UNIVERSITYW

This is a repository copy of Contracts in CML.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/106540/

Version: Accepted Version

Proceedings Paper:

Woodcock, J. C. P. orcid.org/0000-0001-7955-2702, Cavalcanti, A. L. C. orcid.org/0000-
0002-0831-1976, Fitzgerald, J. et al. (2 more authors) (2014) Contracts in CML. In: 6th
International Symposium On Leveraging Applications of Formal Methods, Verification and
Validation. Lecture Notes in Computer Science . Springer , pp. 54-73.

https://doi.org/10.1007/978-3-662-45231-8 5

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Contracts in CML

Jim Woodcock!, Ana Cavalcanti', John Fitzgerald?,
Simon Foster!, and Peter Gorm Larsen?

! University of York
2 Newcastle University
3 Aarhus University

Abstract. We describe the COMPASS Modelling Language (CML),
which is used to model large-scale Systems of Systems and the con-
tracts that bind them together. The language can be used to document
the interfaces to constituent systems using formal, precise, and verifi-
able specifications including preconditions, postconditions, and invari-
ants. The semantics of CML directly supports the use of these contracts
for all language constructs, including the use of communication chan-
nels, parallel processes, and processes that run forever. Every process
construct in CML has an associated contract, allowing clients and sup-
pliers to check that the implementations of constituent systems conform
to their interface specifications.

1 Introduction

The COMPASS Modelling Language (CML) is a formal language for describing
“Systems of Systems” [29] (SoS). An SoS is a collaboration of smaller indepen-
dent systems to achieve a goal that cannot be readily achieved by any of these
constituents. Typical SoSs include traffic management systems, emergency re-
sponse systems, and home automation systems, all of which include constituent
systems over which there is no overall control. To achieve synergy, contracts
must be negotiated to define the behaviour of the SoS and impose constraints
on the constituents, which are otherwise free to behave independently. If such
an SoS is to be dependable, it is necessary to ensure that all the constituents are
capable of fulfilling their guarantees. We give a mathematically rigorous account
of contracts and system models, so that we can verify their conformance.

The design-by-contract paradigm was originally by Meyer [33], and it needs
adaptation to express SoS contracts. For SoSs, constituent system designers need
to define formal, precise, and verifiable interface specifications for constituents
with preconditions, postconditions, and invariants. The postcondition answers
the question, “What can the client expect?” The precondition answers the ques-
tion, “What can the supplier assume?” The invariant answers the question, “What
is persistent?” These specifications can then act as contracts which inform the
conditions and obligations imposed on a given constituent system.

Parnas calls for formal methods to be “really rethought” [38]; an example he
gives is in rethinking the role of termination. Normally, we require programs to

terminate to be considered (totally) correct; an extension of this is partial cor-
rectness, where it is only required that, if the program terminates, then the an-
swer is correct; but many programs are designed to run indefinitely—specifically
reactive systems and particularly SoS. Parnas draws the conclusion that the as-
sertional technique is currently inadequate and that we need to find a good way
to represent normal nontermination in correctness arguments.

CML extends the notion of a contract to language constructs not often dealt
with in the design-by-contract paradigm, including the use of communication
channels, parallel processes, and processes that run forever (addressing Parnas’s
concerns directly). In fact, every process construct in CML has an associated
contract, and this allows clients and suppliers to check that dynamic behaviour
conforms to interface specifications.

In the COMPASS project, CML is central to our approach to SoS engi-
neering [17]. We base the approach on a combination of the Systems Modelling
Language (SysML) with CML. The former brings facilities for describing sys-
tem architecture and functionality in a largely graphical, multi-view modelling
environment where contracts between constituent systems can be specified at
a high-level of abstraction [5]. CML provides a formal basis for analysing SoS
models based on SysML abstractions, and adds the rich description of data,
functionality, and communication. The loose coupling between SysML and CML
has enabled the use of well-established tools to construct CML models; these are
translated to a CML version that can be subjected to static and dynamic analy-
sis using the Symphony platform and its plug-ins. The viability of the approach
has been demonstrated in diverse ways. For example, in COMPASS, SysML and
CML, and tools supporting them, have been successfully deployed together to
tackle complex problems in, applications such as home automation [4]. Patterns
and profiles have been defined to aid SoS modelling for specific problems such
as fault modelling [1].

Our contribution in this paper is to formalise an approach to modelling of
contracts in CML, drawing on Meyer’s approach to design by contract. In Sec-
tion 2, we give an overview of CML. In Section 3, we describe the method used
to define CML’s semantics, Hoare and He’s Unifying Theories of Programming,
a framework for formalisation of heterogeneous semantics which has a mecha-
nised foundation in Isabelle [18]. In Section 4, we go on to give an overview of
CML’s semantic domains. In Section 5, we give a series of examples of interface
contracts for small fragments of CML processes. In Section 6, we give a complete
example of a system in which contracts are used to specify emergent properties.
Finally, in Section 7 we reflect on what has been achieved.

2 The COMPASS Modelling Language

The COMPASS Modelling Language (CML) has been developed for the mod-
elling and analysis of Systems of Systems (SoSs), which typically are large-scale

systems composed of independent constituent systems [46]*. CML is based on a
combination of VDM [28,16] and CSP [24,42], in the spirit of Circus [44,35,36].

A CML model consists of a collection of types, functions, channels, and pro-
cesses. The type system of CML is taken directly from VDM and includes sup-
port for numeric types, finite sets, finite maps, and records, all of which can
be further constrained through type invariants. Functions are pure mathemati-
cal mappings between inputs and outputs, which can be specified explicitly via
A-calculus, or implicitly using pre and postconditions. In general we adopt the
syntax of VDM-SL [14] for the functional and imperative parts of the language,
whilst using Circus style syntax for the concurrent and reactive parts.

