal acceleration. Without loss of generality we assume that the
Minkowskian pseudo-norm of the 2-acceleration is always equal to −1. (Clearly our no-go result
does not depend on the numerical value of this quantity.) Picking a global inertial frame (t, x)
such that, when the proper time τ along the mirror’s worldline equals 0, the mirror is located at
(t = 0, x = 1) and dt/dτ |τ=0 = 1, we represent (M,η) byM = R2\

{
(t, x)

∣∣ x2 − t2 > 1, x > 0
}

and η = dt2 − dx2. The manifold M is depicted in Figure 1, with (R = 1 and) the vertical
(respectively horizontal) axis representing the t-axis (respectively x-axis).

As already pointed out, this spacetime fails to be globally hyperbolic due to the presence
of the timelike boundary given by the mirror’s trajectory. It possesses a one-parameter group
βτ of isometries given by the flow of the Killing vector field k = x∂/∂t + t∂/∂x17 describing
homogeneous Lorentz boosts in the x-direction. k has a bifurcate Killing horizon given by
HA ∪HB, where HA = {(t, x) | t = x} and HB = {(t, x) | t = −x}.

We immediately note that any real-valued, smooth solution φ on M to

�φ = 0, φ↾∂M = 0, (9)

can be written globally as a sum φ(t, x) = f(t − x) + g(t + x) for two smooth functions f
and g with g(v) = −f(−1/v) for all v > 0 (cf. [Kay15]). This can be checked e.g. by writing
the above equation in the null coordinates u(t, x) = t − x and v(t, x) = t + x. It is also
easy to check that for any such solution φ which, in addition, has spacelike-compact support
(see Section 3), the functions f and g must have the additional property that there exist u0
and v0 such that, for some a ∈ R, f(u) = a ∀ u ≥ u0 and g(v) = −a ∀ v ≤ v0. Thus we
have complete knowledge of the vector space S of spacelike-compact, smooth (and real-valued)
solutions discussed in Section 3.2. And, again as envisaged in that section and in Section 2,
Equation (2) defines a manifestly antisymmetric bilinear form σ : S × S → R, independent of
the initial-value surface C as explained in Section 2. Since it is easy to check that the Cauchy-
Dirichlet problem is well-posed (in the sense of both existence and uniqueness) for initial data of
compact support in the interior of the particular initial-value surface C = {(t, x) | t = 0}∩M ,
one could prove the non-degeneracy of σ directly by picking, for any φ1 ∈ S, which will have
some initial data (ϕ1, π1) ∈ C∞

0 (C )⊕C∞
0 (C ),18 φ2 to be the solution with initial data (ϕ2, π2) ∈

C∞
0 (IntC )⊕C∞

0 (IntC ) where (ϕ2, π2) approximate (−π1, ϕ1) (respectively) ‘sufficiently well’
for σ(φ1, φ2) to be greater than 0. This can always be done by picking ϕ2 = −ψπ1 and
π2 = ψϕ1 where ψ ∈ C∞

0 (IntC ) ⊂ C∞
0 (C ) is such that 0 ≤ ψ ≤ 1 and ψ = 1 everywhere

but on a small enough neighbourhood of the boundary point (t = 0, x = 1) of C . Indeed, we
expect a generalization of this strategy to apply to the more general setup described in Section
3.2. We will also provide another, independent, proof of the non-degeneracy of σ later in this
section.

17Explicitly, in global inertial coordinates, βτ (t, x) = (cosh(τ)t + sinh(τ)x, sinh(τ)t + cosh(τ)x) or, in terms
of the null coordinates (u, v) introduced below, βτ (u, v) = (e−τu, eτv)

18Note that, since C is a manifold with boundary, functions in C∞
0 (C ) – which are by definition smooth

functions with conpact support on C – need not be supported away from the boundary; indeed, they needn’t
even vanish at the boundary (although for this specific choice of C , both pieces of Cauchy data will have to
vanish at the boundary because of the Dirichlet boundary condition).
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Thus we have endowed S with the structure of a symplectic vector space (S, σ). A simple
calculation, which e.g. starts with the expression for σ in terms of the t = 0 initial-value surface
mentioned above and then involves a change of variables, shows that, for any φ1, φ2 ∈ S,

σ(φ1, φ2) = 2

∫ +∞

−∞
f1(u)f

′
2(u) du+ 2

∫ 0

−∞
g1(v)g

′
2(v) dv (10)

= 2

∫ +∞

0
f1(u)f

′
2(u) du+ 2

∫ +∞

−∞
g1(v)g

′
2(v) dv, (11)

where, f1, g1, f2, g2 are any smooth functions such that φ1(t, x) = f1(t − x) + g1(t + x) and
φ2(t, x) = f2(t − x) + g2(t + x). These explicit expressions will be important in the next
paragraph.

Let SA and SB denote the linear subspaces of S consisting of those solutions which ‘fall
entirely through’ HA and HB respectively. A geometric definition of these was already given
in the third paragraph of Section 2. However, a more explicit characterization is also available
here: φ ∈ SB (respectively φ ∈ SA) if and only if φ(t, x) = f(t − x) + g(t + x) with the
‘right mover’ f belonging to C∞

0 (R) and the ‘left mover’, g(v), being equal to zero for all
v ≤ 0, and to −f(−1/v) for all v > 0 (respectively the ‘left mover’ g belonging to C∞

0 (R) and
the ‘right mover’, f(u), being equal to zero for all u ≥ 0, and to −g(−1/u) for all u < 0).
Thus, solutions in SB (respectively SA) are uniquely determined by their restriction to HB

(respectivelyHA). And indeed, the initial value problem is well-posed on Cauchy surfaces which
include portions of HB (respectively HA), for data supported on those portions. For any pair
φ1, φ2 of SB-solutions (respectively SA-solutions), the second (respectively first) summand on
the right-hand side of Equation (10) (respectively Equation (11)) vanishes, and thus σ(φ1, φ2)
can be interpreted as twice the integral along HB (respectively HA) of φ1∂uφ2 du (respectively
φ1∂vφ2 dv). Moreover, let (SM, σM) denote the symplectic vector space of spacelike-compact,
smooth, real-valued solutions to the massless wave equation on (R2, η), and let Sr-mov and Sl-mov

denote the vector subspaces of SM consisting of right-moving and left moving (respectively)
solutions. (That is solutions which, respectively, are functions of u only and of v only.) Then,
as is well known (or easy to show), (Sr-mov, σM) and (Sl-mov, σM)19 are symplectic vector spaces
in their own right and one has the following important result, whose proof is immediate.

Proposition 4.1. The map TB : SB → Sr-mov, defined by sending φ ∈ SB to the unique
Minkowski-space right-moving solution with the same data as φ on HB, is a presymplectic
isomorphism between (SB, σ) and (Sr-mov, σM). Thus in particular (SB, σ) is a symplectic
space and the map is a symplectic isomorphism. (And similarly, with B replaced by A and
r-mov replaced by l-mov.)

We can now also define a proper linear subspace S0 of S by S0 := SA + SB, and subspaces
SR
A , S

L
A ⊂ SA, SR

B , S
L
B ⊂ SB just as explained in Section 2, that is

S
L/R
A :=

{
φ ∈ SA

∣∣∣ supp(φ↾HA
) ⊂ HL/R

A

}
,

with HL
A and HR

A the ‘left’ and ‘right’ portions of the A-horizon, i.e. HL
A := HA∩{(t, x) | x < 0}

and HR
A := HA ∩ {(t, x) | x > 0} (and similarly with S

L/R
B and HL/R

B ). It is clear that (SA, σ),

(SB, σ), (S
L/R
A , σ), (S

L/R
B , σ) are all symplectic spaces (indeed, for (SA, σ), (SB, σ) this was

already established in Proposition 4.1). It is also clear that TB restricts to a symplectic

isomorphism between (S
L/R
B , σ) and (S

L/R
r-mov, σM), where (S

L/R
r-mov, σM) is the symplectic subspace

19Throughout the text we adopt the convention that, if (S, σ) is a symplectic vector space and T is a vector
subspace of S, then the presymplectic vector space (T, σ↾T×T ) is written simply as (T, σ).
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of (Sr-mov, σM) consisting of purely right-moving solutions in SM whose data onHB is supported
strictly to the left/right of the origin (and similarly, with B replaced by A and r-mov replaced
by l-mov).

We wish next to show that the presymplectic space (S0, σ) is also actually a symplectic
space.20 In fact we will prove a stronger result. Note first that the formula on the right-hand
side of Equation (2) is still well-defined and antisymmetric when only one of the solutions is
spacelike-compact, and Equations (10)–(11) are also still valid in that case.

Proposition 4.2. Suppose φ is any (not necessarily spacelike-compact) smooth solution to (9)
on M which is symplectically orthogonal to both SA and SB, i.e. σ(φA, φ) = 0 = σ(φB, φ) for
all φA ∈ SA and φB ∈ SB. Then φ = 0.

Proof. Let f, g be smooth functions such that φ(t, x) = f(t − x) + g(t + x). Solutions in
SB have the form φB(t, x) = h(t − x) + k(t + x) where h is any function in C∞

0 (R) and
k(v) = −ϑ(v)h(−1/v). Therefore, if φ is symplectically orthogonal to SB then Equation (10)
implies that ∫ +∞

−∞
h(u)f ′(u) du = 0

for all h ∈ C∞
0 (R). This implies that f ′ is identically zero and thus that f equals a constant.

A similar argument shows that g equals a constant. Thus φ is also constant. But then it must
be zero since it is assumed to vanish on ∂M .

As already anticipated in the Introduction, two further important observations for the
purposes of this paper are that, with the above definitions and using Equations (10)–(11), it
is clearly the case that

• SR
A = SR

B ,

• SL
B is symplectically orthogonal to SA. Similarly, SL

A is symplectically orthogonal to SB.

As final ‘classical’ ingredients necessary to formulate and then to prove our no-go result
in the remainder of this section, we need to construct retarded/advanced Green operators E±

appropriate to our Cauchy-Dirichlet problem on M , as discussed in Section 3.2. Namely, E±

should be such that, for all F ∈ C∞
0 (IntM),

�E±F = E±�F = F, (12)

E±F ↾∂M = 0, (13)

supp(E±F ) ⊆ J±(suppF ). (14)

The resulting causal propagator E = E− − E+ : C∞
0 (IntM)→ C∞(M) will then clearly map

to S.
We will now argue that E± with the above properties can indeed be constructed. In

what follows, for each p ∈ M we denote by m+(p) (respectively m−(p)) the set of all future
(respectively past) endpoints on ∂M of (smoothly) inextendible null geodesics passing through
p. Equivalently, m±(p) is the intersection between ∂M and the topological boundary (in M)

20While we were proving Proposition 4.2 we noticed that there seems to be a gap in the arguments on a
corresponding issue in [KW91]: While it was clear that the (SA, σ) and (SB , σ) of that paper are symplectic
spaces (and the same is also true for the spaces called (S̃A, σ̂) and (S̃B , σ̂), as we show in Appendix B) it was
also tacitly assumed that (with our fiction) the space called (S0, σ) and (without our fiction) the space called
(S̃0, σ̂) are symplectic spaces. However this was never established there. We describe possible ways of filling
this gap in some cases of physical interest in Appendix B here.
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of J±(p) = J±({p}). In particular, m±(p) is either empty or a singleton, and m±(p) = {p} if
p ∈ ∂M . See Figure 4.

