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Background: “Obesity paradox” refers to an association between 
obesity and reduced mortality (contrary to an expected increased 
mortality). A common explanation is collider stratification bias: 
unmeasured confounding induced by selection bias. Here, we test 
this supposition through a realistic generative model.
Methods: We quantify the collider stratification bias in a selected 
population using counterfactual causal analysis. We illustrate the bias 
for a range of scenarios, describing associations between exposure 
(obesity), outcome (mortality), mediator (in this example, diabetes) 
and an unmeasured confounder.
Results: Collider stratification leads to biased estimation of the 
causal effect of exposure on outcome. However, the bias is small rela-
tive to the causal relationships between the variables.
Conclusions: Collider bias can be a partial explanation of the obe-
sity paradox, but unlikely to be the main explanation for a reverse 
direction of an association to a true causal relationship. Alternative 
explanations of the obesity paradox should be explored. See Video 
Abstract at http://links.lww.com/EDE/B51.

(Epidemiology 2016;27: 525–530)

“Obesity paradox” is the term given to the finding that, in 
certain populations, people who are obese seem to live 

longer. This has been observed in patients with coronary artery 
disease,1 heart failure,2 and type 2 diabetes,3,4 among others.

Proposed explanations for the paradox include5: body 
fat helping patients survive periods of low nutrition; the non-
obese population including patients who have lost weight as a 

result of more severe illness; body mass index (BMI) poorly 
representing body fat6; BMI cut-offs not being appropriate7; 
and obese people being diagnosed earlier.

This article focuses on the collider stratification bias5,8 
explanation: a correlation induced between an exposure and 
confounder when stratifying on a third variable (collider) 
that is associated with, and downstream from, both.9 If the 
confounder also affects the outcome, conditioning on the col-
lider can induce a false, strengthened, or reversed association 
between exposure and outcome.

Existing literature has demonstrated that collider strati-
fication bias can occur in principle.5,8 However, it is not known 
whether the conditions under which effect reversal occurs are 
realistic. The aim of this article is to investigate the plausibil-
ity of collider stratification bias as an explanation for the obe-
sity paradox under a realistic generative model.

METHODS

Derivation
We give a general description of collider stratification 

bias, using the obesity paradox to illustrate, beginning with some 
definitions from counterfactual causal analysis.10,11 Referring to 
Figure 1, our interest is in the relationship between the exposure 
A (e.g., obesity) and the outcome Y  (e.g. mortality), compli-
cated by a mediator M  (e.g., diabetes status) and a confounder 
U , which may be unmeasured. U  is assumed (unconditionally) 
independent of A. Suppose that U  and A have distributions FU  
and FA, respectively. While our derivations allow the variables 
U  and A to take any form, the mathematics is clearer if we con-
sider the binary case, with P U pU=[ ] =1 , P A pA=[ ] =1 , and 
the other two variables generated by regression equations:

	 g E M A U A U AUM A U AU[ | , ]( ) = + + +α α α α0 	 (1)

g E Y M A U M U A AMY M U A AM[ | , , ] ,( ) = + + + +β β β β β0 	 (2)

with g gM Y, =  logit, with inverse: expit x x( ) = + −( )( )−
1

1
exp .

We are interested in the causal effect of A on Y  (obesity 
on mortality), conditioned on M  being at level m (diabetes 
status), i.e., a comparison in which A is set (counterfactually) 
to level a or a* (e.g., obese or nonobese):

∆CE | |= =[ ] = ( )= =δ E Y M m E Y M mA a A a, *
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where δ represents a difference between the two expectations. 
However, we calculate the association:

∆AS | |= = =[ ] = =[ ]( )δ E Y M m A a E Y M m A a, , , *
,

in which we compare individuals observed at exposure lev-
els a and a*. Effect sizes of interest may be a (log) risk ratio 
or (log) odds ratio. The obesity paradox explained by collider 
stratification bias argument follows from the noninequality of 
the above measures. A scenario of particular interest is when 
the association is the reverse of the causal effect.

The nonequality of ∆CE and ∆AS is possible because

E Y M m E Y m u P u m E Y m a u P u mA a

u
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u

| | |= =[ ] = [ ] [ ]∑, , , , .

In general, P u m P u m a|[ ] ≠ [ | , ] because conditioning on 
M  induces a relationship between U  and A.

Following similar lines to the study of Vanderweele,12 
the above can be computed:
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With a logit link, for ∆CE we have
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In particular P Y M P Y MA A= == =[ ] = = =[ ]1 01 1 1 1| |  if 
β βA AM= = 0.

For ∆AS:
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Both the causal effect and association are a weighted 
average of expit β β β0 + +( )M U  and expit β β0 +( )M , but the 
weights differ depending on the status of A and U , so a spuri-
ous association may be observed.

Illustration
The model is described by Figure  1, and regression 

Equations (1, 2). We supposed that the only data available 
are those with M = 1 (e.g., those with diabetes). We visual-
ized the discrepancy between the association and causal effect 
for a range of parameter values. The collider bias variables 
α α αA U AU, , , and βU were varied over a grid from −3 to 3; this 
range captures the salient features, and covers the range of 
parameters that may reasonably be observed in practice. We 
considered two scenarios for βA : no causal effect (βA = 0), and 
some causal effect (βA = 1). Throughout we set p pU A= = 0 5. , 

α α α α0

1

2

1

2
= − + +
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A U AU

, and β β β0

1

2
= − +( U A), so that the 

prevalences of all variables remain close to 50% (e.g., half the 

A M Y

U

FIGURE 1.  Illustration of collider stratification bias.
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FIGURE 2.  Association (OR) between A and Y  in the null case for varying values of αA,αU , βU, and αAU. In each panel, along the 
x axis, one of these variables is varied from −3 to 3 (left panel: αA, mid-left panel: αU, mid-right panel: βU, right panel: αAU), and the 
other parameters are set to default values.

population are obese). We set β βM AM= = 0, without loss of 
generality.