Channels and processes are used to model SoSs, their constituent systems,
and the components of these systems. A channel is a medium though which pro-
cesses can communicate with each other, optionally carrying data of a certain
type. Each process encapsulates a number of local state variables, VDM style
operations acting on the state (explicit or implicitly specified), and actions which
specify the reactive behaviour. Actions are defined using CSP style process con-
structs, which enable a process to interact with its environment via synchronous
communications. The main action constructs of the basic CML language with
state, concurrency, and timing are described in Table 1. In addition to the stan-
dard CSP operators, such as prefix a?v -> P and external choice P [1 Q, CML
includes support for modelling real-time behaviour such as timeout P [(n)> Q
which will behave like Q after n time units if P does not first interrupt.

deadlock Stop termination Skip
divergence Chaos assignment (v := e)
specification statement [frame w pre p post ql
simple prefix a -> Skip prefixed action a -> P
guarded action [g]l & P sequential composition P ; Q
internal choice P |~| Q external choice P []1 Q
parallel composition P [lesl|] Q interleaving P |11 Q
abstraction P \\ A recursion mu X @ P(X)
wait Wait(n) timeout P [(n)> Q
untimed timeout P [> Q interrupt P /\ Q
timed interrupt P /(n)\ Q starts by P startsby(n)
ends by P endsby(n) while while b do P

Table 1. The core of the CML language.

An example CML process is shown in Figure 1, which models a stack. We first
define the Element type for stacks, which in this case are integers constrained to
values between 0 and 255 (i.e. bytes) through a type invariant. Next we define five
channels with which to communicate with the stack, including an initialisation
channel (init), channels which indicate whether the stack is empty or not (empty,
nonempty), and finally channels to push and pop, which carry elements.

* The COMPASS project is described in detail at http://www.compass-research. eu.

The actual Stack process consists of a single state variable stack storing a
sequence of elements. We define two operations, Push and Pop, contractually in
terms of their pre and postconditions, which respectively add and remove an
element from the stack. Push has no precondition, and has the postcondition
that the new stack must have the pushed value at its head, and the previous
value of the stack (denoted by a tilde) at its tail. Pop requires that that the stack
be nonempty, returns the head of the stack, and suitably updates the state. We
also define a simple function to check for emptiness of the stack.

types
Element = int inv x == x >= 0 and x <= 255

channels
init, empty, nonempty
push, pop : Element

process Stack =
begin
state stack : seq of Element

operations
Push(e : Element)
post hd(stack) = e and tl(stack) = stack”

Pop() e : Element
pre stack <> []
post stack = tl(stack™) and e = hd(stack)

functions
isEmpty : seq of Element -> bool
isEmpty(s) == s = []

actions
Cycle =
(push?e -> Push(e)
[1 [not isEmpty(stack)] &
(dcl v : Element @ v := Pop() ; pop!v -> Skip)
[1 [isEmpty(stack)] & empty -> Skip
[1 [not isEmpty(stack)] & nonempty -> Skip) ; Cycle

@ init -> stack := []; Cycle
end

Fig. 1. CML model of a stack

The main reactive cycle of the process is defined through the action Cycle,
that consists of an external choice between four options. The options describe
the following behaviour, respectively:

— wait for input over the push channel, and then call the Push operation;

— if the stack is not empty, create a local variable v, pop the top of the stack
and assign it to v, and then offer this value over the pop channel;

— if the stack is empty, offer communication on the empty channel;

— if the stack is not empty, offer communication on the nonempty channel.

After each of these behaviours, Cycle recurses. The top-level behaviour of the
process is then given by the main action, defined after the @ symbol. It waits
for an input on init, empties the stack, and then enters Cycle.

Development of CML models is facilitated through Symphony®, an Eclipse-
based integrated development environment. Symphony provides a parser, type
checker, simulator, model checker, and theorem prover for CML, all of which
have been implemented based on a common semantic basis in the UTP.

The semantics of CML is specification oriented: there is a natural notion
of contract for every process language construct and an intuitive refinement
ordering. We next describe both notions and give examples of their use.

3 Unifying Theories of Programming

The semantics of CML is defined in Hoare & He’s Unifying Theories of Program-
ming (UTP), which is a long-term research agenda for computer science and soft-
ware engineering [25,11,45]. It can be described as follows: researchers propose
programming theories and practitioners use pragmatic programming paradigms;
what is the relationship between them? UTP, based on predicative program-
ming [23], gives three principal ways to study such relationships: (i) by com-
putational paradigm, identifying common concepts; (ii) by level of abstraction,
from requirements, through architectures and components, to platform-specific
implementation technologies; and (iii) by method of presentation—namely, de-
notational, algebraic, and operational semantics—and their mutual embeddings.

UTP presents a theoretical foundation for understanding software and sys-
tems engineering. In its original presentation, it describes nondeterministic se-
quential programming, the refinement calculus, the algebra of programming,
compilation of high-level languages, concurrency, communication, reactive pro-
cesses, and higher-order programming [25]. Subsequently, it has been exploited
in a diversity of areas such as component-based systems [49], hardware verifica-
tion [40,39], and hardware/software co-design [2].

UTP can also be used in a more active way for constructing domain-specific
languages, especially ones with heterogeneous semantics. Examples include the
semantics for Circus [35,36,44] and Safety-Critical Java (SCJ) [8,10,9], both of
which have been composed from individual, reusable theories of sequential and
concurrent programming. SCJ additionally has real-time tasking and a sophis-
ticated model of memory usage. The analogy for these kinds of compositional
semantics is of a theory supermarket, where you shop for exactly those features
you need, whilst being confident that the theories plug-and-play nicely together.