It is well-known and easy to verify that the unique advanced and retarded Green operators
for the scalar wave equation in full (1+1)-dimensional Minkowski spacetime, which we denote
by E±

M
, are given by

[E±
M
F ](p) =

1

2

∫

J∓
M
(p)
F dµη,

where p ∈ R2, F ∈ C∞
0 (R2), J∓

M
(p) is the causal past/future of p in the full Minkowski space,

and dµη denotes the metric volume element. Consequently, the causal propagator EM is given
by

[EMF ](p) =
1

2

{∫

J+

M
(p)
−
∫

J−
M
(p)

}
F dµη =

1

2

{∫

V (p)
−
∫

U(p)

}
F dµη (15)

where we have defined the sets V (p) := {p′ : v(p′) ≥ v(p)}, U(p) := {p′ : u(p′) ≤ u(p)}, with
u and v the global null coordinates defined above. The first term in the rightmost expression
is a function of the v-coordinate of p only, while the second is a function of the u-coordinate
only. Thus one retrieves the expression of the solution as a sum of a left mover and a right
mover, which we denote by gM(v) and fM(u) respectively.

We next make a definition before finally being able to state the result on existence of
advanced and retarded Green operators in the presence of our mirror.

Definition 4.3. For any open subset X ⊂ R2, we denote the space of compactly supported
smooth functions on X with vanishing integral with respect to the Minkowski metric measure
by C∞

00 (X). That is,

C∞
00 (X) :=

{
F ∈ C∞

0 (X)

∣∣∣∣
∫

X
F dµη = 0

}
.

Note that in what follows we will sometimes identify test functions defined on an open
subset X with test functions on the whole of Minkowski space (by extending them to be
zero outside of X). It is easy to see from Equation (15) that, in the full Minkowski space
theory, EM[C∞

00 (R
2)] consists of all solutions (to the massless wave equation) of the form

f(t − x) + g(t + x) with f, g ∈ C∞
0 (R). That is, defining the subspaces SA,M, SB,M and

S0,M := SA,M + SB,M of SM, in a manner analogous to the way we defined SA, SB and
S0 = SA + SB, one has S0,M = EM[C∞

00 (R
2)].

Theorem 4.4. The linear operators E± : C∞
0 (IntM)→ C∞(M) defined, for all F ∈ C∞

0 (IntM)
and p ∈M , by

[E±F ](p) =
1

2

{∫

J∓(p)
−
∫

J∓(m∓(p))

}
F dµη

= [E±
M
F ](p)− 1

2

∫

J∓(m∓(p))
F dµη, (16)

(see Figure 4) satisfy Equations (12)–(14). Furthermore, S0 = E[C∞
00 (IntM)].

Remark. The second summand on the right-hand side of Equation (16) equals zero (for any test
function) at any point p for which m∓(p) = ∅ (whereupon the integration domain J∓(m∓(p))
is also empty). When m∓(p) consists of the point p∓, it equals [E

±
M
F ](p∓).

Proof. That each E±F is smooth is obvious since our test functions have compact support.
The boundary condition, Equation (13), and the support property, Equation (14), also hold
trivially.
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p

m−(p)

Figure 4: Illustration of the definition of the retarded propagator E+ given in Theorem 4.4. Integrating
one half times the source F over the shaded region gives [E+F ](p). The definition of E− can, of course,
be illustrated similarly.

We now turn to the equations in (12), i.e. to the two-sided inverse property, on the do-
main C∞

0 (IntM), of E± with respect to the d’Alembert operator �. We carry out the proof
explicitly in the case of E+; the arguments for E− are analogous. In view of the fact that the
corresponding object E+

M
on full Minkowski space is already known to satisfy the analogous

two-sided inverse property for all test functions (and thus in particular for those supported in
IntM), we need to check that the operator D+ = E+ − E+

M
, whose action is defined by the

second summand on the right-hand side of Equation (16), is such that D+�F = 0 = �D+F
whenever F ∈ C∞

0 (IntM). Using the remark above and, again, the left-inverse property for
E+

M
, it is easy to see that the first of these identities holds because any F ∈ C∞

0 (IntM) vanishes
on ∂M . To verify the second identity, we first express D+F in terms of the null coordinates
u and v. For any p ∈ M , m−(p) is empty if v(p) ≤ 0, and contains only the point with null
coordinates u− = −1/v(p) and v− = v(p) if v(p) > 0. Therefore, one has

[D̃+F ](u, v) = −ϑ(v)
4

∫

u′≤−1/v
F̃ (u′, v′) du′ dv′, (17)

where the tilde indicates that one is dealing with the coordinate expression of a function in the
(u, v) coordinate system, and ϑ denotes the Heaviside step function. The right-hand side of
Equation (17) is clearly annihilated by ∂/∂u, and thus in particular by � = 4∂2/∂u∂v. This
completes the proof of the right-inverse property for E+.

In order to prove the second statement in the theorem, we first point out that it is straight-
forward to check that, for any F ∈ C∞

0 (IntM),

[ẼF ](u, v) = fM(u) + gM(v)− ϑ(−u)gM(−1/u)− ϑ(v)fM(−1/v), (18)

where fM and gM denote the right- and left-moving parts of EMF obtained in the manner
described in the discussion under Equation (15). That is,

fM(u) = −1

4

∫

u′≤u
F̃ (u′, v′) du′ dv′ and gM(v) =

1

4

∫

v′≥v
F̃ (u′, v′) du′ dv′. (19)
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Figure 5: Illustration of the failure of kerE to be equal to �[C∞
0 (IntM)]. The F in the discussion

in the main text (which in this illustration has disconnected support) is to be identified with F1 − F2.
Then EF = 0 but F cannot equal �G for any G ∈ C∞

0 (IntM) since EMF 6= 0 in full Minkowski space.

Since fM and gM have compact support when F ∈ C∞
00 (IntM), it follows that E[C∞

00 (IntM)] ⊆
S0. To prove the reverse inclusion, it clearly suffices to show that SA and SB are individually
contained in E[C∞

00 (IntM)]. We give the argument for SB, the one for SA being entirely
analogous. If φ ∈ SB then φ̃(u, v) = h(u) + k(v) where h ∈ C∞

0 (R) and k(v) = −ϑ(v)h(−1/v).
In view of Equation (18), it therefore suffices to find an F ∈ C∞

00 (IntM) such that fM and gM
in Equation (19) equal h and 0 respectively (i.e. F needs to integrate to zero, be supported in
IntM and generate the pure right-mover – in the full Minkowski space theory – described by h).
This can be done as follows: Pick any χ ∈ C∞

0 (R) with the properties that suppχ ⊂ (−∞, 0)
and

∫
R
χ(x) dx = 1. Then, the function F defined by

F̃ (u, v) = −4h′(u)χ(v) (20)

clearly fulfills the required properties.

To make contact with the general discussion in Section 3.2, we remark that we have not
proved that E : C∞

0 (IntM) → C∞(M) is onto S. Indeed, as pointed out there, we don’t
expect this to be the case. Nor, as also anticipated there, is the kernel of the causal propagator
constructed in Theorem 4.4 equal to �[C∞

0 (IntM)], as one can see from Equation (18). Indeed,
one need only pick a test function F ∈ C∞

0 (IntM) which, on the entire Minkowski space, would
propagate to a non-zero solution with right- and left-moving parts fM and gM respectively
(obtained again in the manner described in the discussion under Equation (15)), which are
such that fM(u) = ϑ(−u)gM(−1/u) and gM(v) = ϑ(v)fM(−1/v) for all u, v ∈ R. Then EF = 0
but F cannot equal �G for any G ∈ C∞

0 (IntM) since EMF 6= 0 in full Minkowski space. See
Figure 5.

As another side remark, we note that, equipped with the above results, one can straightfor-
wardly imitate an argument which is standard in the globally hyperbolic setup (see e.g. [BGP07,
Lemma 3.2.2], or after Equation (3.18) in [KW91]) to show that, for any F ∈ C∞

0 (IntM) and
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φ ∈ S, ∫

M
Fφ dµη = σ(EF, φ). (21)

And Equation (21) provides the alternative way, promised above, to show the non-degeneracy
of σ. Indeed, for any given φ ∈ S it is clearly possible to find a test function F ∈ C∞

0 (IntM),
not in the kernel of E (i.e. not generating the zero solution) and such that

∫
M Fφ dµη 6= 0 –

any F which is everywhere non-zero and is sufficiently localized around a point where φ attains
a non-zero value will do.

We conclude this section by briefly discussing the action of Lorentz boost isometries on
elements of S. The one-parameter group (βτ )τ∈R of Lorentz-boost isometries yields a one-
parameter abelian group of linear symplectomorphisms Tτ : S → S via pullback by the inverse
maps, i.e. Tτφ := φ ◦ β−τ . Explicitly, if φ(t, x) = f(t − x) + g(t + x) then [Tτφ](t, x) =
fτ (t− x) + gτ (t+ x) where fτ (u) = f(eaτu) and gτ (v) = g(e−aτv).

4.2 The infra-red pathology and the Hadamard notion

We now wish to discuss the prospects for identifying an appropriate framework for the quantiza-
tion of the massless field on (M,η). We first recall some of the issues arising in the quantization
of massless fields in full (1+1)-dimensional Minkowski spacetime.

As we mentioned in the Introduction and in Section 2, in attempting to define a ground
state representation there, one is faced with an infra-red pathology (see e.g. [Sch63, Wig67,
SW70, Kay85, FR87, DM06]). To recall the issue: One might attempt to define the quantum
field as a genuine operator-valued distribution21 by proceeding in the usual way involving
creation and annihilation operators on the standard bosonic Fock space F =

⊕∞
n=0 L

2(R)⊙n.
One would then demand that the Fock vacuum vector Ω belong to a common invariant (and
dense) domain for all thus defined field operators. However, in general the resulting one-particle
vectors φ̂(F )Ω – generated by acting on the vacuum with the candidate quantum field smeared
with an arbitrary test function F on spacetime – might not be square integrable. In fact, if
F̃ (k) is the Fourier transform, (1/

√
2π)

∫
R2 F (x)e

−ik·x d2x of F , the vacuum belongs to the

domain of φ̂(F ) if and only if F̃ (0) = 0. This problem starkly manifests itself at the level of
the tentative ‘two-point function’, which is formally given by

〈
Ω
∣∣∣ φ̂(F )φ̂(G)Ω

〉
= π

∫ +∞

−∞
F̃ (|p|,−p)G̃(−|p|, p) dp|p| . (22)

Indeed, the above clearly diverges (logarithmically) unless one of F̃ (0) or G̃(0) equals zero.
Thus the usual quantization procedure fails to produce, via Equation (22), a bidistribu-

tion, Λ, on R2 representing two-point correlators, because one can’t allow for generic test
functions. If, however, one restricts to smearings with elements of the linear subspace C∞

00 (R
2)

of Definition 4.3, then both this ‘two-point functional’ exists and (by construction via cre-
ation and annihilation operators) satisfies the positivity properties Λ(F, F ) ≥ 0, EM(F,G)2 ≤
4Λ(F, F )Λ(G,G)22 required for a probabilistic interpretation.

