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 
Abstract—Determination of the distribution of electromagnetic 

energy inside electrically large enclosed spaces is important in 

many electromagnetic compatibility applications, such as 

certification of aircraft and equipment shielding enclosures. The 

field inside such enclosed environments contains a dominant 

diffuse component due to multiple randomizing reflections from 

the enclosing surfaces. The power balance technique has been 

widely applied to the analysis of such problems; however, it is 

unable to account for the inhomogeneities in the field that arise 

when the absorption in the walls and contents of the enclosure is 

significant. In this paper we show how a diffusion equation 

approach can be applied to modeling diffuse electromagnetic 

fields and evaluate its potential for use in electromagnetic 

compatibility applications. Two canonical examples were 

investigated: A loaded cavity and two cavities coupled by a large 

aperture. The predictions of the diffusion model were compared 

to measurement data and found to be in good agreement. The 

diffusion model has a very low computational cost compared to 

other applicable techniques, such as full-wave simulation and 

ray-tracing, offering the potential for a radical increase in the 

efficiency of the solution high frequency electromagnetic 

shielding problems with complex topologies. 

 
Index Terms— asymptotic techniques, power balance, 

absorption cross-section, reverberation chamber, shielding  

I. INTRODUCTION 

he statistical energy or power balance (PWB) approach to 

analyzing the average electromagnetic (EM) field inside 

electrically large cavities has been used for many years by the 

electromagnetic compatibility (EMC) community. It is the 

foundation of reverberation chamber (RC) theory [1], [2] and 

is also widely used for first order estimates in high frequency 

shielding problems [3] and estimating environmental 

electromagnetic exposure [4]. The PWB model assumes that 

the degrees of freedom in the EM field are completely 

diffused by reflections from the cavity walls (and contents if 

present) leading to well defined statistical distribution 

 
Submitted for review 22th July 2016. Accepted for publication 23rd October 

2016. 

I. D. Flintoft, A. C. Marvin, X. Zhang, L. Dawson, M. P. Robinson and 
J. F. Dawson are with the Department of Electronics, University of York, 

Heslington, York, YO10 5DD  (e-mail: ian.flintoft@york.ac.uk, 

andy.marvin@york.ac.uk, zx1148@york.ac.uk, l.dawson@york.ac.uk, 
martin.robinson@york.ac.uk). 

Foo Inn Funn is with the Republic of Singapore Airforce, having 

completed a MEng degree in the Department of Electronics, University of 
York, UK (email: angelinafooif@gmail.com). 

functions for the fields and homogeneous and isotropic 

average values related to the losses (both dissipative and via 

apertures) in the cavity. 

A fundamental limitation of the PWB model is that it 

cannot account for the inhomogeneity in the diffuse field 

arising from any loss in the cavity. If the distribution of loss is 

itself non-uniform this will drive even greater inhomogeneity 

in the diffuse field. When the losses are small this may not be 

a significant limitation since the multiple scatterings from the 

walls mean that the diffuse EM field is still highly uniform 

and isotropic. However, for moderate loss, where there are 

still sufficient scatterings for an approximately diffuse field to 

be established, the PWB model becomes inaccurate.  

This limitation is important in a number of EMC 

applications. In RCs the spatial and angular anisotropy of the 

plane-wave spectrum is often ascribed to the presence of non-

stochastic direct paths as defined by the ‘K-factor’ [5], [6]. For 

measurements made in RCs with significant loading, for 

example, when measuring absorption cross-section (ACS) [7] 

or using loading to replicate multipath environments [8], the 

absorption also induces inhomogeneity and therefore 

contributes to the systematic error. This error is often treated 

on a statistical basis, for example, by measuring the average 

field at a number of locations in the working volume and 

characterizing the non-uniformity (proximity effect) from the 

deviation of these samples [9]. 

The acoustics community has developed a diffusion 

equation based model that can account for the variation of the 

diffuse energy density in enclosed spaces due to the presence 

and distribution of losses on the walls and contents of the 

enclosure. Recent reviews of this acoustic diffusion model 

(ADM) are given in [10], [11]. 

The purpose of this paper is to make an initial evaluation of 

the diffusion equation model for EMC applications. In 

Section II we review the basic diffusion model developed in 

the acoustics literature and place it in the electromagnetic 

context. A dimensional reduction technique that can be used to 

derive two-dimensional approximations for simple geometries 

is described in Section III and its finite element method 

solution is outlined. In Section IV we present the solution of 

two canonical examples relevant to EMC applications; 

validation measurements for the examples are then described 

in Section V. We conclude in Section VI. 
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II. THE DIFFUSION MODEL 

A. Statement of the diffusion model 

The diffusion model can be derived from a radiative 

transport theory of “particles” (analogous to EM rays) in a 

cavity [12]. It assumes the existence of a diffuse EM field with 

average energy density  ݓሺ�, �ሻ = ,�ሺ�|ۃ଴ߝ �ሻ|ଶ[2] ۄ, where  ۄ∙ۃ 
denotes an average over a statistical ensemble of systems, for 

example, mode tuning configurations in an RC. The basic 

assumptions of the model, put into the context of 

electromagnetics are: 