® Symphony can be obtained from http://symphonytool.org/

The semantic metalanguage for UTP is an alphabetised version of Tarski’s
relational calculus, presented in a pointwise predicative style that is reminiscent
of the schema calculus in the Z notation [47]. Each programming construct is
formalised as a relation between an initial and an intermediate or final observa-
tion. The collection of these relations forms a theory of a paradigm that contains
three essential parts: an alphabet, a signature, and some healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the
theory being studied: names are chosen for any relevant external observations of
behaviour. For instance, programming variables z, y, and z are normally part
of the alphabet. Theories for particular programming paradigms require the
observation of extra information. Some examples from existing theories are: a
flag that says whether the program has started (ok); the current time (clock);
the number of available resources (res); a trace of the events in the life of the
program (i¢r); a set of refused events (ref); or a flag that says whether the
program is waiting for interaction with its environment (wait).

The signature gives syntactic rules for denoting objects of the theory. Finally,
healthiness conditions identify properties that characterise the predicates of the
theory. They are often expressed in terms of a function ¢ that makes a program
healthy. There is no point in applying ¢ twice, since we cannot make a healthy
program even healthier, so ¢ must be idempotent: P = ¢(¢(P)). The fixed-points
of this equation are the healthy predicates of the theory.

An alphabetised predicate (P, @, ..., true) is an alphabet-predicate pair,
such that the predicate’s free variables are all members of the alphabet. Re-
lations are predicates in which the alphabet comprises plain variables (z, y, z,

..) and dashed variables (z’, o/, ...); the former represent initial observations,
and the latter, intermediate or final observations. The alphabet of P is denoted
aP. A condition (b,c,d,..., true) has no dashed variables. Predicate calculus
operators combine predicates in the obvious way, but with specified restrictions
on the alphabets of the operands and specified resulting alphabet. For example,
the alphabet of a conjunction is the union of the alphabets of its components,
and disjunction is defined only for predicates with the same alphabet.

A distinguishing feature of UTP is the central role played by program correct-
ness, which is defined in the same way in every programming paradigm in [25].
Informally, it is required that, in every state, the behaviour of an implementation
implies its specification. If we suppose that for a predicate P, «P = {a, b, a’,b'},
then the universal closure of P isV a, b, a’, b’ @ P, denoted [P]. P is correct with
respect to a specification S providing every observation of P is also an observa-
tion of S: [P = S; this is described by S C P (read S is refined by P).

UTP has an infix syntax for the conditional, P <1b[> @, and it is defined as
(bAP)V (=bAQ),if ab C aP = a. Sequence is modelled as relational
composition: two relations may be composed, providing that their alphabets
match: P(v') ; Q(v) = Juy ® P(w) A Q(w), if outaP = ina@' = {v'}. If
A=A{z,y,...,z} and ae C A, then the assignment z :=4 e defined below, with
expression vector e and variable vector z, changes only z’s value.

xi=pae = (&'=eNy =yAN--- N2 =2)

There is a degenerate form of assignment that changes no variable; it is called
“skip” defined as T4 = (v =), if A = {v}. Nondeterminism can arise in one
of two ways: either as the result of runtime factors, such as distributed processing
or as the under-specification of implementation choices. Either way, nondeter-
minism is modelled by choice; the semantics is disjunction: P11 Q = PV Q.

The set of alphabetised predicates with a particular alphabet A forms a
complete lattice under the refinement ordering (which is a partial order). The
bottom element is denoted 1,, and is the weakest predicate true; this is the
program that aborts, and behaves quite arbitrarily. The top element is denoted
T4, and is the strongest predicate false; this is the program that performs
miracles and implements every specification. Since alphabetised relations form
a complete lattice, every construction defined solely using monotonic operators
has a complete lattice of fixed points. The weakest fixed-point of the function F
is denoted by p F, and is simply the greatest lower bound (the weakest) of all the
fixed-points of F. This is defined: uF = [1{ X | F(X) C X }. The strongest
fixed-point vF' is the dual of the weakest fixed-point.

4 CML Semantics

Currently, CML contains several language paradigms. These are all presented
through formalisation as UTP theories.

State-based description. The theory of designs provides a nondeterministic
programming language with precondition and postcondition specifications
as contracts, written P F (), for precondition P and postcondition (). The
concrete realisation is VDM.

Concurrency and communication. The theory of reactive processes pro-
vides process networks communicating by message passing. The concrete
realisation is CSP;, with its rich collection of process combinators.

Object orientation. This theory is built on designs with state-based descrip-
tions structured by sub-typing, inheritance, and dynamic binding, with ob-
ject creation, type testing and casting, and state-component access [7].

References. The theory of heap storage and its manipulations supports a
reference semantics based on separation logic.

Time. The theory of timed traces in UTP supports the observation of events
in discrete time. It is used in a theory of Timed CSP.

As explained in the previous section, the semantic domains are each formalised as
lattices of relations ordered by refinement. Mappings exist between the different
semantic domains that can be used to translate a model from one lattice into
a corresponding model in another lattice. For example, the lattice of designs
is completely disjoint from the lattice of reactive processes, but a mapping R
maps every design into a corresponding reactive process. Intuitively, the mapping
equips the design with the crucial properties of a reactive process: that it has a
trace variable (¢r) that records the history of interactions with its environment
and that it can wait for such interactions. A vital healthiness condition is that

this trace increases monotonically: this ensures that once an event has taken
place it cannot be retracted—even when the process aborts.

Another mapping counteracts R: it is called H, and it is the function that
characterises what it is to be a design. H puts requirements on the use of the
observations ok and ok’, and it is the former that concerns us here. It states
that, until the operation has started properly (ok is true), no observation can be
made of the operation’s behaviour. So, if the operation’s predecessor has aborted,
nothing can be said about any of the operation’s variables, not even the trace
observation variable. This destroys the requirement of R that restricts the trace
so that it only ever increases monotonically, even when ok is false.

This pair of mappings forms a Galois connection [13], and such pairs exist
between all of CML’s semantic domains. One purpose of a Galois connection is
to embed one theory within another, and this is what gives the compositional
flavour of UTP and CML, since Galois connections compose to form other Galois
connections. For example, if we establish a Galois connection between reactive
processes and timed reactive processes, then we can compose the connection
between designs and reactive processes with this new Galois connection to form
a connection between designs and timed reactive processes.