We presented all effect sizes as odds ratios. The illustra-
tions were produced using R 3.1.013; code is in eAppendix 1 
(http://links.lww.com/EDE/B48).

RESULTS
Figures 2 and 3 visualize the association between A and 

Y  when there is no causal effect. Figure 2 looks at the impact of 
each of the collider stratification bias variables α α αA U AU, , , and 
βU, one at a time; in each case the remaining variables are set to 1, 
except α AU = 0. The left panel of Figure 2 shows that when α A

is positive (with α β αU U AU= = =1 1 0, , ), the observed associa-
tion between A and Y is negative. This represents a bias because 
the causal effect is zero. In the diabetes example, this means that 
in a diabetes population where A (obesity) and U  both increase 
the risk of M  (diabetes), and U  also increases the risk of Y  
(death), but A has no effect on Y  except through M , we observe 
a negative association between A and Y . Similar results are seen 
for the other parameters. In Figure 3, each row in the lattice cor-
responds to a value of α A, while each column corresponds to a 
value of βU. Within each graph, αU  is varied from −3 to 3, and 
we consider no interaction (α AU = 0, solid line) and antagonis-
tic interaction (α AU = −1, dotted line). The bottom right panels 
of Figure 3 illustrates that when α α βA U U, , and  parameters are 
positive, the association between A and Y  becomes negative.

Figures  4 and 5 visualize the association, and causal 
effect, between A and Y  when there is a causal effect, βA = 1. 
Obesity paradox occurs when the association has the opposite 
sign to the causal effect. The direction of bias between the 
association and causal effect are the same as when the causal 
effect was zero. Notably, obesity paradox is happening only for 
configurations such as α A =3, αU = 3, βU = 3 (see the bottom 

right panel of Figure 5), i.e., when all the parameters on the 
confounding pathway are substantially larger than the causal 
effect. The association in the reverse direction is small, ampli-
fied slightly by antagonism between A and U  (α AU = −1).

DISCUSSION
Contrary to much recent literature, our results sug-

gest that collider bias alone cannot fully explain the obesity 
paradox, with only small discrepancies between the associa-
tion and the causal effect observed. For large discrepancies to 
occur (e.g., for the association to reverse the causal effect), the 
parameters on the collider bias pathway must be large com-
pared with the true causal effect. This could only happen if 
the true causal effect is small, and therefore unlikely to be 
important; or the effect of the unmeasured confounder on both 
the mediator and the outcome is very large, therefore unlikely 
to be missed from the analysis.

Glymour and Vittinghoff14 also demonstrated that col-
lider bias must be very strong to lead to an association that 
reverses the causal effect, and Greenland15 gave a formula 
for calculating the maximum observable bias. Banack and 
Kaufman16 studied the strength of collider bias required to 
reverse a particular causal effect. While they concluded that 
such a reversal was plausible, strong relationships along the 
collider stratification bias pathway are nevertheless required. 
Collider stratification bias does not apply when the population 
is unselected, so our finding is supported by a similar protec-
tive effect of obesity in the general population.17

For certain nonzero configurations of the model param-
eters, there is no bias in the estimation of the causal effect 
(e.g., the crossing of the x axis in right panel, Figure 2). This 
is unfaithfulness, which occurs when a multiplicative model is 
induced in the risk scale.14,18,19

http://links.lww.com/EDE/B48
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FIGURE 3.  Association (OR) between A and Y  in the null case for varying values of αA,αU , and βU, without interaction (αAU = 0,  
solid line) and with interaction (αAU = 1, dotted line). Each column (row) in the lattice corresponds to the given value of βU (αA). 
Within each subgraph, along the x axis, αU is varied from −3 to 3.

FIGURE 4.  Association (OR) between A and Y  (solid line) versus causal effect (log odds) of A on Y  (dashed line) for a range of values 
of αA,αU , βU, and αAU. In each panel, along the x axis, one of these variables is varied from −3 to 3 (left panel: αA, mid-left panel: 
αU, mid-right panel: βU, right panel: αAU), and the other parameters are set to default values.
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A strength of our study is that our findings are based 
on mathematical results rather than simulations. However, we 
restricted to binary variables. Further study is needed to extend 
this: one context of interest within the obesity paradox is time 
to event outcome (death), and continuous exposure (BMI).

We have given a simple exposition here, based on a mini-
mal set of four variables. Two of these variables (U  and A) were 
assumed independent; however, dependence between these vari-
ables may affect the degree of the collider bias.16 There may be 
multiple confounding variables; we have considered only one. 
There may be latent subtypes of the mediating disease.20 Finally, 
we have not considered the time-varying nature of obesity.

When examining the relationship between an exposure and 
outcome in a subpopulation, the real interest is in whether this 
relationship differs from the population as a whole, i.e., the rela-
tionship is moderated by the mediator. This can only be assessed 
by modeling the whole population, with interaction terms 

between exposure and moderator. However, statistical interaction 
does not necessarily imply a true biological interaction.21

Our results show that the paradoxical observation of a 
protective effect of obesity on mortality is unlikely to be fully 
explained by collider stratification bias.
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