In the Weyl-algebraic approach to quantization which we adopt in this paper (see Ap-
pendix A), what is problematic is the attempt to define a ground state with respect to
time translations on the Weyl algebra AM = W (SM, σM) generated by the symplectic space

21It is irrelevant to this discussion whether the quantum field is to be smeared with test functions in C∞
0 (R2) or,

say, test functions in Schwartz space S (R2;R). But we will work with the former space because it’s technically
more appropriate for our needs in this section.

22If we let D0(R
2) denote the complexification of C∞

00 (R
2) then these positivity conditions can be succinctly

expressed as ΛC(F̄ , F ) ≥ 0 ∀ F ∈ D0(R
2), where ΛC denotes the extension by complex bilinearity of Λ to a

bilinear form on D0(R
2).
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(SM, σM) defined in Section 4.1. But we observe that, if we restrict to the Weyl subalgebra
A0,M = W (S0,M = EM[C∞

00 (R
2)], σM) then there is an unproblematic ground state with respect

to time translations, namely the state whose spacetime smeared two-point function is precisely
the ‘two-point functional’ of the previous paragraph. In Section 4.3 we will refer to this state
on A0,M – which, we remark in passing, is a quasi-free state – as ωM, and to its symplectically
smeared two-point function as λM. In view of this, from now on we adopt the view (essen-
tially what in [FR87] is termed the ‘liberal’ approach to dealing with the infra-red pathology)
that our ‘physical algebra’ is this Weyl subalgebra A0,M and ‘physical states’ are to be sought
amongst positive linear functionals on A0,M.

A price to pay for working in this framework is that the spacetime smeared two-point
functions of our thus-defined physical states are only defined as bilinear functionals C∞

00 (R
2)×

C∞
00 (R

2) → C, and therefore do not define true bidistributions on R2. As a result, what
one might mean by a globally (or even locally!) ‘Hadamard’ state becomes problematic. We
propose to overcome this by declaring that a state on A0,M be called globally Hadamard if
its spacetime smeared two-point function Λ : C∞

00 (R
2) × C∞

00 (R
2) → C (exists and) admits an

extension Λext : C∞
0 (R2)× C∞

0 (R2)→ C which is globally Hadamard (on R2). Note that this
extension need not satisfy any positivity property beyond positivity (in the above sense) when
restricted to smearings in C∞

00 (R
2). The (1+1)-dimensional version of the global Hadamard

condition for bidistributions was written down in [Mor03] (along with versions appropriate to
all other spacetime dimensions). For a massless theory in any globally hyperbolic open subset
O of (1+1)-dimensional Minkowski space, it simply amounts to the following.

Definition 4.5 (Global Hadamard condition on O, massless case). A bidistribution Λ on O
satisfies the global Hadamard condition if there exists a Cauchy surface C for (O, η), a causal
normal neighbourhood N ⊆ O of C , a ‘smoothing function’ χ ∈ C∞(N×N ), a global temporal
function T on O increasing towards the future,23 and a smooth function HN on N ×N such
that, for all F,G ∈ C∞

0 (N ),

Λ(F,G) = lim
ε→0+

∫

N×N

(
−χ(x, y)

4π
ln
−sε,T (x, y)

λ2
+HN (x, y)

)
F (x)G(y) dµη(x) dµη(y).

In the above, for all ε > 0,

sε,T (x, y) := s(x, y)− 2iε(T (x)− T (y))− ε2,
with s(x, y) = (x− y)2 and the branch-cut of the logarithm chosen to lie on the negative real
axis. Finally, λ is a length scale introduced for dimensional reasons, but clearly the property
being defined does not depend on it.

Clearly, the ground state on the physical algebra A0,M is a globally Hadamard state in
this sense. To prepare the ground for our discussion in the case of the spacetime (M,η)
we’re interested in, where the Lorentz boosts are the only continuous isometries, we notice
that actually more is true about this state on A0,M, namely that one can find an extension
of its spacetime smeared two-point function which, on its larger domain C∞

0 (R2) × C∞
0 (R2),

is still boost-invariant, a weak bisolution of the wave equation, and satisfies the canonical
commutation relations. Indeed, ΛM defined by

ΛM(F,G) = − 1

4π
lim
ε→0+

∫
log

[−(x− y)2 + iε(x0 − y0)
λ2

]
F (x)G(y) dµη(x) dµη(y) (23)

gives such an extension for any choice of length scale λ. It can be seen that, indeed, no such
extension can satisfy the necessary positivity conditions for all test functions.24

23We refer to [KW91, Rad96] for precise characterizations of N , χ and T .
24The arguments we made in the main text in favour of taking the ‘physical algebra’ to be A0,M privileged
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4.3 The non-existence theorem

Having carefully set up the classical theory for massless fields on our one-mirror spacetime
(M,η), and having clarified our perspective on both the appropriate strategy to deal with
spacetimes with boundaries (in Section 3.2), and the status of the infra-red pathology for
massless fields on full (1+1)-dimensional Minkowski spacetime, we now turn to the theory
obtained by quantizing the classical system analyzed in Section 4.1. For this theory, we are
now in a position to rigorously define an appropriate class of quantum states for which we are
able to prove a non-existence theorem (Theorem 4.7) which, arguably (see however Footnote
26) is analogous to the non-existence result which we conjecture for Kruskal. Namely, the
class of ‘strongly boost-invariant globally-Hadamard’ states of Definition 4.6 below. Indeed,
we will show that once our definitions are in place, the strategy outlined in Section 2 becomes
a rigorous proof of this theorem once Equation (4) is established.

In the previous section we have argued that the ‘physical algebra’ for massless fields on
full (1+1)-dimensional Minkowski space is the Weyl subalgebra A0,M of AM generated by
Minkowski-space solutions in S0,M. Similarly, here we regard the ‘physical algebra’ for massless
fields on (M,η), satisfying Dirichlet boundary conditions on ∂M , to be not A := W (S, σ), but
rather its subalgebra A0 := W (S0, σ) generated by solutions in S0 (cf. Section 4.1 for definitions
of the symplectic vector spaces (S, σ) and (S0, σ)).

Definition 4.6. A strongly boost-invariant globally-Hadamard state on A0 is a boost-invariant
state on A0 whose spacetime smeared two-point function Λ exists and admits an extension Λext

to a bidistribution on IntM which is (i) globally Hadamard in the sense of Definitions 3.1 and
4.5, (ii) boost-invariant and (iii) a weak bisolution of the wave equation.25

We remark that one could contemplate replacing the word ‘global’ in this definition by
the word ‘local’ and thereby define a notion of ‘strongly boost-invariant locally-Hadamard’.
However, in view of the fact that no assumption of positivity is made for the extension of
the spacetime smeared two-point function, the local-to-global theorem of Radzikowski [RV96,
Rad92] will presumably not be available to conclude that the two notions are equivalent and
it is not clear whether we would be able to prove that there is no state satisfying the local
version of the definition.

We point out that, with IntM replaced by R2 and A0 replaced by A0,M in the above
definition, there obviously is a strongly boost-invariant globally-Hadamard state on A0,M –
namely ωM as we in fact pointed out at the end of the previous section. And most importantly,
with the obvious replacements, in the case with two mirrors (see the Introduction) there is
a strongly boost-invariant globally-Hadamard state, namely the ‘Hartle-Hawking-Israel-like
state’ constructed in [Kay15] with two-point function given by Equation (5) in that paper – as
one may readily verify by inspection of that formula.

In contrast, however. . .

the role of the usual Minkowski ground state (i.e. the Poincaré invariant vacuum). One might nevertheless
still want to explore what could be said about (globally) Hadamard states on the ‘full’ Weyl algebra AM.
Within the (technically inequivalent) approach to quantization based on the ‘full’ Borchers-Uhlmann algebra,
Schubert [Sch13] has recently shown that there are no time-translation invariant Hadamard states; thus it seems
reasonable to expect that a similar result will hold within our Weyl-algebra framework. And it seems likely that
no boost-invariant Hadamard state exists on A either. If so, this would be another reason to take the view that
the ‘physical algebra’ is A0.

25It is not assumed that this extension still satisfies the canonical commutation relations for all test functions,
i.e. that Λext(F,G)− Λext(G,F ) = iE(F,G) for all F,G ∈ C∞

0 (IntM) (of course these are satisfied for pairs of
test functions belonging to the subspace C∞

00 (IntM)).
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Figure 6: Illustration of the set O, Cauchy surface C and test functions F1, F2 constructed in Lemma
4.8 and used in the proof of Theorem 4.7.

Theorem 4.7. There is no strongly boost-invariant globally-Hadamard state on A0.
26

To prove this, we first record and prove a preliminary result in the form of a lemma:

Lemma 4.8. For any two solutions φ1, φ2 in SB one can find a causally convex and globally
hyperbolic open subregion O of IntM , a pair of test functions F1, F2 ∈ C∞

00 (O) and a (partially
null) Cauchy surface C for O containing a portion of HB, such that

• the Cauchy data for φ1 and φ2 on C vanish outside C ∩HB;

• F1 and F2 have support in I−O(HB ∩O)∩ I−O(C ), EF1 = φ1 and EF2 = φ2. (Here I±O(S)
denotes the chronological future/past of a subset S in O [HE73]);

• EMF1 is the full Minkowski space solution which is purely right-moving and with restric-
tion to HB equal to φ1↾HB

, i.e. EMF1 = TBφ1 where TB is the linear symplectomorphism
of Proposition 4.1 (and a similar statement with F1 ↔ F2, and φ1 ↔ φ2).

Moreover, O can be taken to be geodesically convex, and therefore a causal normal neighbour-
hood of any of its Cauchy surfaces.

(All the above of course holds equally with HB ↔ HA and TB ↔ TA.)