The possibly obscure mathematical fact that there is a Galois connection be-
tween designs and reactive processes is of great practical value. One of the most
important features of designs is assertional reasoning based on preconditions
and postconditions, including the use of Hoare logic and weakest precondition
calculus. Assertional reasoning, as defined in the theory of designs, can be in-
corporated into the theory of reactive processes by means of the mapping R.

In the theory of designs, a Hoare triple {p} Q {r}, where p is a precondi-
tion, r is a postcondition, and @ is a reactive process, is given the meaning
(R(p Fr") C @), which is a refinement assertion. In the specification R(p - ')
the precondition p and the postcondition r are assembled into a design, with r as
a condition on the after-state; this design is then translated into a reactive pro-
cess using R. The semantics of the Hoare triple requires that this reactive specifi-
cation is implemented correctly by the reactive process . Thus, reasoning with
preconditions and postconditions is, in this way, extended from the state-based
operations of the theory of designs to cover all operators of the reactive language,
including non-terminating processes, concurrency, and communication.

This is the foundation of the contractual approach used in COMPASS: pre-
conditions and postconditions (designs) are embedded in each of the semantic
domains and this brings uniformity through a familiar reasoning technique.

5 Contracts in CML

In this section, we give a series of examples of the use of contracts in CML.

Ezample 1 (Single shot). The CML action a — Skip will perform one a event
and then terminate. It never diverges, so it has precondition true. Its postcon-
dition depends on whether or not it is waiting, indicated by the observational
variable wait’ being true. If it is waiting, then it has not performed any events

and the trace is unchanged (&’ = tr), but it is also not refusing to perform the a
event: a ¢ ref’, where ref’ is the refusal set. Otherwise, it has performed exactly
one a event (tr' = tr ™ (a)). This precondition-postcondition pair forms a design
that gives the contract for the action; of course, the contract must also insist on
R-healthiness. In full, the contract is as follows.

R(true - (tr' =tr A a ¢ ref’) <wait' > tr' = tr ™ (a))

We notice the use of observational variables: ok, ok, wait, wait’, tr, tr', ref, and
ref’. These are “ghost variables”, not code; that is, they are part of the underlying
semantic model and cannot be manipulated at run time. Ghost variables provide
a convenient way of forming contracts by allowing us explicitly to restrict possible
reactive behaviours.

There is a technicality about any assertion involving the ghost variable ref’. If
an action may refuse a set s, then it may refuse any subset of s. That is, if
an action refuses the set {a, b}, then it will also refuse the sets {a} and @, for
example. For this reason, an assertion such as a € ref’ is unsatisfiable. So if we
really did want to assert that a is always refused, then we would instead say
that it never occurs: it never appears in the trace, rather than restrict refusals.

The precise form of a CML contract is derived from the fact that every CML
action can be expressed in the form R(P + Q). We saw the syntactic form of
a design above; its semantics depends on the two observations mentioned in
Section 4, ok and ok’: if the design is started (ok is true) in a state in which
the precondition holds (P is true), then it must terminate (ok’ will be true) and
when it does, the postcondition must hold (@ must be true). This justifies the
definition P+ Q = ok A P = ok’ A Q for designs.

Ezample 2 (Chocolate vending machine). We consider a grossly simplified model
of a vending machine VM. A complete transaction with the machine involves
inserting a coin and extracting a chocolate; the machine repeatedly engages in
such transactions as specified by the action below.

VM = coin -> choc -> VM

This is a CML action, but what is the contract? We notice that there is no state,
so the contract must be entirely in terms of the ghost variables ok, ok’, wait,
wait’, tr, tr', ref, and ref’. A reasonable contract for the machine comes in two
parts: a requirement on the user and a requirement on the machine itself.

— The machine should not lose money: every chocolate must be paid for.
NOLOSS = freq(choc,tr’-tr) <= freq(coin,tr’-tr)

— The machine should be fair: the machine should not build up too much credit.
FAIR = freq(coin,tr’-tr) <= freq(choc,tr’-tr) + 1

The auxiliary function freq gives the frequency of an event in a trace. It is defined
below. The specification of the vending machine is given by the conjunction of
these requirements. It is defined below.

VMSPEC = NOLOSS and FAIR
The VDM (and, therefore, CML) definition of freq is as follows.

freq: Event * (seq of Event) -> nat
freq(e,s) =
if s = [] then
0
else
if hd(s) = e then
1 + freq(e,tl(s))
else
freq(e,t1(s))

How can we check that VM satisfies this specification? There are four principal
ways, two using theorem proving and two using model checking:

prove that [VM = VMSPEC],

use the assertional technique (that is, Hoare logic),
use a refinement model checker, or

use a temporal logic model checker.

L

(1), (2), and (3) are essentially the same: they check the refinement relation. We
may regard (1) as a full-frontal attack on the problem using a theorem prover. On
the other hand, (2) is more subtle, using inference rules to match the structure of
the implementation VM and check the assertion VMSPEC. For (3), the specification
must be captured as a finite state CML action, just like the implementation. A
model checker (such as [21] or [31]) is then used to check that the observable
behaviours of the implementation are all behaviours of the specification.

For (4), the specification must be captured as an expression in temporal
logic; LTL is commonly used [3], with its operators such as “eventually” and
“henceforth”. A model checker, such as PAT [31] or the CML model checker [34],
is then used to test whether the system satisfies the temporal logic specification.
Roscoe [43] and Lowe [32] have each studied the relationship between refinement-
based checking and temporal-logic checking. An account of that in the UTP can
justify its use for CML.