1. Geometric optics: The rays propagate according to 

geometric optics (GO), requiring that the wavelength is 

small compared to the size of the cavity and scattering 

objects within it; 

2. Diffuse scattering: Seen over the statistical averaging 

ensemble (e.g. mode tuning configurations in an RC) 

the scattering randomizes the ray directions; 

3. Directional broadening: On average reflection 

dominates over absorption, so after multiple reflections 

the diffuse field is driven towards being isotropic; 

4. Temporal broadening: The time-scale for changes in 

the diffuse energy density is long compared to the 

mean-free-time between scattering events. 

The electromagnetic wavelength, �, only enters the model 

via the frequency dependence of the absorption processes 

within the cavity. The diffusion process itself is governed by a 

frequency independent diffusivity (diffusion coefficient) 

primarily determined by the geometry of the cavity. The 

vector nature of the electromagnetic field also only appears 

implicitly within the absorption and scattering efficiencies of 

the cavity and its contents. This electromagnetic diffusion 

model (EDM) is a generalization of the PWB approach; in 

Section II.D we demonstrate that both frequency-domain and 

time-domain PWB methods are special cases of the EDM. 

Within the assumptions outlined above the diffuse 

electromagnetic energy density within the volume of an 

enclosed space, V, satisfies a diffusion equation [13] ቀ ��௧ − ଶ׏ܦ + �Vቁ ,�ሺݓ �ሻ = �TRPሺ�ሻߜሺଷሻሺ� − �௦ሻ   � א ܸ, (1) 

where ܦ is the diffusivity,  �V is a volumetric energy loss rate 

due to absorption in the cavity contents and we have assumed 

there is a time-dependent isotropic point source of total 

radiated power �TRPሺ�ሻ located at �௦. On the boundary surface 

of the volume, �௏, the energy density is assumed to satisfy a 

Robin flux type boundary condition (BC) 

̂�ܦ)  ∙ � + c଴Σ�a ሺ�ሻ)ݓሺ�, �ሻ = Ͳ   � א �௏  ,   (2) 

where c଴ is the speed of light, �̂ is an outward unit normal 

vector and Σ�a ሺ�ሻ is an absorption factor related to the average 

reflection coefficient of the walls.  

The diffusivity is related to the overall mean-free-path 

(MFP), �,̅ between scatterings of the rays from the walls and 

contents of the cavity by [14] ܦ = �c̅଴ ͵⁄ , (3) 

where the MFP for scattering from the walls is given by [13] �w̅all = Ͷܸ �௏⁄ .   (4) 

If we assume the contents are a set of �ୡ୭୬ identical objects 

with average scattering cross-section �ୡ୭୬ୱ  then the MFP for 

scattering from them is [15] �ୡ̅୭୬ = ܸ �ୡ୭୬ୱ �ୡ୭୬⁄ .  (5) 

At high frequencies the average scattering cross-section can be 

estimated as �ୡ୭୬ୱ = భ4�ୡ୭୬, where �ୡ୭୬ is the surface area of 

the scattering objects. The dependence of the MFP on the 

chamber volume and surface area of the objects can be 

understood intuitively from the image theory of the 

cavity [16]; if �ୡ୭୬ୱ  is small a ray will scatter off the walls 

many times before intercepting the scatterer and the MFP will 

be much larger than the chamber size. The overall MFP is 

determined by the harmonic mean [15] �−̅ଵ = �w̅all−ଵ + �ୡ̅୭୬−ଵ . (6) 

The simplest estimate of the absorption factor for the walls 

corresponds to Sabine’s formula in acoustics [17], Σ�a ሺ�ሻ = �walla ሺ�ሻ Ͷ⁄  ,  (7) 

where Ͳ ≤ �walla ሺ�ሻ ≤ ͳ is the average absorption efficiency. 

For the EDM this can be determined using the standard 

estimate of wall losses in a reverberation chamber, �walla = ଵ� ׭ ቀͳ − ଵଶ [|ȞTEሺ�ሻ|ଶ + |ȞTMሺ�ሻ|ଶ]ቁ cos � �Ω ଶ�  ,  (8) 

where ȞTE/TMሺ�ሻ are the Fresnel reflection coefficients for 

transverse electric and magnetic fields at angle of incidence � 

from the normal to the wall [18]. This absorption model 

assumes the diffused rays undergo specular reflections from 

the walls and is the route by which the electromagnetic 

frequency and polarization enter into the EDM. 