Proof. Since φi ∈ SB (i = 1, 2), there exists a unique function fi ∈ C∞
0 (R) such that φ̃i(u, v) =

fi(u) − ϑ(v)fi(−1/v) ∀ u, v. Pick um < 0 with supp f1 ∪ supp f2 ⊂ (um,+∞). Then O :=
{(t, x) | u(t, x) > um, v(t, x) < −1/um} is clearly a causally and geodesically convex globally
hyperbolic open subregion of IntM , and for |um| sufficiently large it is clear that a Cauchy

26This theorem of course implies that there are no boost-invariant states on the ‘full’ Weyl algebra A with
globally Hadamard spacetime smeared two-point function (in the sense of Definitions 3.1 and 4.5), since the
restriction to A0 of any such state would obviously be a strongly boost-invariant globally-Hadamard state on
A0. However, it does not imply that there is no state on A0 which is boost-invariant and whose spacetime
smeared two-point (exists and) admits an extension to a globally Hadamard bidistribution on IntM , i.e. one
satisfying (i) but not (ii) and/or (iii) in Definition 4.6.
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surface C for O can be found satisfying the requirements in the statement of the Lemma, see
Figure 6.

In order to prove the statements about F1, F2 one proceeds just as in the proof of Theorem
4.4 (cf. in particular Equations (18)–(19) and the discussion following these), namely picking
any χ ∈ C∞

0 (R) such that suppχ ⊂ (−∞, 0) and
∫
R
χ(x) dx = 1, and then defining F̃i(u, v) =

−4f ′(u)χ(v).27

Proof of Theorem 4.7. As already outlined in the Introduction and in Section 2, one need
only prove that there are no quasi-free strongly boost-invariant globally-Hadamard states.
Thus, suppose such a quasi-free state ω exists with spacetime smeared two-point function
Λ : C∞

00 (IntM) × C∞
00 (IntM) → C, and let Λext be an extension of Λ satisfying (i), (ii)

and (iii) in Definition 4.6. Let φ1, φ2 ∈ SB and pick a causally and geodesically convex,
open, globally hyperbolic subset O of IntM , a Cauchy surface C for O and a pair of test
functions F1, F2 ∈ C∞

00 (O), as in the statement and proof of Lemma 4.8. Since Λext is a
globally Hadamard bidistribution on O, results on the propagation of the global Hadamard
form contained in [FSW78, KW91] guarantee that we are free to choose N = O, χ ≡ 1
and T (t, x) = t as the causal normal neighbourhood, ‘smoothing function’ and ‘global time
function’ in Definition 4.5. In terms of these, the global Hadamard condition for Λext simply
reduces to the existence of a function HO ∈ C∞(O ×O) such that

Λext(F,G)− ΛM(F,G) =

∫

O×O

HO(x, y)F (x)G(x) dµη(x) dµη(y) (24)

for all F,G ∈ C∞
0 (O), where ΛM is as defined in Equation (23). We remark that, since Λext

and ΛM are both weak bisolutions of the wave equation, then HO is a (smooth) bisolution of
the wave equation. Also, since both Λext↾C∞

0
(O)×C∞

0
(O) (by assumption) and ΛM↾C∞

0
(O)×C∞

0
(O)

are invariant under the (local) one-parameter group of Lorentz boosts applied to the two copies
of C∞

0 (O) simultaneously, it follows that HO is annihilated by the formal adjoint X∗ of the
infinitesimal generator X = X1⊕X2 = (x1∂/∂t1+ t1∂/∂x1)⊕ (x2∂/∂t2+ t2∂/∂x2) (where, for
i = 1, 2, ti and xi are inertial coordinates on the i-th copy of O). Since X∗ = −X, it follows
that HO is constant on the integral curves of X on O ×O. Together with global smoothness
(and in particular smoothness at the point (0, 0; 0, 0)), this clearly implies that HO is constant
on the portion of HB ×HB contained within O ×O.

Now recall that the test functions F1 and F2 were chosen to both have support in I−O(HB ∩
O) ∩ I−O(C ) (see again Figure 6). Let α ∈ C∞(O) and F be any test function supported in
I−O(C ). Then, proceeding similarly to Equations (B.12)–(B.13) in Appendix B of [KW91], and
noting that � = ∇a∇a,

∫

O

αF dµη =

∫

I−O (C )

αF dµη

=

∫

I−O (C )

α�E+
OF dµη

=

∫

I−O (C )

[�α]E+
OF dµη +

∫

I−O (C )

∇a[α
←→∇ aE

+
OF ] dµη

=

∫

I−O (C )

[�α]E+
OF dµη +

∫

C

na[α
←→∇ aE+

OF ] dµC

27Note that, defining ψ(s) =
∫ s

−∞
χ(s′) ds′ and ξi(t, x) = −ψ(v(t, x))φi(t, x), this amounts to setting Fi = �ξi.
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=

∫

I−O (C )

[�α]E+F dµη −
∫

C

na[α
←→∇ aEF ] dµC , (25)

where E±
O denotes the retarded/advanced Green operator for � on O, in the fourth step

Gauss’ law has been applied, and in the final step we used the fact that E−F vanishes on a
neighbourhood of C , together with Equation (8).

Recalling the fact that HO ∈ C∞(O×O) is a bisolution of the wave equation, and applying
Equation (25) twice, with first α interpreted as

∫
OHO(·, x2)F2(x2) dµη(x2) and F interpreted

as F1, and then with α interpreted as HO(x1, ·) for arbitrary fixed x1 ∈ O and F interpreted
as F2, yields

∫

O×O

HO(x1, x2)F1(x1)F2(x2) dµη(x1) dµη(x2)

=

∫

C×C

HO(x1, x2)
←→∇ 1a←→∇ 2bφ1(x1)φ2(x2)na(x1)nb(x2) dµC (x1)dµC (x2)

= 4

∫

(HB×HB)∩(O×O)

[∇1a∇2bHO(x1, x2)]φ1(x1)φ2(x2)na(x1)nb(x2) dµHB
(x1)dµHB

(x2)

= 0.

In the second step, we have used the fact that the Cauchy data for φ1 and φ2 are supported in
C ∩ HB and performed two integrations by parts. The final equality is a consequence of the
constancy of HO on (HB×HB)∩ (O×O). This proves that Λ(F1, F2) = ΛM(F1, F2). In terms
of the symplectically smeared two-point function λ2 of our state ω, this means that

λ2(φ1, φ2) = λM(EMF1, EMF2),

where we recall that λM denotes the symplectically smeared two-point function of the (1+1)-
dimensional Minkowski vacuum state ωM on A0,M discussed in Section 4.2. But since F1 and
F2 were chosen so that EMF1 = TBφ1 and EMF2 = TBφ2, and since φ1, φ2 ∈ SB are arbitrary,
we conclude that in fact

λ2(φ1, φ2) = λM(TBφ1, TBφ2) (26)

for all φ1, φ2 ∈ SB. Next, let (K,H ) be the one-particle structure associated to ω, and let
(KM,HM) be the one-particle structure associated to ωM (see Proposition A.2 in Appendix
A), then Equation (26) implies that

〈Kφ1 | Kφ2〉H = 〈KMTBφ1 | KMTBφ2〉HM
(27)

(and similarly for φ1, φ2 ∈ SA and TA). Now it is known (cf. pages 89–90 in [KW91]) that

(AM) KMSr-mov and KMSl-mov are dense in complex-linear subspaces Hr-mov and Hl-mov of H

(respectively);

(BM) KMS
R
r-mov + iKMS

R
r-mov is dense in Hr-mov and KMS

R
l-mov + iKMS

R
l-mov is dense in Hl-mov.

But Equation (27) immediately implies that the obvious corresponding properties, i.e. (A) and
(B) of Section 2, are inherited by (K,H ). The proof is then completed exactly as in Section
2.
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We remark that the connection between the above proof and the heuristic discussion in
Section 2 is made clearer if we note that, for any pair φ1, φ2 ∈ Sr-mov,

〈KMφ1 | KMφ2〉HM
= − 1

π
lim
ε→0+

∫
f1(u1)f2(u2)

(u1 − u2 − iε)2
du1du2,

where φ1(t, x) = f1(t − x) and φ2(t, x) = f2(t − x). Equivalently, f1, f2 can be thought of
geometrically as the restrictions of φ1 and φ2 (respectively) to HB.

5 Further discussion of the physical relevance of our result

Our result – that there is no strongly boost-invariant globally-Hadamard state for the massless
wave equation to the left of an eternally uniformly accelerating mirror (with vanishing boundary
conditions on the mirror) in 1+1 Minkowski space – lends support to our conjecture that there
is no isometry-invariant Hadamard state for the Klein-Gordon equation defined on the region
of Kruskal to the left of a surface of constant Schwarzschild radius in the right wedge (with
vanishing boundary conditions on that box). This suggests that there may be fundamental
difficulties in having a semi-classical description of a black hole confined to a spherical static
box – a scenario which is of basic importance in discussions of black hole thermodynamics.
As we discussed in more detail in the Introduction, in an earlier paper [Kay15] one of us
pointed out a number of senses in which the right wedge horizons become (both classically and
quantum mechanically) unstable for the same 1+1 model system with an accelerating mirror
and argued for a similar problems for the same Klein-Gordon Kruskal system confined to a
box. The tentative conclusion there was that any semi-classical description in the right wedge
must break down at the right-wedge horizons – and it was suggested that it makes no sense to
consider the spacetime as continuing to have any existence beyond these horizons.

The results of the present paper would seem to lend further support to that conclusion.
One possible way around such a conclusion might be if there were one or more non-

stationary Hadamard states on the region of Kruskal to the left of the box which are nev-
ertheless stationary when restricted to the region of the right wedge to the left of the box. If
this could be shown to also be impossible it would strengthen the above conclusion further,
whereas if it would turn out to be possible it would perhaps undermine the above conclu-
sion. But it would still be strange if an equilibrium state of a black hole were to be modelled
mathematically by a state whose domain of definition includes the left wedge but which is not
stationary when restricted to that left wedge. It would obviously be of interest to try to settle
this question – or the obvious counterpart question for the wave equation in 1+1 Minkowski
space to the left of an eternally uniformly accelerating mirror – but we will not attempt to do
so here.

Appendix A – Weyl quantization of linear systems, quasi-free

states and one-particle structures

We give here a brief overview of the standard Weyl-algebra approach to the quantization of
(real, bosonic) linear systems [Seg63, BR97]. The starting point is the realization that the
phase space of the classical theory is a (real) symplectic vector space (S, σ). The first step is
to construct the Weyl algebra [Sla72] over (S, σ), denoted here by W (S, σ). This is the C∗-
algebra generated by a unit element ✶ and by Weyl operators W (Φ) (for all Φ ∈ S) satisfying
the relations

W (Φ1)W (Φ2) = e−iσ(Φ1,Φ2)/2W (Φ1 +Φ2), W (Φ)∗ =W (−Φ),
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which are to be regarded as exponentiated versions of the standard canonical commutation
relations (and in particular imply that each W (Φ) is unitary and that W (0) = ✶).