To illustrate the use of the refinement model checker, we construct actions
to embody the two parts of the specification. First, for NOLOSS, we construct an
action parametrised by the number of coins and chocolates already dispensed.
NOLOSS is always willing to accept further coins, since that cannot contribute to
a financial loss, but dispenses a chocolate only if there is outstanding credit.

NoLossProc =
coins, chocs: nat @
coin -> NoLossProc(coins+1,chocs)
1

[chocs < coins] & choc -> NoLossProc(coins,chocs+1)

10

The action embodying FAIR complements NOLOSS: it is always willing to dispense
chocolates, since that cannot be unfair to a customer, but accepts a coin only if
at least as many chocolates have been dispensed as paid for.

FairProc = coins, chocs: nat @

[coins <= chocs] & coin -> NoLossProc(coins+1,chocs)
1

choc -> FairProc(coins,chocs+1)

A vending machine that does nothing makes no loss and is trivially fair, so
NOLOSS and FAIR is not a very good specification; so how do we say something
stronger? There is a liveness aspect to fairness: if the customer has paid for a
chocolate, then the machine should not refuse to dispense it.

FAIR1 = (freq(choc,tr’-tr) < freq(coin,tr’-tr) => choc not in ref?’)

Similarly, there is a liveness aspect to profit making: if every chocolate that has
been paid for has been dispensed, then the machine should not refuse a coin.

PROFIT1 = (freq(choc,tr’-tr) = freq(coin,tr’-tr) => coin not in ref?)

The two actions embodying our specification already have these two properties.

Specifications involving ref’ can be used to assert deadlock freedom. If the
event alphabet for an action is A, then deadlock freedom can be specified as
NONSTOP = ref’ <> A. This states that the action can never reject, that is, refuse,
the entire alphabet of events, and so is never deadlocked.

When checking with a model checker such as FDR?, it is sufficient to check
satisfaction of each part of the specification independently. So to check that the
vending machine does not make a loss and that it is fair to its customers, we can
use the two separate assertions below.

assert NoLossProc [= VM

assert FairProc [= VM

Equivalently, we can check the two properties simultaneously. To do this, we
need to assemble the NoLossProc and FairProc actions in parallel, synchronising
on the choc and coin events as shown below.

assert NoLossProc [|{choc, coin}|] FairProc [= VM

The process Chaos misbehaves badly, like your worst nightmare: it melts down
the reactor; it switches off the in-flight computer; it transfers all your funds into
my bank account. The next examples illustrate its use.

Ezample 8 (Deferred chaos). Consider the process:

a -> Chaos

5 http://wuw.fsel.com.

11

This process is perfectly safe, providing its environment never engages in the
event a. So what is the contract? The precondition must record the assumption
that the a event never occurs, which it does as a relation: — (¢ir ™ (a) < tr’).
The precondition is describing a protocol in terms of the trace, a kind of rely-
condition in the sense of Jones [27]. Now, if we assume that the precondition
holds, then the postcondition is straightforward: the action is forever waiting
(wait’), and the trace never changes (¢r/ = ¢r), but a is not refused (a & ref’).

R(— (tr ™ {a) < tr') F wait’ A tr' =tr A a & ref’)

Ezample 4 (Badly behaved vending machine). We now consider the following
badly-behaved vending machine VMC.

VMC =
in2 -> (large -> VMC
(1
small -> outl -> VMC)
1
inl -> (small -> VMC
(1
inl -> (large -> VMC

(]
inl -> Chaos))

Initially, VMC is prepared to accept either a £1 coin or a £2 coin. If the £2
coin is inserted, then the customer has a choice between a large and a small
chocolate bar. If the small bar is selected, then the machine offers change of
£1. Alternatively, if the £1 coin is inserted, then a choice is offered between
extracting a small chocolate bar or inserting a further £1 coin. If another £1
coin is inserted, the choice then becomes between extracting a large chocolate
bar or inserting yet another £1 coin, whereupon the machine behaves chaotically.
The precondition here is, therefore, — (¢ 7 [inl, inl, inl] < tr').

6 Mini-Mondex

Mondex’ is an electronic purse hosted on a smart card and developed about
fifteen years ago to the high-assurance standard ITSEC Level E6 [26] by a con-
sortium led by NatWest, a UK high-street bank. Eight years ago, a community
effort was launched to mechanically verify the original models of Mondex in a
variety of different notations, in order to compare and contrast their effective-
ness [48,41,22,6,30,20,19]; the problem has now become a benchmark for formal
verification. In this section, we describe a simplified version of the problem: mini-
Mondex, where we ignore faulty behaviour and focus on specifying functional
requirements.

" http://www.mondex. com.

12

Purses interact using a communications device, and strong guarantees are
needed that transactions are secure in spite of power failures and mischievous
attacks. These guarantees ensure that electronic cash cannot be counterfeited,
although transactions are completely distributed. There is no centralised con-
trol: all security measures are locally implemented, with no real-time external
audit logging or monitoring; key properties emerge from local behaviour.

Our model of Mondex has the following constant values: N, the number of
cards in the system; V, the maximum value that may be held by a card; and M,
the total money supply. These are specified in CML as follows.

values
N: nat = 10
V: nat = 10

M: nat = N*V

There are two types related to these constants: the Index set for cards; and the
Money. The relationship with N and M is made explicit through two invariants.

types
Index = nat
inv i == i in set {1,...,N}

Money = nat
inv m == m in set {0,...,M}

We also specify three functions which are needed for our contract. initseq(n)
builds a sequence of numbers from 0 to n. subtseq(xs, i, n) subtracts n from
the ith item of sequence xs. addseq(xs, i, n) adds n to the ith item of xs.