For high wall absorption efficiencies, �walla ذ Ͳ.ͷ, 

alternative models have been found to be more accurate in 

room acoustics [19], [20], [21]; some of these have recently 

been investigated for room electromagnetics applications and 

found to have similar validity for electromagnetic 

reverberation [22]. The radiative transport derivation of the 

diffusion model leads to the expression Σ�a ሺ�ሻ = �walla ሺ�ሻଶቀଶ−�walla ሺ�ሻቁ  (9) 

for the absorption factor [19]. This model assumes the 

reflection at the walls is completely diffuse, i.e. the power 

reflectance is independent of the angle of incidence. For low 

absorption it predicts a loss factor that is close to that of the 

Sabine formula above; however, for high absorption the loss 

factor approaches twice that of Sabine’s formula. 

The energy loss rate from absorption in the contents is [23] �௏ = c଴�ୡ୭୬a �ୡ̅୭୬⁄  ,  (10) 

where �ୡ୭୬a  is the average absorption efficiency of the objects. 

The flux of the diffuse energy density in the cavity is given 

by Fick’s Law [24] �௪ሺ�, �ሻ = ,�ሺݓ�ܦ− �ሻ. (11) 

A non-zero flux of energy density must be present in any 

cavity with loss in order to transport the energy from the 

source to the absorption points. This flux is therefore related to 

the anisotropy of the diffuse field induced by the presence of 

absorption in the cavity. 

B. Sources 

Isotropic diffuse point sources, surface sources and volume 

sources can be included in the diffusion model [23]. In (1) a 
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single point source is assumed. The time independent Green’s 
function for the diffusion equation in an unbounded space is 

given by [24] �ሺ�|�௦ሻ = �TRPସ��|�−��| exp ቆ−√�V� |� − �௦|ቇ . (12) 

This includes a spurious “direct” term, ୢݓ;ୱሺ�ሻ =�TRP Ͷ�ܦ|� − �௦|⁄ , close to the source, |� − �௦| ≪ �.̅ It arises 

from the fact that near the source a diffuse field has not been 

established and the diffusion equation is therefore unable to 

correctly describe the physical inverse square law variation of 

the direct energy density. Visentin et al [24] argue that this 

spurious term should be subtracted from the solution to give 

the true reverberant energy density ݓ୰ሺ�ሻ = ሺ�ሻݓ − �TRPସ��|�−��| , (13) 

with the physical direct energy from the source being 

determined using ୢݓሺ�ሻ = �TRP Ͷ�c଴|� − �௦|ଶ⁄ . This is 

supported experimentally in acoustics for cavities without a 

strong aspect ratio. The spurious effect can also be mitigated 

by smearing the source out over a volume of space or using 

surface sources [23]. In this paper we have not applied the 

correction in (13) so the energy density and derived quantities 

within about 50 mm of the source antenna should be 

disregarded when considering the results. 

C. Coupled cavities 

Two cavities coupled through an electrically large aperture 

can be treated as a single computational domain in the EDM, 

with no special treatment of the aperture. This method 

assumes that the field in the aperture is well diffused, which is 

only a good approximation for apertures well above their 

resonant frequency. Providing the coupling area is not too 

large each cavity’s diffusivity and loss rate will be 
approximately determined by its own respective geometry and 

absorption characteristics and unaffected by the coupling. If 

the coupling area is large then the diffusivity may need to be 

modified and could become inhomogeneous. 

In order to accurately model apertures that are either 

electrically small or in the resonant regime a different 

approach is required. If we consider two coupled cavities with 

energy densities ݓଵሺ�, �ሻ and ݓଶሺ�, �ሻ such that part of their 

shared wall, �ୱw ,  is semi-transparent to the diffuse field, then 

on this part of the wall the BCs (2) are replaced by the coupled 

energy exchange BCs [25] ቀܦଵ�̂ ∙ � + ୡబ�౩w;భaସ  ቁ ,�ଵሺݓ �ሻ|�א�౩w = ୡబ�౩w౪ସ ,�ଶሺݓ �ሻ|�א�౩w  (14a) ቀܦଶ�̂ ∙ � + ୡబ�౩w;మaସ  ቁ ,�ଶሺݓ �ሻ|�א�౩w = ୡబ�౩w౪ସ ,�ଵሺݓ �ሻ|�א�౩w(14b) 

where �ୱw୲  is the average transmission efficiency of the wall 

and �ୱw;ଵ/ଶa  is its average absorption efficiency as seen from 

each side [26]. Here we have assumed that the transmission is 

reciprocal. For a lossless aperture �ୱw;ଵ/ଶa = Ͳ and if �ୱw is the 

aperture area then its average transmission cross-section in the 

high frequency limit is σୱw୲ = �ୱw୲ �ୱw Ͷ⁄ . The efficiency �ୱw୲  

can then be used to account for the frequency dependence of 

the cross-section. In the high frequency limit �ୱw୲ = ͳ and the 

transmission cross-section takes its GO limit value [1]. Note 

that as defined here, the average transmission cross-section 

includes an extra factor of a half in order to account for the 

fact that the wall only sees half the scalar power density, c଴ݓ, 

coming from a half-space. 