The Weyl algebra construction is functorial in the sense that for any two linear symplectic
spaces (S1, σ1) and (S2, σ2) and for any linear symplectic map T : S1 → S2, one defines in a
natural way a *-homomorphism α : W (S1, σ1) → W (S2, σ2) between the corresponding Weyl
algebras by setting

α(W1(Φ)) =W2(TΦ) ∀ Φ ∈ S1 (28)

(and extending by linearity and continuity). If a one-parameter subgroup (Tτ )τ∈R of linear
symplectomorphisms of (S, σ) is available, then, from the ‘linear dynamical system’ (S, σ,Tτ ),
one obtains, via Weyl algebra quantization, the ‘C∗ dynamical system’ (A, ατ ) where A =
W (S, σ) and (ατ )τ∈R is the one-parameter group of *-automorphisms of A induced from
(Tτ )τ∈R in the manner described by Equation (28).

We recall that a state on the Weyl algebra A is a positive linear functional ω such that
ω(✶) = 1. It is called pure if it cannot be expressed as a convex combination of any other two
states, and mixed otherwise. Finally, ω is said to be stationary or invariant with respect to a
one-parameter group (ατ )τ∈R of *-automorphisms of A if, for all τ ∈ R, ω ◦ ατ = ω.

Correlation functions can be defined for sufficiently regular states; that is, one may define
the one- and two-point functions

λ1(Φ) =
d

dt
ω[W (tΦ)]

∣∣∣∣∣
t=0

(29)

λ2(Φ1,Φ2) = −
∂2

∂s∂t
ω[W (sΦ1 + tΦ2)]e

−istσ(Φ1,Φ2)/2

∣∣∣∣∣
s,t=0

, (30)

and similarly define higher n-point correlation functions λn, if the state is regular enough for
the relevant derivatives to exist. Note that all correlation functions are multilinear in their
arguments.

Two-point functions play a special role in quantum field theory. For now, note that if a
state is C2 (see e.g. [Kay93] for a definition), so that the one- and two-point functions exist,
one may verify that λ2 automatically satisfies the following properties for all Φ1,Φ2 ∈ S:
(i) Im[λ2(Φ1,Φ2)] = σ(Φ1,Φ2)/2;

(ii) Reλ2 =: µ is a symmetric, real-bilinear form on S satisfying

µ(Φ1,Φ1) ≥ 0, σ(Φ1,Φ2)
2 ≤ 4µ(Φ1,Φ1)µ(Φ2,Φ2). (31)

Condition (i) encodes the canonical commutation relations, and Condition (ii) results from
positivity of the state.

The set of λ2 : S × S → C satisfying Conditions (i) and (ii) is in one-to-one correspon-
dence with the set of equivalence classes of one-particle structures over (S, σ), whose definition
appeared already in Section 2, but which we repeat here for convenience.

Definition A.1 (One-particle structures). These are pairs (K,H ), with H a complex Hilbert
space and K : S →H a real-linear map, such that for all Φ1,Φ2 ∈ S,

1. KS + iKS is dense in H ;

2. Im 〈KΦ1 | KΦ2〉H = σ(Φ1,Φ2)/2.

Any two such pairs (K,H ) and (K ′,H ′) are said to be equivalent if there exists an isomor-
phism U : H →H ′ of Hilbert spaces such that UK = K ′.
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The correspondence works as follows. On the one hand, any one-particle structure (K,H )
over (S, σ) clearly yields a λ2 satisfying Conditions (i) and (ii), namely λ2(Φ1,Φ2) = 〈KΦ1 | KΦ2〉H .
Somewhat less trivially, the converse also holds.

Proposition A.2. Given a λ2 : S × S → C satisfying Conditions (i) and (ii), there exists
a one-particle structure (K,H ) which is associated to λ2 in the sense that 〈KΦ1 | KΦ2〉H =
λ2(Φ1,Φ2) for all Φ1,Φ2 ∈ S. Furthermore, any two such one-particle structures are equivalent
in the sense of Definition A.1.

The above theorem is proved in Appendix A of [KW91]. There, and in the discussion
following Proposition 3.1 in Section 3.2, it was also pointed out that one may use this result to
prove that, for any λ2 : S × S → C satisfying Conditions (i) and (ii) above, the prescription

ω[W (Φ)] = exp[−λ2(Φ,Φ)/2] ∀ Φ ∈ S (32)

(and extension by linearity and continuity) defines a state on A. Indeed, one may realize
the right-hand side of Equation (32) as the expectation value in the Fock space vacuum,

of the operator WF (KΦ) = exp[a†(KΦ)− (a†(KΦ))∗] on the Fock space over H . Since
W (Φ) 7→ WF (KΦ) defines a *-representation of the Weyl algebra, the result follows. One
may then easily verify that ω has a two-point function and that this equals λ2. Indeed, ω also
has the following additional properties: (a) it is analytic (see e.g. [BR97], p. 38) so that, in
particular, it is Cm for all m and all correlation functions exist; (b) the one-point function
vanishes; (c) the ‘truncated’ n-point functions (see e.g. [Haa92, BR97]) vanish for n > 2 (in
particular, all odd correlation functions vanish). Throughout the present paper, and just as in
[KW91], we will refer to states having Properties (a)–(c) as ‘quasi-free’, but remark that more
properly they should be referred to as ‘quasi-free states with vanishing one-point function’.
Since analytic states with the same collections of n-point functions are identical, this also
proves that any quasi-free state on the Weyl algebra is in the form of Equation (32), for some
λ2 satisfying Conditions (i) and (ii).

So one concludes that quasi-free states over the Weyl algebra A are also in one-to-one
correspondence with equivalence classes of one-particle structures over (S, σ), and thus we can
freely speak of the (equivalence class of) one-particle structure(s) ‘associated with’ a given
quasi-free state. What’s more, a number of important properties which could be possessed by
a quasi-free state have a ‘translation’ at the level of the corresponding one-particle structure(s).
These ‘one-particle versions’ are often technically convenient to work with, and indeed are what
allowed us to conjecture/prove the results in the main body of the paper. We record below
two such translations (for proofs, see Appendix A of [KW91] and [Kay85]), which are invoked
in Section 2.

Proposition A.3. A state ω is pure if and only if its associated one-particle structure (Kω,Hω)
is such that KωS alone is dense in Hω.

Proposition A.4. Let Ã denote the Weyl algebra over the symplectic vector space (S̃, σ̃) and
ω be a state on Ã with associated one-particle structure (Kω,Hω). Then the C∗-subalgebra
ÃR of Ã generated by the subspace R of S̃ has the Reeh-Schlieder property28 for (Ã, ω) iff
KωR+ iKωR is dense in Hω.

Appendix B – Filling a gap in [KW91]

As already mentioned in Footnote 20, we wish here to point out, and attempt to fill, a gap in
some of the arguments of [KW91]. We should stress that, while it was consideration of our

28Let ω be a state on a C∗-algebra A with GNS-triple [BR87] (ρ,H,Ω). Then the C∗-subalgebra B of A is
said to have the Reeh-Schlieder property for (A , ω) if ρ(B)Ω is dense in H.
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Proposition 4.2 which led us to notice this gap, the discussion in this appendix is logically
separate from the rest of the paper – although it may well be that the methods used here will
turn out to be useful in the attempt to rigorously prove our no-go conjecture of Sections 1 and
2 for Kruskal-in-a-box. As it would be unfeasible to make this appendix fully self-contained,
knowledge of the notions, notational conventions (which, by the way, include a different choice
of metric signature to the one made in this paper) and general geometric/analytical assump-
tions underlying the analysis of [KW91] will be assumed without further comment in what
follows and we assume this appendix will be read in conjunction with a copy of [KW91].

The gap to be filled is that it is not proven in [KW91] that the a priori pre-symplectic
subspace (S0 = SA+SB, σ) of the symplectic space (S, σ) is also symplectic itself, i.e. that σ is
not only antisymmetric but also non-degenerate on S0. This gap needs to be filled, in particular,
for the proof of Theorem 4.2 in [KW91] (which, we recall, establishes certain uniqueness and
KMS properties) to be valid. (See where the proof appeals to Lemma 4.1 of [KW91].) As a
matter of fact, in view of the issues raised and dealt with in the Note Added in Proof in [KW91]
(cf. the discussion in Section 2), what’s really important is that a similar job be done on the
modification of Theorem 4.2 in that Note Added in Proof involving (a) the ‘natural extension’,
to the Weyl algebra Â over a suitable larger symplectic space (Ŝ, σ̂), of a quasifree, isometry-
invariant Hadamard state on the Weyl algebra A over (S, σ), and (b) certain subspaces S̃A,
S̃B of Ŝ which are also suitably ‘large’ subspaces of SA, SB respectively. Namely, it needs to be
established that the a priori pre-symplectic subspaces (S̃A, σ̂), (S̃B, σ̂) and (S̃0 = S̃A + S̃B, σ̂)
of (Ŝ, σ̂) are actually symplectic. In Section B.1 we will give an easy argument, which holds on
the entire class of spacetimes considered in [KW91], that (S̃A, σ̂) and (S̃B, σ̂) are symplectic.
We will then give two different lines of argument (the first of which applies to the massless
Klein-Gordon equation, the second to more general Klein-Gordon equations with isometry-
invariant potentials) each of which establishes that (S̃0, σ̂) is symplectic for certain spacetimes
with bifurcate Killing horizons which include the notable cases of the Minkowski and Kruskal
spacetime.

As explained in the next paragraph but one, both lines of arguments rely in particular on
the existence of isometry-invariant Hadamard states for the Klein-Gordon field and spacetime
under consideration.

As we mentioned in the Introduction to this paper, it is also proven in [KW91] (in Chapter 6)
that, on the globally hyperbolic patches of Schwarzschild-de Sitter (with non-zero Schwarzschild
mass) and of sub-extremal Kerr, there is no isometry-invariant Hadamard state. The same
gap needs filling, and we will fill it here, for the validity of the proofs of these non-existence
results too in a sense we now explain: The non-existence proofs assume that the relevant
(S̃0, σ̂) are symplectic spaces. We will show (cf. the previous paragraph) that, if there exists
an isometry-invariant Hadamard state for each of these spacetimes, then (S̃0, σ̂) will indeed be
symplectic. Clearly, this suffices to fill the gap in the non-existence proofs, albeit it doesn’t
actually establish that the (S̃0, σ̂) for these spacetimes is actually symplectic! We will leave
that open. When we refer, below, to ‘filling the gap’ in the case of Kerr and Schwarzschild-de
Sitter, it needs to be borne in mind that this is the sense we intend.