functions
initseq: nat -> seq of nat
initseq(n) == [i | i in set {0,...,n}]

subtseq: seq of nat * nat * nat -> seq of nat
subtseq(xs, i, n) == xs ++ {i |-> xs(i) - n}
pre len(xs) > i and xs(i) >=n

addseq: seq of nat * nat * nat -> seq of nat
addseq(xs, i, n) == xs ++ {i |-> xs(i) + n}

pre len(xs) > i

There are a number of channels that connect cards with each other and with
the environment. A user can instruct one card to pay another with the event
pay.i.j.n, which corresponds to instructing card i to pay card j the sum of n
money units. The attempted transfer of money is made between cards using the
transfer channel. The transaction may be accepted or rejected.

channels
pay, transfer: Index * Index * Money
accept, reject: Index

13

Each card is modelled by an indexed CML process with its encapsulated state.
The state of the process consists of a single component value, which is a natural
number recording the balance in the purse. There are three operations: (i) Init,
which sets the initial value to V; (ii) Credit, which increments the value by the
parameter n; (iii) and Debit, which decrements the value by the parameter n.
There are also three actions: (i) Transfer accepts a pay communication and
analyses it to see if there are sufficient funds to honour the debit, replying ap-
propriately with an accept or reject communication; if there are sufficient funds,
then a transfer message is sent to the receiving card and debits its local state.
(ii) Receive accepts a receive message and credits its local state appropriately.
(iii) Cycle repeatedly offers the Transfer and Receive actions. The e-symbol
marks the main action for the process.

process Card = val i: Index @

begin
state value: nat
operations
Init: O ==> ()
Init() == value := V

Credit: nat ==> ()
Credit(n) == value := value + n

Debit: nat ==> ()
Debit(n) == value := value - n
pre n <= value

actions
Transfer =
pay.i?j?n ->
([n > value] & reject!i -> Skip
1

[n <= value] & transfer.i.j!n -> accept!i -> Debit(n))
Receive = transfer?j.i?n -> Credit(n)
Cycle = (Transfer [] Receive); Cycle

Init(); Cycle
end

The network is defined by the parallel composition of all the indexed cards. We
need to specify the interface for each card to specify its interaction with the rest
of the network. As defined above, Card(i) participates in the following events.

— Every event of the form pay.i.j.n, for any card j and amount n.
— Every event of the form transfer.i.j.n, for any card j and amount n. These
represent the money leaving the card.

14

— Every event of the form transfer.j.i.n, for any card j and amount n. These
represent the money entering the card.
— The events accept.i and reject.i.

In the construction of the network, we identify this alphabet of events for each
of the Card(i) processes, and assemble the N cards in parallel.

process Cards =
[l i in set {1,...,N} @
[{| pay.i,transfer.i,accept.i, reject.il|} union
{| transfer.j.i.n | j in set {1,...,N}, n in set {0,...,M}}
] Card(i)

Cards that share the same event in their alphabet need to synchronise on that
event. The network, therefore, ensures that transfers between cards i and j are
achieved when both cards cooperate.

Finally, we need to hide the internal channels that connect the cards: these
do not form part of the extensional behaviour of the network:

process Network = Cards \ {|transfer|}
We identify the following properties that are required of mini-Mondex.

No counterfeiting: There must be no increase in the total value in the system.

Fairness: There must be no loss of value.

Usefulness: If we demand a transfer from a card that has the required funds,
then the transfer should take place.

We notice that the first two properties above are emergent global properties,
but the system has only local behaviour. In what follows, we describe these
properties using the CML contract Spec below.

This contract models the network as a single process with an Olympian view
of the state of all cards; it has only one state component, valueseq, which is
a sequence of numbers, indexed by card indexes. An invariant requires there
to be an element in the sequence for every card. The valueseq is initialised to
correspond with the initialisation of each card: each containing the value V.

process Spec =
begin
state
valueseq: seq of nat
inv

len(valueseq) = N

operations
Init: O ==> O
Init() == valueseq := initseq(N)

There are two actions. The first, Pay is parametrised by source and destination
cards and an amount to be paid. Its behaviour starts with the communication

15

pay.i.j.n. Following this, there is an analysis of whether the card paying the
amount can afford it. If it cannot, then the transaction is rejected. If it can, then
the payer’s and payee’s values are updated accordingly to reflect the transfer of
money, and the transaction is accepted.

The second action is a repetitive cycle; on each step, a nondeterministic choice
is made of a payer, a payee, and an amount to be paid. Thus, Cycle represents
all possible financially correct transactions.

actions
Pay = i,j: Index, n: Money @
pay.i.j.n ->

if n > valueseq(i) then
reject.i -> Skip
else
(valueseq := subtseq(valueseq,i,n);
valueseq := addseq(valueseq,j,n);

accept.i -> Skip)

Cycle =
(17l i,j: Index, n: Money @ Pay(i,j,n));
Cycle

Cycle
end

Spec gives us an arena in which to specify the correctness of mini-Mondex. The
properties identified above can be described as follows.

No increase in value: sum(valueseq) <= M. (sum returns the sum of the ele-
ments in a sequence.)

No loss in value: sum(valueseq) >= M.

Usefulness If we demand a transfer, and we have got the funds, then the trans-

fer should take place:

forall i, j: Index; n: Money @
tr’-tr <> []
and last(tr’-tr) = transfer.i.j.n
and n >= valueseq(i)
=>

accept.i not in ref’

Finally, we need an invariant that relates the stored state, valueseq, to the history
of transactions. For card i, the communications transfer.i.j represent outgoing
payments; the communications transfer.j.i represent incoming payments; and
the value V represents the initial value in the card.

forall i: {1,...,N} @
valueseq(i) =

16

V + transum((tr’-tr) filter { transfer.i.j | j in set {1,...,N} })
+ transum((tr’-tr) filter { transfer.j.i | j in set {1,...,N} })

where

transum(s) =
if s = [1 then
0
else
amount (hd(s)) + transum(tl(s))

forall i, j: Index; n: Money @ amount(transum.i.j.n) = n

7 Conclusions

We have presented a series of examples of the use of contracts in CML. It is
based on the semantic embedding of a theory of total correctness based on pre-
conditions and postconditions into the theory that defines the semantic model of
CML. With that, we have a characterisation of preconditions and postconditions
of reactive constructs, including communication, choice, and parallelism.