D. Energy balance 

We now consider how the EDM relates to the PWB method. 

Integrating the diffusion equation over the volume of the 

cavity, applying Green’s theorem and then inserting the Robin 
BC on the cavity walls we obtain the general energy balance 

relationship [20] ୢ௎ሺ௧ሻୢ௧ + c଴ ∯ Σ�a ሺ�ሻݓሺ�, �ሻ �� �� + �Vܷሺ�ሻ = �TRPሺ�ሻ (16) 

where the total energy in the cavity is ܷሺ�ሻ = ׮ ,�ሺݓ �ሻ �ܸ ௏  (17) 

First consider the case for a static and homogeneous energy 

density, ݓh. Further assuming the wall absorption is 

homogeneous and inserting the Sabine estimate (7) of the 

absorption factor and using (10) we obtain ቀଵସ �walla �௏ + ଵସ �ୡ୭୬a �ୡ୭୬ቁ c଴ݓh = �TRP (18) 

Identifying the scalar power density �h = c଴ݓh and average 

absorption cross-sections of the walls, �walla = �walla �௏ Ͷ⁄ , and 

contents, �ୡ୭୬a = �ୡ୭୬a �ୡ୭୬ Ͷ⁄ , this is just the classic Hill et al 

PWB balance relationship [1]  ሺ�walla + �ୡ୭୬a ሻ�h = �TRP . (19) 

If we consider a homogeneous but time varying energy 

density ܷhሺ�ሻ =  hሺ�ሻ ܸ (a situation that can only be anݓ

approximation to reality) then ቀ ୢୢ௧ + �ୣ୬ୡቁ ܷhሺ�ሻ = �TRPሺ�ሻ , (20) 

where �ୣ୬ୡ = c଴�walla �௏ Ͷܸ⁄ + �V. This has solution ܷhሺ�ሻ = ܷhሺͲሻe−Λenc௧ + e−Λenc௧ ׬ eΛenc௧′௧଴ �TRPሺ�′ሻd�′ (21) 

This time domain energy decay has been investigated in [28]. 

The diffusion approach is thus seen to be a natural 

generalization of the PWB technique that treats the distributed 

nature of the losses more accurately when the absorption is 

significant. 

III. KANTOROVICH DIMENSIONAL REDUCTION 

While the diffusion problem can be solved efficiently in 

three dimensions, for this initial evaluation we have adopted 

an even more efficient approach based on the dimensional 

reduction method of Kantorovich [29]. In this approach, for a 

cavity with a constant cross-sectional area normal to one 

direction, taken as the z-direction in this paper, that direction 

is eliminated from the problem by assuming an approximate 

solution that is separable: ݓሺ�, �ሻ = ܹሺݔ, ,ݕ �ሻܼሺݖሻ . (22) 

A typical ansatz for the variation in the z-direction is a 

quadratic, as would be obtained for a separable solution of the 

Laplace operator in a cuboid cavity. Note that we will take ܼሺݖሻ to be dimensionless in the following, so that ܹ carries 

the units J m-3 of energy density.  

For simplicity we will assume in this paper that the cavity’s 

lower ሺݖ = Ͳሻ and upper (ݖ = ℎ, ℎ being the cavity’s height) 

walls have the same homogeneous absorption factors, denoted 
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by Σ�;௭a . This assumption is not necessary, but it considerably 

simplifies some of the relationships that follow. The Robin 

BCs on the lower and upper walls determine the unknown 

coefficients in the quadratic profile which can then be written ܼሺݖሻ = ͳ + �௭ ቀݖ − ௭మℎ ቁ , (23) 

where �௭ = c଴Σ�;௭a ⁄ܦ . (24) 

Note, if the lower and upper walls have non-zero absorption 

then ܼሺݖሻ cannot be constant since there must be an energy 

density gradient at those walls to support the absorbed power 

flux. Specializing to the steady-state case, it can then be 

shown using a variational residual minimization approach that 

the solution in the remaining directions satisfies a two-

dimensional diffusion equation [30] (−׏′ܦ௫௬ଶ + ��′ + ��′ )ܹሺݔ, ሻݕ = �TRPߜሺଶሻሺ� − �ୱሻ � א � (25) 

with Robin BCs (ܦ′�̂ ∙ � +  c଴Σ�a′ሺݔ, ,ݔሻ)ܹሺݕ ሻݕ = Ͳ   � א  (26) �ܥ

on the side walls. Here � is the cross-sectional area of the 

cavity, ܥ� is the curve defining the perimeter of this area and 

the other parameters are given by integrals over the vertical 

profile:  ܦ′ = ܦ ׬  ܼሺݖሻଶ dݖℎ଴  (27) ��′ = ܦ− ׬ ୢమ�ሺ௭ሻୢ௭మ ܼሺݖሻ dݖℎ଴  (28) ��′ = �V ׬  ܼሺݖሻଶ dݖℎ଴  (29) Σ�a′ሺݔ, ሻݕ = ׬ Σ�a ሺݔ, ,ݕ ℎ଴ݖሻଶ dݖሻ ܼሺݖ  . (30) ��′  corresponds to an effective areal energy loss factor in the 

2D model due to losses on the lower and upper surfaces. 