The common starting point for both lines of argument is that, as we will show in Theorem
B.3 in Section B.1, if

(i) there exists an isometry-invariant Hadamard state on A , and
(ii) the entire spacetime coincides with the ‘domain of Ck−3-determinacy’ (with integer

k ≥ 5) of the bifurcate Killing horizon HA ∪ HB (this notion will be introduced in
Definition B.1),
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then degenerate elements of (S̃0, σ̂)
29 are necessarily ‘zero modes’, i.e. are invariant under

the isometries. Once this is established, it immediately follows that (S̃0, σ̂) is symplectic for
all those choices of spacetime (with bifurcate Killing horizon) and of Klein-Gordon operator
such that (a) Conditions (i) and (ii) above are satisfied, and (b) there do not exist non-zero
isometry-invariant solutions in the resulting S̃0.

30 Notice that, as will also be explained in
Section B.1, our definitions of the spaces Ŝ, S̃A and S̃B (and therefore also S̃0) will be slightly
different from (and, morally speaking, more general than) the ones originally presented in the
Note Added in Proof in [KW91].

Sections B.2 and B.3 will present our two different lines of argument which allow to establish
the absence of ‘zero modes’ in the cases of interest listed above. We remark that (a) our
methods actually allow to prove a stronger statement, namely the absence of zero modes
amongst solutions of sufficient regularity and not just amongst solutions in S̃0,

31 and that
(b) since neither of our lines of argument will require that Conditions (i) and (ii) hold, the
‘cases of interest’ include Schwarzschild-de Sitter and Kerr. However, we have not succeeded
in ascertaining whether or not there are zero modes in S̃0 in the case of de Sitter spacetime.

B.1 Preliminaries and the common starting point

Actually, the definition of the ‘enlarged’ symplectic space (Ŝ, σ̂) given in [KW91] is not entirely
satisfactory: Ŝ is defined there to be the set of real-valued solutions to the Klein-Gordon
equation with C5

0 data on a Cauchy surface, C , which contains the entire bifurcation surface
Σ. It seems not totally clear whether, in this definition, C is a fixed Cauchy surface, chosen
once and for all, or whether it is allowed to depend on the solution. Either way there would
appear to be a serious difficulty: If the Cauchy surface is allowed to depend on the solution,
then there is no reason why Ŝ should be a vector space. If it is assumed to be fixed once and
for all, then (a statement to the contrary in [KW91] notwithstanding) there is no reason why
the action of the isometries on (S, σ) will extend to an action on (Ŝ, σ̂).32

In order to overcome these difficulties we now propose a slightly different candidate for an
extension of (S, σ) to a larger symplectic space, which we shall also denote (Ŝ, σ̂). We begin
by pointing out that [KW91] already suggested that an enlarged symplectic space of solutions
Ŝ could alternatively be defined by using Cauchy data on C belonging to appropriate Sobolev
spaces. In order to turn this idea into a rigorous recipe we will draw upon constructions and
results from a recent paper [BW15] by Bär and Wafo concerning the Cauchy and characteristic
initial value problems for an arbitrary second-order normally hyperbolic operator P acting on
distributional sections of a vector bundle over a globally hyperbolic spacetime. To wit, for any

29That is, solutions whose pre-symplectic product with all solutions is zero.
30If one were to adopt the fiction explained in Section 2 that SA, SB and therefore S0 = SA + SB are

subspaces of S then there is a simple (though of course false) argument showing that solutions φ in S which
are symplectically orthogonal to the whole of S0 are isometry invariant – and therefore, apparently, also that
(S0, σ) is a symplectic space if there do not exist non-zero isometry-invariant solutions in S0. This argument
does not need to appeal to the existence of any particular quantum state, and therefore Condition (ii) above
is not needed. Namely, as explained on page 91 of [KW91] in the paragraph preceding Lemma 4.1, and under
Condition (i) above, in a first step one easily shows that such a φ must be constant on each null generator of
each horizon (we note that, in that passage of [KW91], it is stated erroneously that such a solution must be
constant on each horizon, but presumably what was intended is what we wrote above). Then, in virtue of the
fact that the isometries map solutions to solutions, and by the very definition of the domain of determinacy,
one can conclude that the solution will be isometry-invariant.

31The term ‘regularity’ is here used informally to indicate conditions on both the differentiability and the
asymptotic behaviour of the solution. We will not attempt to precisely identify ‘minimal’ regularity assumptions
which are sufficient for ruling out zero modes.

32This is because the pullback by the isometries of a solution in the thus defined Ŝ may fail to have C5 Cauchy
data on the chosen Cauchy surface C .
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choice of foliation of the spacetime by smooth spacelike Cauchy surfaces, the latter authors de-
fine spaces of spatially compact solutions to the homogeneous ‘wave equation’ which have ‘finite
k-energy’ (k ∈ R) along the foliation, and then show that these spaces do not actually depend
on the choice of foliation. More precisely, given a choice of (smooth) Cauchy temporal function
t :M → R for the spacetimeM , one can first define, for each k ∈ R, spaces Cℓ(t(M), Hk

loc(C•))
of ℓ-times continuously differentiable sections of the bundle {Hk

loc(Cs)}s∈t(M), where H
k
loc(Cs)

is the space of locally Sobolev sections of the restriction of the original vector bundle to the
Cauchy surface Cs = t−1{s}. As explained in [BW15], these spaces can then be straightfor-
wardly embedded as subspaces of distributional sections of the original vector bundle over
M . It is therefore legitimate to further restrict attention to elements of Cℓ(t(M), Hk

loc(C•))
which correspond to distributional sections with spacelike-compact support on M ; this way,
one obtains the spaces denoted by Cℓ

sc(t(M), Hk(C•)) in [BW15]. The space of finite k-energy
sections (with respect to t) is then defined by

FE
k
sc(t) = C0

sc(t(M), Hk(C•)) ∩ C1
sc(t(M), Hk−1(C•))

(this is Definition 1 in [BW15], though we have suppressed some of the notation there). The
main result (which is Corollary 18 in [BW15]) for the purposes of the present Appendix is the
fact that, for any two Cauchy temporal functions t, t′,

FE
k
sc(t) ∩ kerP = FE

k
sc(t

′) ∩ kerP (33)

(where we have omitted an embedding into the space of distributional sections from both sides
in the interest of notational clarity). One can thus unambiguously speak of a space FE

k
sc(kerP )

of finite k-energy solutions of the ‘homogeneous wave equation’ for P – with the property that
FE

k
sc(kerP ) = FE

k
sc(t)∩kerP for all Cauchy temporal functions t. Topologizing FE

k
sc(kerP )

in the manner discussed in Section 2.7.6 of [BW15], one has that the spacelike-compact smooth
solutions of Pu = 0 form a dense subset of FE

k
sc(kerP ). Furthermore, in a four-dimensional

spacetime, by Corollary 20 in [BW15] and the Sobolev embedding theorem, if N ∋ k ≥ 5 then
FE

k
sc(kerP ) ⊂ Ck−3(M) ⊂ C2(M).
In view of the above (and returning to the specific framework of [KW91]) we define our

alternative notion of the space Ŝ to be one of the spaces Ŝk = FE
k
sc(kerP ), with N ∋ k ≥ 5 to

be determined later. It is then to be understood that, unless stated otherwise, any statement
involving ‘Ŝk’ (and the later defined ‘S̃k

A’, ‘S̃
k
B’ and ‘S̃k

0 ’) in the remainder of this Appendix

will hold for any choice of N ∋ k ≥ 5. The denseness of S in Ŝk can be used to show that the
‘obvious’ antisymmetric bilinear form σ̂ (which we refrain from denoting instead by the more
cumbersome ‘σ̂k’) on Ŝk is indeed nondegenerate and thus a symplectic form (presumably, a
similar density argument was implicitly assumed in [KW91]). With our new notion (i.e. Ŝk) of
Ŝ there is no difficulty in defining a suitable action of the isometries thanks to Equation (33)
together with the fact that the composition of a Cauchy temporal function with an isometry
preserving the time orientation yields another Cauchy temporal function. Finally a quasi-free
Hadamard state on the Weyl algebra A over (S, σ) will possess a natural quasi-free extension
to the Weyl algebra Â k over (Ŝk, σ̂) by the same reasoning as in [KW91]. We refer to [Lupb]
for more details and rigorous proofs of the statements made in this paragraph.

Just as in [KW91], in the case of a Klein-Gordon equation with isometry-invariant potential,
spaces of solutions S̃k

A and S̃k
B can now be defined in such a way that they are at the same

time ‘large’ subspaces of SA and SB (respectively) and suitable subspaces of Ŝk. Our S̃5
A and

S̃5
B coincide with the S̃A and S̃B in [KW91] (respectively). The key observation, made on pp.

133–134 in [KW91], is that any function in SA whose restriction to the A-horizon is of the form
∂k(Ukg)/∂Uk, for some compactly supported and smooth function g on the A-horizon, has Ck

0

data on any Cauchy surface C containing the bifurcation surface. A similar statement (with
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U replaced by V ) holds for functions in SB. Denoting the linear spaces of such solutions by
S̃k
A and S̃k

B, this means that, for k ≥ 5, S̃k
A, S̃

k
B ⊂ Ŝk as desired.33 We also let S̃k

0 = S̃k
A + S̃k

B.
In order to show that the restriction of σ̂ to S̃k

A is non-degenerate, we now adapt an
argument given, in a slightly different context, on page 135 in [KW91]. First, recall that if
φ1, φ2 are two solutions in S̃k

A whose (smooth, compactly supported) restrictions to HA are f1
and f2 respectively, then (cf. Equation (4.4) in [KW91]) one has

σ̂(φ1, φ2) = 2

∫

HA

f1∂Uf2

√
(2)g dU d2s (34)

where
√

(2)g and d2s denote the induced metric and measure on the bifurcation surface. Sup-
pose now that φ is a degenerate element in (S̃k

A, σ̂). Denoting by f the restriction of φ to the
A-horizon, it follows, by integrating the right-hand side of Equation (34) by parts k+1 times,

that Uk ∂k+1f
∂Uk+1 = 0. Since f is smooth, actually ∂k+1f

∂Uk+1 = 0 everywhere on the horizon. So f is
a polynomial of degree at most n in the affine parameter U , whose coefficients are (compactly
supported, smooth) functions of the coordinates on the bifurcation surface. But no such poly-
nomial can have compact support on the A-horizon unless it’s zero. This completes the proof
that (S̃k

A, σ̂) is a symplectic space. (S̃k
B, σ̂) is also a symplectic space by a similar argument.

We now turn to what we already called the ‘common starting point’ for both our strategies:
That is, we aim to show that, under Conditions (i)–(ii) above, any degenerate element in
(S̃k

0 , σ̂) is necessarily isometry-invariant. Before giving a proof of this fact, we must introduce
the notion of domain of Cn-determinacy (with respect to the Klein-Gordon operator) of a
subset U ⊆ M , with n ∈ N ∪ {∞} ∪ {ω}, which appears in the formulation of our Condition
(ii).