De Boer describes the postconditions of nonterminating processes as equiva-
lent to false [15], since he considers their states to be unobservable; this is of little
use in reasoning about reactive processes that run forever. As we mentioned in
Section 1, Parnas calls for the development of assertional techniques to handle
the normal nontermination of reactive processes [38]. Our work explicitly consid-
ers stable intermediate states (those satisfying the ghost expression ok’ A wait’),
and provides these states with postconditions.

Jones has defined rely and guarantee conditions for assertional reasoning [27]
in the presence of concurrency. These conditions are concerned with properties of
interleaved atomic steps: guarantee conditions describe postconditions for atomic
steps of the process, and rely conditions describe postconditions for atomic steps
of the environment. Both rely and guarantee conditions are relations and, there-
fore, regarded as postconditions. Our postconditions are analogous to guarantee
conditions, except that they relate initial states to intermediate states, rather
than describing the postcondition of an arbitrary atomic step. Similarly, our
preconditions are relational and are analogous to Jones’s rely conditions, except
that, again, they relate initial and intermediate states, rather than describing
the postcondition of an atomic step of the environment.

Future work includes exploring the relationship between our contractual tech-
niques and Jones’s atomic-step semantics for rely and guarantee thinking. The
development, of tools to support assertional reasoning in CML is also essential
for its practical relevance and scalability. Symphony does not yet support ghost
variables.

The CML semantics has been partially mechanised in Isabelle, through a se-
mantic embedding of UTP called Isabelle/UTP [18]. In particular we have mech-
anised the theory of designs, the theory of reactive processes, and have prelimi-
nary support for a Hoare calculus, which together provide the building blocks for

17

formal verification of contracts as shown in this paper. We have already used Is-
abelle/UTP to construct a CML theorem prover [12], and a verification-condition
generator is a natural next step in this effort. Moreover we are currently work-
ing on a refinement tool for Symphony which provides calculational support for
the CML refinement calculus, building on previous work [37]. This will provide
tool support for showing conformance between a given CML contract and an
underlying SoS, such as the Mondex example.

References

1.

10.

11.

12.

Z. Andrews, J. Fitzgerald, R. Payne, and A. Romanovsky. Fault Modelling for
Systems of Systems. In Proceedings of the 11th International Symposium on Au-
tonomous Decentralised Systems (ISADS 2013), pages 59-66, March 2013.

A. Beg and A. Butterfield. Linking a state-rich process algebra to a state-free
algebra to verify software/hardware implementation. In FIT ’10, 8th Intl Conf. on
Frontiers of Information Technology, Islamabad, page 47. ACM, 2010.

M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In
J. White, R. J. Lipton, and P. C. Goldberg, editors, 8th Ann. ACM Symp. on
Principles of Programming Languages, Williamsburg, pages 164-176. ACM Press,
1981.

J. Bryans, J. Fitzgerald, R. Payne, and K. Kristensen. Maintaining emergence in
systems of systems integration: a contractual approach using SysML. In INCOSE
International Symposium, 2014. To appear.

J. Bryaus, J. Fitzgerald, R. Payne, A. Miyazawa, and K. Kristensen. SysML Con-
tracts for Systems of Systems. In 9th Intl Conf. on Systems of Systems Engineering
(SoSE). IEEE, June 2014.

M. Butler and D. Yadav. An incremental development of the Mondex system in
Event-B. Formal Asp. Comput., 20(1):61-77, 2008.

A. Cavalcanti, A. Sampaio, and J. Woodcock. Unifying classes and processes.
Software and System Modeling, 4(3):277-296, 2005.

A. Cavalcanti, A. J. Wellings, and J. Woodcock. The Safety-Critical Java memory
model: A formal account. In M. Butler and W. Schulte, editors, FM 2011: Formal
Methods—17th Intl Symp. on Formal Methods, Limerick, volume 6664 of LNCS,
pages 246-261. Springer, 2011.

A. Cavalcanti, A. J. Wellings, and J. Woodcock. The Safety-Critical Java memory
model formalised. Formal Asp. Comput., 25(1):37-57, 2013.

A. Cavalcanti, A. J. Wellings, J. Woodcock, K. Wei, and F. Zeyda. Safety-critical
Java in Circus. In A. J. Wellings and A. P. Ravn, editors, The 9th Intl Workshop on
Java Technologies for Real-time and Embedded Systems, JTRES ’11, York, pages
20-29. ACM, 2011.

A. Cavalcanti and J. Woodcock. A tutorial introduction to CSP in Unifying The-
ories of Programming. In Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock,
editors, Refinement Techniques in Software Engineering, First Pernambuco Sum-
mer School on Software Engineering, PSSE 2004, volume 3167 of LNCS, pages
220-268. Springer, 2006.

L. Couto, S. Foster, and R. Payne. Towards verification of constituent systems
through automated proof. In Proc. Workshop on Engineering Dependable Systems
of Systems (EDSo0S). ACM CoRR, 2014.

18

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order (2nd ed.).
Cambridge University Press, 2002.

John Dawes. The VDM-SL Reference Guide. Pitman, 1991. ISBN 0-273-03151-1.
F. S. de Boer, U. Hannemann, and W. P. de Roever. Hoare-style compositional
proof systems for reactive shared variable concurency. In S. Ramesh and G. Sivaku-
mar, editors, Foundations of Software Technology and Theoretical Computer Sci-
ence, 17th Conference, Kharagpur, India, volume 1346 of LNCS, pages 267-283.
Springer, 1997.

J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs for Object-oriented Systems. Springer, 2005.

J. Fitzgerald, P. G. Larsen, and J. Woodcock. Foundations for Model-based En-
gineering of Systems of Systems. In M. Aiguier et al., editor, Compler Systems
Design and Management, pages 1-19. Springer, January 2014.