Approximate solutions to some interesting practical 

problems can be determined very quickly from this reduced 

dimensionality formulation. In this paper the finite element 

method (FEM) was used to solve the reduced boundary value 

problem, implemented using FreeFEM++ [31]. The contents 

were modeled by including their surfaces in the mesh and 

applying a Robin BC, (2), with the appropriate loss factor.  

Coupled volumes were simulated using the energy exchange 

BCs in (14) implemented with an iterative algorithm. Note 

that in the EDM the mesh size is determined by the MFP and 

not by the electromagnetic wavelength; this allows a much 

coarser mesh to be used in the EDM than in full-wave 

simulation. All the FEM results in this paper were obtained in 

about one second on a desktop computer using triangular 

meshes with a typical mesh size of 30-40 mm. 

IV. CANONICAL EXAMPLES 

The two canonical examples investigated are based on the 

same geometry of a cuboid cavity occupying the volume Ͳ ݔ≥ ≤ ʹ�, Ͳ ≤ ݕ ≤ � and Ͳ ≤ ݖ ≤ ℎ shown in Fig. 1. The walls 

are assumed to have a homogeneous absorption efficiency of �walla  and the cavity is excited by an isotropic source of total 

radiated power �TRP located at ሺݔୱ, ,ୱݕ ℎ ʹ⁄ ሻ. An absorbing 

cylinder of radius ܽ and height ℎ can be positioned in the 

cavity, orientated with its axis in the z-direction, centered at ሺݔୡ, ,ୡݕ ℎ ʹ⁄ ሻ. The cylinder is assumed to have a homogeneous 

absorption efficiency of �ୡa. 

The cavity can also be partitioned into two sub-cavities 

leaving a slot of width � with the full height of the cavity 

located in the region � − � ≤ ݕ ≤ �, Ͳ ≤ ݖ ≤ � of the shared ݔ = � wall. The slot was chosen to span the whole cavity so 

that the dimensional reduction technique is applicable and it 

was located along the edge of the partition for experimental 

convenience in the validation measurements described in 

Section V. 

The values of the parameters are given in Table I. The wall 

and cylinder absorption efficiencies were chosen to match 

those of the physical cavity and cylinder used for the 

validation measurements described in Section V. 

A. Absorbing cylinder in a rectangular cavity 

For Example A the partition in Fig. 1 is not present, leaving 

a single cavity loaded by an absorbing cylinder. Using the 

PWB approach, which assumes a homogeneous energy 

density, ݓh, we have from (18) ቀଵସ �walla �௏ + ଵସ �ୡa�ୡቁ c଴ݓh = �TRP (31) 

where �௏ = ʹ�ሺ͵ℎ + ʹ�ሻ − ʹ�ܽଶ and �ୡ = ʹ�ܽℎ. This 

provides a reference level for comparison to the EDM results. 

The cavity was modeled using the approach detailed in 

Section III and the parameters in Table I, except where stated 

otherwise. For �ୡa = Ͳ the FEM solution exactly reproduces 

the uniform energy density prediction of (31). 

Fig. 2 shows the distribution of the energy density in the 

plane z = ℎ ʹ⁄  for �ୡa = ͳ.Ͳ, normalized to the prediction of 

the PWB model, ȟሺ�ሻ = ௪ሺ�ሻ௪h  ,  (32) 

which quantifies both the uniformity of the diffuse energy 

density and its deviation from the PWB estimate. This 

 
Fig. 1.  Cross-section of the cuboid cavity used for the canonical examples 

and validation measurements. For Example A the partition is not present, 

giving a single loaded cavity. For example B the partition is introduced to 
give two sub-cavities coupled by a slot. The small black dots represent the 

measurement locations in the ݖ = ℎ plane used for the measurements. 

TABLE I 

PARAMETERS FOR THE CANONICAL EXAMPLES 

Parameter Value Parameter Value � 0.45 m ݔୱ 0.01 m ℎ 0.45 m ݕୱ 0.225 m 

d 0.04 m ݖୱ 0.225 m ܽ 0.05 m �௧ 1 W �walla  ୡ (Ex. B) 0.675 mݔ ୡ (Ex. A) 0.7 m �ୡa 0.95ݔ 0.0027 

 ୡ 0.225 mݕ  
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simulation uses the Sabine model (7) for the absorption factor. 

The absorption induces a non-uniformity of up to 3 dB in the 

energy density (ignoring the immediate vicinity of the source, 

since we have not subtracted the direct energy density term 

here) and the prediction of the PWB model is only valid over a 

limited spatial region; the maximum difference is about 1.5 dB 

in the right-hand half of the cavity. 