Definition B.1. The ‘domain of Cn-determinacy’ D (n)[U ] (with respect to the Klein-Gordon
operator) of U ⊆M is the set of points p ∈M such that every Cn solution which vanishes on
U must vanish at p.

Remark. Kay and Wald’s ‘domain of determinacy’ (cf. pages 64–65 in [KW91]) coincides with
what we would call the ‘domain of C∞-determinacy.’ It is also clear that the inclusions
D (l)[U ] ⊆ D (m)[U ] hold for l ≤ m.

The following Lemma will be used in the proof of the ‘common starting point’, Theorem
B.3 below.

Lemma B.2. Let ω be a quasi-free Hadamard state on A , with associated one-particle struc-
ture (K,H ). Let K̂ : Ŝk → H be the ‘natural’ extension of K : S → H [KW91, Lupb].
Then the one-parameter unitary group U(t) on the one-particle Hilbert space H for ω which
implements the ‘time translations’ T (t) : S → S also implements the ‘time translations’
T̂ (t) : Ŝk → Ŝk, i.e.

U(t)K̂ = K̂T̂ (t). (35)

Proof. For any ψ̂ ∈ Ŝk, by definition

K̂ψ̂ = lim
n→∞

Kψn (36)

33 We refer to [Lupb] for details. We note that, in the aforementioned passage on pp. 133–134 in [KW91],
functions in SA and SB are referred to as ‘solutions’. However, while they are always continuous, non-zero
functions in SA (resp. SB) – defined in [KW91] by ‘gluing’ together one-sided solutions to a characteristic initial
value problem with data on HA (resp. HB) – may fail to be differentiable across HA (resp. HB). Hence, they
might fail to be classical solutions and one might wonder whether they are solutions even in a weak sense. That
functions in SA and in SB are indeed distributional solutions wasn’t explicitly shown in [KW91], but follows
from an application of Gauss’ theorem (we thank Alexander Strohmaier for pointing this out to us).
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where (ψn)n∈N is a sequence of solutions in S which converges to ψ̂ in the topology for Ŝk =
FE

k
sc(kerP ) given in [BW15] (and any such sequence yields the same limit on the right-hand-

side of Equation (36)). Since U(t) is bounded,

U(t)K̂ψ̂ = U(t)
[
lim
n→∞

Kψn

]

= lim
n→∞

U(t)[Kψn]

= lim
n→∞

K[T (t)ψn].

The claim then follows since it is clear that (T (t)ψn)n∈N is a sequence in S which tends to
T̂ (t)ψ̂ in the topology of Ŝk.

We conclude this section with the statement and proof of the ‘common starting point’.34

Theorem B.3. Suppose Conditions (i) and (ii) hold. Then any solution in S̃k
0 which is

symplectically orthogonal to S̃k
0 is isometry-invariant.

Proof. A proof was given in [KW91, p. 135] (under the unnecessary extra assumption that
k = 5) that if Condition (i) above holds and Condition (ii) is replaced by

(ii′) the entire spacetime coincides with the domain of C∞-determinacy of the bifurcate Killing
horizon HA ∪HB,

then any solution φ in S with the property that σ̂(φ, φ0) = 0 ∀ φ0 ∈ S̃0 must be isometry-
invariant on the entire spacetime. We now describe how those arguments can be adapted for
our purposes. Let ψ0 ∈ S̃k

0 be such that σ̂(ψ0, φ0) = 0 ∀ φ0 ∈ S̃k
0 . Then, in particular, ψ0 is

symplectically orthogonal to the whole of S̃k
A and to the whole of S̃k

B. We would like to apply
an integration by parts argument similar to the one used above in the proof that (S̃k

A, σ̂) and
(S̃k

B, σ̂) are symplectic to conclude that the restrictions of φ0 to HA and HB are polynomials of
degree at most k in U and V respectively, whose coefficients in both cases are functions on the
bifurcation surface. However, the restriction of φ0 to either horizon, while in Ck, may fail to
be Ck+1 at the bifurcation surface. To overcome this difficulty one can apply our integration
by parts argument separately, first to symplectic products of ψ0 with solutions in S̃L,k

A and

then to symplectic products of ψ0 with solutions in S̃R,k
A , where

S̃
L/R,k
A =

{
φ ∈ S̃k

A | φ’s data on HA is of the form
∂k(Ukg)

∂Uk
with g ∈ C∞

0

(
HL/R

A

)}

and we also define the spaces S̃
L/R,k
B in a similar fashion. Since the restrictions of ψ0 to HL

A and
to HR

A are smooth, it indeed follows that each of them is a polynomial in U of degree at most
k whose coefficients are smooth functions on the bifurcation surface. (The fact that ψ0 is Ck

across the bifurcation surface will imply that the first k of these coefficients agree.) Analogous
results clearly hold with A replaced by B and U replaced by V . Now let T̃ (t) denote the time
translation operator on S̃k

0 . We define a generalized version of the operator Q(t) in Equation
(N.4) in [KW91], namely

kQ(t) =
k∏

l=−k

[T̃ (t)− elκt] : S̃k
0 → S̃k

0 .

34Note that it was perhaps suggested in [KW91] that an even stronger result than Theorem B.3 should
hold, namely that (under the same hypotheses) any solution in Ŝ (rather than just S̃0) which is symplectically
orthogonal to S̃0 is isometry-invariant. However, the integration by parts argument used in the proof of Theorem
B.3 does not straightforwardly adapt in that case, due to the fact that the restrictions of elements in Ŝk to
either horizon are in general only in Ck−3.
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Just as in [KW91] one sees that since, for any j with 0 ≤ j ≤ k, U j is annihilated by
[T̃ (t)− ejκt], kQ(t)ψ0 vanishes on HA. Similarly, for any j with 0 ≤ j ≤ k, V j is annihilated
by [T̃ (t) − e−jκt], which implies that kQ(t)ψ0 vanishes on HB. Therefore kQ(t)ψ0 = 0 on
HA ∪ HB. Now, if ψ0 were smooth – as is φ in the corresponding arguments in [KW91] –
the very definition of the domain of (C∞-)determinacy of a set would immediately imply that,
under Condition (ii′) above, kQ(t)ψ0 = 0 throughout the spacetime. However, while ψ0 is
certainly everywhere Ck−3, it could fail to be everywhere smooth. Thus one cannot conclude
that kQ(t)ψ0 = 0 if Condition (ii′) alone holds. However, under the stronger Condition (ii)
– namely under the assumption that the entire spacetime coincides with the domain of Ck−3

determinacy of the bifurcate Killing horizon – the vanishing of kQ(t)ψ0 on HA∪HB does imply
that kQ(t)ψ0 = 0 on the entire spacetime.

At this point, again just as in [KW91], we invoke Condition (i), i.e. the existence of an
isometry-invariant Hadamard state on the Weyl algebra A over (S, σ). Without loss of gener-
ality, we can assume this state to be quasi-free and denote its associated one-particle Hilbert
space structure by (K,H ). Let K̂ : Ŝk → H be the ‘natural extension’ of K : S → H . By
Lemma B.2, an equation analogous to Equation (N.6) in [KW91] holds. Namely:

kP (t)K̂ψ0 = 0 (37)

where

kP (t) =

k∏

l=−k

[U(t)− elκt].

The desired result that ψ0 is isometry-invariant then follows by straightforwardly adapting
the arguments given in the first paragraph on page 136 in [KW91] (in particular, using in the
final step the fact that K̂ : Ŝk → H is injective, which in turn follows from the property
2 Im〈K̂ψ̂|K̂φ̂〉 = σ̂(ψ̂, φ̂) ∀ ψ̂, φ̂ ∈ Ŝk).

Corollary B.4. (S̃k
0 , σ̂) is a symplectic space if Conditions (i)-(ii) are satisfied and there are

no non-zero isometry-invariant solutions in S̃k
0 .

We end this section by discussing for which cases of physical interest our Conditions (i)
and (ii) are known to hold. First of all, it is not hard to see that, for any Klein-Gordon equa-
tion with isometry-invariant potential, there is no difficulty in adapting the arguments given on
pages 64-65 of [KW91] – which are based on the characteristic initial value formulations for the
sets J±(Σ) and on an application of Holmgren’s uniqueness theorem – to our D (n)[HA ∪ HB]
for any n ≥ 2 instead of Kay and Wald’s D [HA∪HB]. It follows that, for any k ≥ 5, Condition
(ii) holds, for example, on Minkowski spacetime, on the Kruskal spacetime, on de Sitter space-
time, and on the globally hyperbolic patches of Kerr and Schwarzschild-de Sitter considered in
[KW91]. As for Condition (i), it is known that isometry-invariant Hadamard states exist for
the massive or massless Klein-Gordon field on both Minkowski spacetime and [San13] Kruskal
spacetime, and for the massive or massless conformally coupled Klein-Gordon field on de Sit-
ter spacetime [CT68, BD78].35 On the other hand, the paper [KW91] contains proofs that no

35The case of the massless minimally coupled Klein-Gordon field on de Sitter seems more subtle. While it
was proved in [All85] that no fully de Sitter invariant state (Hadamard or not) exists, Hadamard states do
exist [All85, AF87] which are invariant under the subgroups E(3) and O(4) of the de Sitter group (and it is
presumed [AF87] that O(1, 3)-invariant Hadamard states also exist). However, none of these subgroups contain
the ‘de Sitter boost’ isometries to which our analysis applies and we conjecture that there is no boost-invariant
Hadamard state. Our grounds for this conjecture are that, were there to exist such a state, then it is plausible
that its restriction to the ‘right-wedge’ (which is of course a static spacetime when the time evolution is taken
to be the restriction of the de Sitter boost isometries) would be a KMS state. But it is known [Pol90] that
(for reasons of bad infra-red behaviour) on the right-wedge, no ground state exists for this time evolution. Also
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such states can exist in Kerr or Schwarzschild-de Sitter, although, as we explained in the fourth
paragraph of this Appendix, these proofs have a gap that needs filling and that we will fill
below by showing that (S̃0, σ̂) is symplectic under the (for these spacetimes, counter-factual)
assumption that an isometry invariant Hadamard state exists.

B.2 ‘Decay along the horizons’ strategy

Let us now present our first line of argument for showing the non-existence of isometry-invariant
solutions in S̃k

0 . Note that (see the paragraph below) we are presently only able to to apply
this strategy to the case of massless fields. The idea is as follows: suppose (M, g) is a globally
hyperbolic spacetime with a bifurcate Killing horizon HA ∪ HB and bifurcation surface Σ,
and suppose that there exists a Cauchy surface C for M which contains Σ and such that
C = Σ∪ (C ∩L )∪ (C ∩R), where L and R are the left and right wedge regions (respectively)
defined in Section 2 of [KW91]. Then, clearly (recall that the Killing field is assumed to be
complete), an isometry-invariant solution φ ∈ S̃k

0 is identically zero on M if and only if, for all
p ∈ L ∪R, φ(τt(p)) → 0 as t → +∞. Thus, in the presence of appropriate ‘pointwise decay’
results for (sufficiently regular) solutions of the Klein-Gordon equation in question, the result
will follow.