S. Foster, F. Zeyda, and J. Woodcock. Isabelle/UTP: A mechanised theory en-
gineering framework. In 5th International Symposium on Unifying Theories of
Programming (To appear), 2014.

L. Freitas and J. Woodcock. Mechanising Mondex with Z/Eves. Formal Asp.
Comput., 20(1):117-139, 2008.

C. George and A. E. Haxthausen. Specification, proof, and model checking of the
Mondex electronic purse using RAISE. Formal Asp. Comput., 20(1):101-116, 2008.
T. Gibson-Robinson, P. J. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3—
a modern refinement checker for CSP. In E. Abraham and K. Havelund, editors,
Tools and Algorithms for the Construction and Analysis of Systems—20th Intl
Conf., TACAS 2014, Grenoble, volume 8413 of LNCS, pages 187-201. Springer,
2014.

D. Haneberg, G. Schellhorn, H. Grandy, and W. Reif. Verification of Mondex
electronic purses with KIV: from transactions to a security protocol. Formal Asp.
Comput., 20(1):41-59, 2008.

E. C. R. Hehner. Retrospective and prospective for Unifying Theories of Program-
ming. In S. Dunne and B. Stoddart, editors, Unifying Theories of Programming,
First International Symposium, UTP 2006, Walworth Castle, February 5-7, 2006,
volume 4010 of LNCS, pages 1-17. Springer, 2006.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall., 1985.

C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall, 1998.
ITSEC. Information Technology Security Evaluation Criteria (ITSEC): Prelimi-
nary harmonised criteria. Technical Report Document COM(90) 314, Version 1.2,
Commission of the European Communities, 1991.

C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321-332, 1983.

C. B. Jones. Systematic Software Development using VDM. Prentice Hall Inter-
national, second edition, 1990.

H. Kopetz. System-of-Systems complexity. In Proc. 1st Workshop on Advances in
Systems of Systems, pages 35-39, 2013.

M. Kuhlmann and M. Gogolla. Modeling and validating Mondex scenarios de-
scribed in UML and OCL with USE. Formal Asp. Comput., 20(1):79-100, 2008.
Y. Liu, J. Sun, and J. S. Dong. PAT 3: An extensible architecture for building multi-
domain model checkers. In Tadashi Dohi and Bojan Cukic, editors, IEEE 22nd
Intl Symp. on Software Reliability Engineering, ISSRE 2011, Hiroshima, pages
190-199. IEEE, 2011.

G. Lowe. Specification of communicating processes: temporal logic versus refusals-
based refinement. Formal Asp. Comput., 20(3):277-294, 2008.

19

33.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

B. Meyer. Applying "design by contract". IEEE Computer, 25(10):40-51, 1992.
A. Mota, A. Farias, A. Didier, and J. Woodcock. Rapid prototying of a semanti-
cally correct Circus model checker. In Software Engineering and Formal Methods
(SEFM), LNCS. Springer, September 2014.

M. Oliveira, A. Cavalcanti, and J. Woodcock. A denotational semantics for Circus.
Electr. Notes Theor. Comput. Sci., 187:107-123, 2007.

M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP semantics for Circus. Formal
Asp. Comput., 21(1-2):3-32, 2009.

M. Oliveira, A. C. Gurgel, and C. G. Castro. CRefine: Support for the Circus re-
finement calculus. In 6th Intl. Conf. on Software Engineering and Formal Methods,
(SEFM 2008)., pages 281-290. IEEE Computer Society, Nov 2008.

D. L. Parnas. Really rethinking 'formal methods’. IEEE Computer, 43(1):28-34,
2010.

J. I. Perna and J. Woodcock. Mechanised wire-wise verification of Handel-C syn-
thesis. Sci. Comput. Program., 77(4):424-443, 2012.

J. 1. Perna, J. Woodcock, A. Sampaio, and J. Iyoda. Correct hardware synthesis—
an algebraic approach. Acta Inf., 48(7-8):363-396, 2011.

T. Ramananandro. Mondex, an electronic purse: specification and refinement
checks with the Alloy model-finding method. Formal Asp. Comput., 20(1):21-39,
2008.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Interna-
tional, 1997.

A. W. Roscoe. On the expressive power of CSP refinement. Formal Asp. Comput.,
17(2):93-112, 2005.

J. Woodcock and A. Cavalcanti. The semantics of Circus. In D. Bert, J. P.
Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specification
and Development in Z and B, 2nd Intl Conf. of B and Z Users, Grenoble, volume
2272 of LNCS, pages 184-203. Springer, 2002.

J. Woodcock and A. Cavalcanti. A tutorial introduction to designs in Unifying
Theories of Programming. In Eerke A. Boiten, John Derrick, and Graeme Smith,
editors, Integrated Formal Methods, 4th International Conference, IFM 2004, Can-
terbury, 4-7 April 2004, volume 2999 of Lecture Notes in Computer Science, pages
40-66. Springer, 2004.

J. Woodcock, A. Cavalcanti, J. S. Fitzgerald, P. G. Larsen, A. Miyazawa, and
S. Perry. Features of CML: A formal modelling language for systems of systems.
In 7th Intl Conf. on Systems of Systems Engineering, SoSE 2012, Genova, pages
445-450. IEEE, 2012.

J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall, Inc., 1996.

J. Woodcock, S. Stepney, D. Cooper, J. A. Clark, and J. Jacob. The certification of
the Mondex electronic purse to ITSEC Level E6. Formal Asp. Comput., 20(1):5-19,
2008.

N. Zhan, E.-Y. Kang, and Z. Liu. Component publications and compositions. In
Andrew Butterfield, editor, Unifying Theories of Programming, Second Intl Symp.,
UTP 2008, Dublin, volume 5713 of LNCS, pages 238-257. Springer, 2010.

20