At this point a brief discussion of the boundary fields in a 

cavity is pertinent. In a metallic cavity the fields within about 

half a wavelength of the walls must deviate from those of the 

ideal diffuse field in order to satisfy the electromagnetic 

boundary conditions at the surface of a good conductor [32]. 

Neither PWB nor the EDM directly account for this. However, 

for a low loss cavity the average energy density near the wall 

is the same as it is within the main volume of the cavity; it is 

just distributed differently between the electromagnetic field 

components, residing increasingly in the normal electric and 

tangential magnetic field components as the wall is 

approached. Since the EDM describes the average energy 

density it is therefore consistent with this boundary effect near 

the walls; it should however be borne in mind that this field 

anisotropy exists near highly conducting surfaces. 

The flux of energy density necessary to sustain the non-

uniform distribution is given by Fick’s Law (11). Fig. 3 shows 

the energy density flux in the same plane for �ୡa = ͳ.Ͳ. The 

transport of energy density from the source to the dominant 

absorption surface is clearly seen. 

The uniformity of the scalar power density along the line ݕ =  ୡ down the center of the cavity is shown in Fig. 4 for aݕ

range of cylinder absorption efficiencies. The increasing 

inhomogeneity of the diffuse field with absorption efficiency 

of the cylinder is clearly apparent. 

The non-uniformity and flux must clearly be associated 

with anisotropy in the plane-wave spectrum at each point in 

the cavity [2]: A net flow of energy in a given direction 

corresponds to more plane-waves propagating in that direction 

compared to the other directions. The diffusion model cannot 

determine this anisotropy in the plane-wave spectrum directly; 

however, the overall anisotropy can be estimated by 

comparing the magnitude of the energy density flow with the 

scalar power density at each point using the metric Υሺ�ሻ = ୡబ௪ሺ�ሻୡబ௪ሺ�ሻ−|ۃ��ሺ�ሻ(33) .  |ۄ 

Fig. 5 shows this metric for the case �ୡa = ͳ.Ͳ. Anisotropy of 

up to 1.3 dB is predicted close to the cylinder. A denser mesh 

was used for this simulation in order to capture the detailed 

variations. 

 

 
Fig. 2.  Diffuse energy density uniformity, ȟሺݔ, ,ݕ ℎ ʹ⁄ ሻ (dB), in the cuboid

cavity with an absorbing cylinder with �ୡa = ͳ.Ͳ. 

 
Fig. 3.  Diffuse energy density flux, �௪ሺݔ, ,ݕ ℎ ʹ⁄ ሻ, in the cuboid cavity with 

an absorbing cylinder with �ୡa = ͳ.Ͳ. The arrows indicate the direction of the 

flux while the color indicates the magnitude. 

 
Fig. 4.  Diffuse field scalar power density at ݖ = ℎ/ʹ along the line ݕ =  ୡݕ
of the loaded cuboid cavity as a function of the cylinder’s average absorption 
efficiency comparing predictions of the diffusion model (lines with markers) 

to the standard power balance model (lines without markers). 

 
Fig. 5.  Diffuse energy density anisotropy, Υሺݔ, ݕ , ℎ ʹ⁄ ሻ (dB), in the cuboid 

cavity with an absorbing cylinder with �ୡa = ͳ.Ͳ. 
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B. Two cavities coupled by an aperture 

In Example B we consider the coupling of the diffuse field 

between the two sub-cavities formed by introducing the 

partition in Fig. 1. We denoted the ݔ < � “source” sub-cavity 

by “1” and the ݔ > � “coupled” sub-cavity by “2”. PWB 
analysis predicts that the energy densities in the two cavities, ݓଵh and ݓଶh, are given by [33] c଴ [ଶhݓଵhݓ] = ଵΔ [�ଶa + �୲ �୲�୲ �ଵa + �୲] [�TRPͲ ], (34) 

where �ଵa = �ଶa = �walla �௏ Ͷ⁄  are the absorption cross-sections 

of the two cavities, �୲ = �� Ͷ⁄  is the transmission cross-

section of the slot and ȟ = ሺ�ଵa + �୲ሻሺ�ଶa + �୲ሻ − ሺ�୲ሻଶ. Here �௏ = ͸�ሺ� − �ሻ is the total surface area of each sub-cavity. 

When cavity 2 is empty the solution in Fig. 6 is obtained for 

the parameters given in Table I. The uniformity is again 

defined as the ratio of the energy density to that predicted by 

the PWB in each sub-cavity (34). With this wall absorption 

efficiency, typical of a metallic enclosure, the inhomogeneity 

in the diffuse field is less than about 0.2 dB. 