In the case of the massless Klein-Gordon equation, recent papers by Dafermos, Rodnianski
and Shlapentokh-Rothman [DR09, DR10, DRSR14b, DR07] contain pointwise decay results
which are sufficient for our purposes in the case of Kruskal and of the globally hyperbolic
patches of Kerr and Schwarzschild-de Sitter considered in [KW91], provided that we pick
k ≥ 5 in the definition of S̃k

0 large enough for the ‘higher order weighted energies’ defined in
those papers to be finite. That this can always be done can be seen immediately by inspection
of the relevant formulae in those papers.36

B.3 Strategy based on analytic elliptic regularity

An alternative approach to showing the non-existence of ‘zero modes’ in S̃k
0 in a number

of important cases, which requires less heavy machinery and also applies to the case where
suitable potentials (including e.g. a mass term) are included, is based on an application of
analytic elliptic regularity [Joh55].37 Therefore, we must assume the spacetime manifold and
metric to be analytic in what follows.

First, we look at the case where the following two conditions hold:

(a) the restriction of the spacetime (M, g) and of the one-parameter group of isometries
to either the left or the right wedge is analytically isometric to a (globally hyperbolic)
standard static spacetime (see Section 3.2 of [San13] and references therein) of form

by Lemma 6.2 in [KW91], we know quite generally that if a stationary linear Bose dynamical system admits a
KMS state then it also admits a ground state, and thus there would be a contradiction. There are a number of
obstacles, however, to making this argument rigorous: Even under the fiction explained in Section 2 we would
only be able to rely on Theorem 4.2 of [KW91] to prove the KMS property on the subalgebra of the Weyl
algebra for the right wedge corresponding to classical solutions in the subspace of solutions SR

0 = SR
A +SR

B and,
of course, we don’t even know if that theorem is applicable since we don’t know if our symplectic form on S

restricts to a symplectic form on this subspace. We also mention, in passing, that since the massless minimally
coupled Klein-Gordon field on de Sitter has a classical zero mode (namely the constant solution) the strengthened
uniqueness theorem, Theorem 5.1 in Chapter 5 of [KW91], is also inapplicable for the reasons explained in the
introductory remarks in that Chapter. We are grateful to Atsushi Higuchi for helpful conversation on the topic
of this footnote.

36We also notice that, in the somewhat analogous case of our Proposition 4.2, it is the Dirichlet boundary
condition which provides the relevant ‘decay’ for our purposes there.

37We would like to thank Robert Wald for suggesting this approach to us and for providing some guidance
on how to deal with the case of Kerr, see below.
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(R × C,αdt2 − 3g) where α (the lapse function) is a positive function on C and 3g is a
Riemannian metric on the connected manifold C (with C, α and 3g analytic);

(b) for any compact set K ⊂ M , the open set M \ J(K) has non-empty intersection both
with the right and with the left wedge.

It is easy to see that the following spacetimes satisfy the above conditions: Minkowski space-
time with Lorentz boosts as isometries; the Kruskal spacetime with standard ‘Schwarzschild-
time translation isometries’; suitable globally hyperbolic patches of the subextremal Reissner-
Nordström spacetime and of the Schwarzschild-de Sitter spacetime (with non-zero black hole
mass), again with their respective standard one-parameter groups of isometries. Importantly,
Condition (b) above fails in de Sitter spacetime. Since scalar fields (massive or massless,
conformally or minimally coupled) in de Sitter were also not covered by our other strategy de-
scribed in Section B.2, the methods presented in this Appendix are not by themselves sufficient
to properly fill the gap in [KW91] for such fields – and even the comparatively healthy (see
Footnote 35) theory of massive or massless conformally coupled fields in de Sitter spacetime
appears to require further investigation.

Under Condition (a), on (say) the right wedge, the Klein-Gordon equation with an analytic

potential term V will take the form
(
α−1 ∂2

∂t2
−D + V

)
φ = 0 where D is the Laplace-Beltrami

operator for 3g. For an isometry-invariant solution, ∂φ
∂t will be identically zero, and therefore

so will be ∂2φ
∂t2

and φ will satisfy the manifestly elliptic equation with analytic coefficients

(
−α−1 ∂2

∂t2
−D + V

)
φ = 0

(and we notice that the operator −α−1 ∂2

∂t2
+ D is of course nothing but minus the Laplace-

Beltrami operator for the Riemannian metric αdt+ 3g). Therefore, by analytic elliptic regular-
ity, φ must be an analytic function on the right wedge. But, since φ ∈ S̃0 ⊂ Ŝ has Cauchy data
– on a Cauchy surface C for the full spacetime which contains the bifurcation 2-sphere Σ, see
[KW91] – of compact support, by finite propagation speed results it must vanish on M \ J(K)
where K = supp(φ↾C ) ∪ supp(∇nφ↾C ) and n denotes the vector field of unit normals to C .
Under Condition (b) above, it must then vanish in an open subset of the right wedge. By
analyticity and connectedness, it must vanish identically on the entire right wedge. A similar
argument shows that it must vanish identically on the left wedge. Finally, φ must vanish on
the entire spacetime by continuity at Σ.

An obvious local-to-global version of this argument also shows that the same conclusion
holds if we only require, in Condition (a) above, that the spacetime in the left and right
wedges be simply static (with respect to the one-parameter group of isometries) rather than
‘standard’ static. However, outside these circumstances the argument won’t straightforwardly
apply. Nonetheless, under some mild restrictions on the possible potential terms which we shall
state, one can also fill the gap for the case of the globally hyperbolic patch of (subextremal,
maximally extended) Kerr defined on page 66 of [KW91] and denoted by M there, with Killing
vector field ξ+ = ∂/∂t + Ω+∂/∂ϕ in Boyer-Lindquist coordinates (t, r, θ, ϕ). Here, denoting
the black hole’s angular momentum by a and its mass by M , Ω+ = a/(r2+ + a2) is the angular

velocity of the black hole/Killing horizon situated at r = r+ = M +
√
M2 − a2 and we recall

that there is a cosmological horizon ‘at’ r = r− = M −
√
M2 − a2. In the right wedge where

the Boyer-Lindquist coordinates are regular, the Laplace-Beltrami operator associated with
the Kerr metric is

� =

[
a2 sin2 θ − (a2 + r2)2

∆(r)

]
∂2

∂t2
− a2

∆(r)

∂2

∂ϕ2
− 2a[r2 + a2 −∆(r)]

∆(r)

∂2

∂ϕ∂t
+
∂

∂r

[
∆(r)

∂

∂r

]
+ /∆S2 ,
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where ∆(r) = (r − r+)(r − r−) (so that ∆(r) > 0 everywhere in the right wedge) and /∆S2 =
1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂ϕ2 is the Laplacian on the two-dimensional unit sphere. Now, let u be a

C2 function on M which is invariant under the isometries generated by ξ+. Then, everywhere
in the right wedge,

∂u

∂ϕ
= −Ω−1

+

∂u

∂t
and

∂2u

∂ϕ2
= Ω−2

+

∂2u

∂t2
. (38)

Thus, if u is an isometry-invariant solution to �u = 0 on M , belonging to S̃0, then we can use
the equations in (38) to ‘trade’ ϕ-derivatives for t-derivatives and obtain

{
F (r, θ)

∂2

∂t2
+

∂

∂r

[
∆(r)

∂

∂r

]
+

1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]}
u = 0 (39)

where F (r, θ) is an analytic function for (r, θ) ∈ (r+,∞) × (0, π). Clearly, the same equation
will be satisfied by the Fourier coefficients

ûm(t, r, θ) :=

∫ 2π

0
u(t, r, θ, ϕ)e−imϕ dϕ, m ∈ Z.

However, a simple calculation shows that, in virtue of the first equation in (38),

∂ûm
∂t

= imΩ+ûm and, consequently,
∂2ûm
∂t2

= −m2Ω2
+ûm

for all m ∈ Z. Pick a positive constant K and set G(r, θ) = −m2Ω2
+[F (r, θ) − K]; then ûm

solves Pûm = 0 where

P = K
∂2

∂t2
+∆(r)

∂2

∂r2
+

∂2

∂θ2
+

d∆

dr
(r)

∂

∂r
+ cot θ

∂

∂θ
+G(r, θ).

P is a differential operator with analytic coefficients. An inspection of the highest order terms
shows that it is elliptic on R × (r+,∞) × (0, π). Therefore, by analytic elliptic regularity, ûm
is analytic. But ûm must vanish in an open set because of the support properties of u ∈ S̃0.38
Therefore ûm = 0 for all m ∈ Z. By the Fourier inversion formula, this in turn implies that
u = 0 in the right wedge. Similar reasoning shows that u must vanish in the left wedge.
Again, by continuity at the bifurcation surface this means that u must vanish on M . For
ease of presentation, we only showed the proof explicitly in the case of the massless wave
equation. However, it is clear that an analytic potential term can be added with no change in
the arguments, provided it is independent of the coordinate ϕ – as would of course be the case
for a constant mass term or for a constant multiple of the Ricci scalar.

B.4 Conclusions

To conclude, the two lines of argument presented in this Appendix have enabled us to fill
the gap in [KW91] in many cases of interest (however, see our discussion in the introductory

38To quickly see this, the reader may wish to consider a projection diagram, in the sense of [COS12] (see also
Chapter 3 of [Chr15]), for the region of Kerr under consideration and denoted by M above. The projection
diagram in Fig. 3 of [COS12] appears to closely resemble the more commonly seen conformal diagram for the
submanifold corresponding to the axis of symmetry (θ = 0 or θ = π) of the Kerr solution. However, unlike the
latter, the former captures causal properties of the entire spacetime (in a precise way discussed in Section 3
of [COS12]). In particular, since u above has spacelike compact support on M , it follows that the projection
of its support onto the (1+1)-dimensional diagram is spacelike compact with respect to the (1+1)-dimensional
Minkowski metric. The claimed result then easily follows upon observing that the projection diagram is obtained
by projecting out the Boyer-Lindquist coordinates θ and ϕ.
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section of this Appendix for the meaning of ‘filling the gap’ in the cases of Schwarzschild-de
Sitter and Kerr). In the case of de Sitter spacetime, it is not obvious to us that there can be
no non-zero solutions in S̃0 which are invariant under the one-parameter group of isometries
generating the bifurcate Killing horizon. Clearly, for massless minimally coupled fields, there
are non-zero solutions in Ŝ ⊃ S̃0 which are invariant: namely, the constant (non-zero) solutions
– therefore, in particular, one would need to show that no non-zero constant solution can lie
in S̃0. But this would still not suffice to fill the gap.
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