The variation of the scalar power density along a line 

through the cavity is shown in Fig. 7 for a range of wall 

absorption efficiencies. For �walla د ͳͲ−ଷ the energy density is 

relatively homogeneous and the difference from the PWB 

model is less than 0.1 dB. As �walla  increases the power 

density becomes more and more inhomogeneous; in particular, 

the power density in cavity 1 near the aperture falls below the 

PWB prediction. The spatial average energy density in the 

EDM deviates from the PWB model by 10 % for �walla ~ͳͲ−ଷ and 30 % for �walla ~ͳ. 

The diffuse field uniformity in the coupled cavities when 

cavity 2 is loaded by an absorbing cylinder with �ୡa = Ͳ.ͻͷ 

and the wall absorption efficiency is �walla = Ͳ.ͲͲʹ͹ is shown 

in Fig. 8. The field in each cavity is again normalized to the 

PWB prediction. With the highly absorbing cylinder present in 

the second cavity the diffuse field varies by up to 3 dB from 

the PWB model estimate, with the greatest deviation near the 

aperture. 

The variation of the power density along a line through the 

cavity is shown in Fig. 9 for a range of cylinder absorption 

efficiencies and wall absorption efficiency is �walla = Ͳ.ͲͲʹ͹. 

The spatial average energy density in the EDM deviates from 

the PWB model by 5 % for �ୡa~ͳͲ−ଷ and 50 % for �ୡa~ͳ. 

 

 
Fig. 6.  Diffuse energy density uniformity, ȟሺݔ, ,ݕ ℎ/ʹሻ (dB), in unloaded 

coupled cuboid cavities with homogeneous wall absorption efficiency �walla = Ͳ.ͲͲʹ͹. 

 
Fig. 7.  Diffuse field scalar power density in unloaded coupled cuboid 
cavities predicted by the diffusion model (lines with markers) compared to 

the standard power balance model (lines without markers) along the line ݖ =Ͳ, ݕ = Ͳ.͵͸ m. 

Fig. 8.  Diffuse energy density uniformity, ȟሺݔ, ,ݕ ℎ/ʹሻ (dB), in coupled 

cuboid cavities with homogeneous wall absorption efficiency �walla =Ͳ.ͲͲʹ͹ and absorbing cylinder with �ୡa = Ͳ.ͻͷ in cavity 2. 

 
Fig. 9.  Diffuse field scalar power density in loaded coupled cuboid cavities
predicted by the diffusion model (lines with markers) compared to the 

standard power balance model (lines without markers) along the line ݖ =Ͳ, ݕ = Ͳ.͵͸ m. 
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V. VALIDATION MEASUREMENTS 

A. Test objects 

The predictions of the EDM were validated against 

measurements of the brass cavity shown in Fig. 10, which had 

the dimensions given in Table I. One wall of the cavity could 

be removed to allow access and another wall contained an 

array of holes into which a probe antenna could be inserted. 

The unused holes were closed by brass machine screws and 

nuts while the removable wall was clamped in place along a 

flange around the edge. Short monopole probe antennas where 

fabricated from SMA panel jacks. 

An absorbing cylinder of radius 50 mm and height 450 mm 

was fabricated by rolling a sheet of radio absorbing material 

(RAM). For coupled cavity measurements an Aluminum 

partitioning plate of dimensions 450 mm × 410 mm was 

introduced at the midpoint of the cavity, leaving a 40 mm slot 

on the side of the cavity with the removable wall; this choice 

of geometry prevented contact issues between the partitioning 

plate and removable wall. 

B. Measurement of diffuse fields 

The mismatch corrected insertion gain, �� =|�ଶଵ|ଶ ሺͳ − |�ଵଵ|ଶሻሺͳ − |�ଶଶ|ଶሻ⁄ , between the two probes was 

determined from scattering parameters, �௜௝ , measured using a 

vector network analyzer at 1600 equi-spaced frequency points 

in the band 8-8.5 GHz. The diffuse field power density in the 

cavity was then estimated by averaging the insertion gain over 

the frequency band: � = c଴ݓ = ͺ� ۄ��ۃ �ଶ⁄ , i.e. by  frequency 

stirring in the terminology of reverberation chamber 

measurement. The mode density in the cavity was about 

10 MHz-1 at 8 GHz and the measured mode bandwidth was 

about 9 MHz when loaded, suggesting that about 50 

independent samples of the field are included in the frequency 

average. Accordingly, the 1-sigma confidence interval on the 

measured average powers is about 1.3 dB [34]. 

C. Measurement of absorption factors 

The total quality factor of the empty cavity at 8.5 GHz was 

estimated to be 25,000 from the average insertion gain. By 

fitting the effective conductivity of the walls using a PWB 

model of the cavity (including the antennas) to this Q-factor 

the wall absorption efficiency was estimated to be �walla =Ͳ.ͲͲʹ͹. 

The average absorption cross-section, σୡyla , of the absorbing 

cylinder, with metal caps placed on either end, was measured 

in a reverberation chamber using the methodology described 

in [35]. At 8.5 GHz the measured absorption efficiency was 

found to be �ୡyla = Ͷ σୡyla ʹ�ܽℎ⁄ = Ͳ.ͻͷ. This is somewhat 

higher than the prediction of (8) using the RAM 

manufacturer’s complex permittivity (ߝ୰̂ = ͳ.ͺͳ − ʹ.Ͳͳ�) to 

determine the Fresnel reflection coefficients, which 

gives �ୡyla = Ͳ.ͺ͵. This is because the cylinder is in the 

resonant scattering regime at 8.5 GHz and the geometric 

optics approximation implicit in (8) is inaccurate. 

D. Results 

The average scalar power density was measured in the 

cavity, without the partition or absorbing cylinder, along a line 

with ݕ = Ͳ and ݖ = ℎ ʹ⁄  with respect to the axes in Fig. 1. The 

measurements are shown in Fig. 11, compared to different 

model predictions. When the cavity is unloaded the measured 

power density is in very good agreement with PWB and the 

EDM; the two models give almost identical predictions so 

only the EDM result is shown in the figure for clarity. 

For the cavity loaded with the absorbing cylinder (at the 

location of Example B in Table I) measurements were made 

with the monopole probes both co- and cross-polarized. The 

overall trend of the measurement results is in good agreement 

with the EDM solution using the Sabine absorption loss factor 

for the cylinder (7). Using the Jing & Xiang absorption 

factor (9) in the EDM gives a result that lies below the 

measurement data. The prediction of the PWB is also shown; 

it appears to underestimate the power density in the part of the 

cavity containing the source and overestimate it in the part 

containing the cylinder. 

Placing the cylinder horizontally in the cavity of Fig. 10 it 

was also possible to measure the power density distribution in 

the ݖ = ℎ plane of Fig. 1. The results are shown in Fig. 12 and 

are again consistent with the EDM, in particular the falling 

trend along the x-direction and the relative invariance in the y-

direction. The statistical variation of the measurement data is 

Fig. 10.  Photograph, looking into the physical cavity (along the −�̂ direction 
with respect to Fig. 1) used for the validation measurements. Monopole 

probe antennas can be seen mounted on the “right” wall and the “roof” next 
to the absorbing cylinder.  

Fig. 11.  Diffuse field scalar power density, normalized to 1 W source power, 

at ݖ = ℎ/ʹ along the ݕ = Ͳ wall of the unloaded and loaded cuboid cavity at 

8.5 GHz, comparing measurement to PWB and diffusion models.  
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too large to allow a determination of the relative accuracy of 

the Sabine and Jing & Xiang absorption factor models, though 

there is some indication of a tendency towards the Jing & 

Xiang model with increasing distance from the source. The 

measurements above were repeated in the frequency band 

16-16.5 GHz. With appropriate changes to the frequency 

dependent wall and cylinder absorption efficiencies in the 

EDM similar agreement was obtained. 

Fig. 13 shows the results of measurements and models 

when the partition is introduced as in example B, but without 

the absorbing cylinder. The wall loss alone was sufficient to 

induce an approximately 2 dB difference in the diffuse field 

between the two cavities, which is predicted accurately by 

both the PWB model and EDM. 

When the absorbing cylinder was introduced into the 

coupled cavity the results shown in Fig. 14 were obtained. The 

power level difference between the cavities is now about 

10 dB. The general agreement is again good, though the 

measurements are somewhat more dispersed than the EDM 

prediction in the unloaded coupled cavity. The EDM does 

however predict the correct trend with variation in y. This 

deviation could be indicative of reduced diffusivity in the 

coupled cavity, beyond that which is predicted by (5)-(6). 

Further investigation of the effects of absorption and aperture 

coupling on the local diffusivity is necessary. 

VI. CONCLUSIONS 

Diffusion equation based modeling of the diffuse 

electromagnetic field in enclosed spaces is a natural 

generalization of the PWB method already widely applied to 

EMC analysis. It is able to account for the inhomogeneous 

absorption that arises in many EMC applications, predicting 

the distribution of diffuse energy very efficiently compared to 

other techniques. For example, it can predict field non-

uniformity in loaded reverberation chambers, informing the 

optimal positioning of antennas to minimize the systematic 

error due to the loading. 

We have demonstrated the potential of the EDM technique 

using two canonical examples validated by measurement data, 

obtaining good results. The approach retains the flexibility of 

the traditional PWB model, allowing semi-empirical analysis 

of complex structures to be undertaken using experimentally 

determined absorption and transmission cross-section, but 

with greater accuracy due to the ability to deal with 

heterogeneous loss. It can also still be fully predictive if 

analytic expressions for all the required cross-sections are 

available. 

A key advantage of the EDM technique is its computational 

efficiency; it can produce a solution in seconds using modest 

hardware for electrically large problems which can take many 

days to solve using full-wave techniques. This is very 

appealing for applications such as high frequency enclosure 

shielding assessment which can require onerous amounts of 

computing resource; a more efficiency approach could lead to 

significant cost savings in product development. 
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