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Summary

1. It is natural to regard most animal movement as a continuous-time process, generally observed at discrete

times. Most existing statistical methods for movement data ignore this; the remainder mostly use discrete-time

approximations, the statistical properties of which have not been widely studied, or are limited to special cases.

We aim to facilitate wider use of continuous-timemodelling for realistic problems.

2. We develop novel methodology which allows exact Bayesian statistical analysis for a rich class of movement

models with behavioural switching in continuous time, without any need for time discretization error. We repre-

sent the times of changes in behaviour as forming a thinned Poisson process, allowing exact simulation and

Markov chainMonte Carlo inference. Themethodology applies to data that are regular or irregular in time, with

or withoutmissing values.

3. We apply thesemethods toGPS data from two animals, a fisher (Pekania [Martes] pennanti) and awild boar

(Sus scrofa), using models with both spatial and temporal heterogeneity. We are able to identify and describe

differences inmovement behaviour across habitats and over time.

4. Our methods allow exact fitting of realistically complex movement models, incorporating environmental

information. They also provide an essential point of reference for evaluating other existing and future approxi-

matemethods for continuous-time inference.

Key-words: Bayesian statistics, exact simulation, fisher, GPS data, Markov chain Monte Carlo,

movementmodelling, switching diffusion, wild boar

Introduction

Understanding the movement behaviour of individual animals

is an important challenge in ecology, with improvements in

tagging technology permitting the collection of data on an

increasingly wide range of species. Statistical methodology for

such data has received considerable attention in recent years –

for example Blackwell (2003); Morales et al. (2004); Johnson

et al. (2008); Langrock et al. (2014) – but still lags behind the

technology and fieldwork. While it is natural to think of the

underlying movement process of an animal as taking place in

continuous time (Harris & Blackwell 2013; Fleming et al.

2014a), the majority of analysis is based on inherently discrete

models, in which the (usually arbitrary) interval between

observations is treated as the starting point. This leads to prob-

lems with interpretability, handling of irregular or missing

observations, etc., discussed at length in Harris & Blackwell

(2013) and in a simulation context by Avgar, Deardon &

Fryxell (2013). Those analyses that do respect the continuous-

time nature of movement generally nevertheless involve

approximating the model on the discrete time-scale of the

observations, introducing approximation error that is hard to

quantify. The few exceptions, where analysis without approxi-

mation error has been carried out, mostly relate to specific

models with quite limiting assumptions (Dunn&Gipson 1977;

Blackwell 2003; Johnson et al. 2008), though Fleming et al.

(2014b) give a rather flexible approach based on the mean and

autocorrelation function of the underlyingmovement process.

In this study, we introduce a new statistical method that

allows the fully Bayesian fitting of a rich class of continuous-

time models, incorporating behavioural switching and hetero-

geneity in both space and time, without the need for any

approximation error from time discretization. This opens the

way for improved understanding of a range of movement data

sets, as well as being a starting point for better understanding

of the properties of existingmethods.

The structure of the remainder of the article is as follows.

First, we introduce the class of switching diffusion models that

we will use, with some brief examples. The key idea that

enables inference for thesemodels is introduced as a simulation

technique and then developed as aMarkov chainMonte Carlo

(MCMC) algorithm. The following sections introduce two*Correspondence author. E-mail: p.blackwell@sheffield.ac.uk
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data sets of GPS fixes on different species, fisher (Pekania

[Martes] pennanti) and wild boar (Sus scrofa), describe con-

tinuous-time models that capture key features of their move-

ment, and give results of analyses using our new methods.

Finally, we discuss wider implications and further work.

Diffusionmodels formovement

Continuous-time models for movement are usually taken to

be diffusion processes, the simplest of which is Brownian

motion, the limit of a random walk as the time interval

tends to zero. More general diffusion models for movement

could be defined as solutions to stochastic differential equa-

tions, as in, for example, Brillinger et al. (2002); Preisler,

Ager & Wisdom (2013). Here, we follow the general

approach of Harris & Blackwell (2013), seen also in the

applications discussed below, of building potentially com-

plex models from simple tractable components. Our basic

component will be the two-dimensional Ornstein–Uhlenbeck

(OU) process, which can be defined by

xðsþ tÞjxðsÞ�MVNðlþ eBtðxðsÞ � lÞ;K� eBtKeB
0tÞ;

as in Dunn &Gipson (1977); Blackwell (1997, 2003); Harris &

Blackwell (2013); note that the OU process includes as a limit-

ing case Brownianmotionwith (possibly zero) constant drift a,

xðsþ tÞjxðsÞ�MVNðxðsÞ þ ta; tRÞ:

MULTISTATE/SWITCHING DIFFUSION MODELS

For realism in modelling animal movement, we need to com-

bine simple models through a framework of behavioural

switching, whereby animals switch between behavioural states

with different movement characteristics (Blackwell, 1997,

2003; Morales et al. 2004; Harris & Blackwell 2013; Nams

2014). In mathematical terms, we can represent this as a

Markov process in continuous time with both a diffusion

component – location, in this context – and a discrete one –

behaviour – as in Berman (1994).

In the simplest cases, in which the transition rates between

behaviours do not depend on location, this reduces to a

switching diffusion driven by a continuous-time Markov

chain, as in Blackwell (2003). In most applications, however,

it is desirable to allow the rate of switching to depend on spa-

tial covariates, through location, and perhaps also on time –

for example time of day or year, to model daily or yearly

periodicity in behaviour. We can also consider dependence

on the time since the previous change in behaviour, that is

the semi-Markov case; we omit this for the majority of the

paper, to avoid undue notational complexity. Even if the

movement process within a particular type of behaviour is

simple, this overall structure gives a rich class of models that

fit well with ecologists’ intuition. Harris & Blackwell (2013)

explore this class; after a more precise definition, we outline

some specific published examples.

Harris & Blackwell (2013) take the spatial heterogeneity to

be discrete; while that suffices for many examples, including

those explored in detail here, the methods that we describe

generalize immediately to the case of continuous variation in

spatial covariates, with switching rates depending in some sys-

tematic way on the covariates, and our notation reflects that

extra generality.

Separablemodels

We will restrict attention to what Harris & Blackwell (2013)

call ‘separable’ models. These are defined to be models in

which transition rates between behavioural states depend on

location, but movement parameters and trajectories do not

depend directly on location. So an animal responds to a

change in the environment in which it is moving by chang-

ing its tendency to start behaving in a particular way –

which will then affect its pattern of movement – rather than

by instantaneously switching to a new behaviour. As Harris

& Blackwell (2013) discuss, this is less of a limitation than

it might appear at first.

Mathematical formulation and notation

Let x(t), J(t) represent the animal’s position and behavioural

state at time t, and let kijðt; xÞ represent the switching rate from

behaviour i to behaviour j at time t, given location x, so that

PrðJðtþ dtÞ ¼ jjJðtÞ ¼ i; xðtÞ ¼ xÞ � kijðt; xÞdt; i 6¼ j:

The animal starts in some state Jð0Þ ¼ i; xð0Þ ¼ x0, then

follows the ith movement model – that is x(t) is a realization of

the ith diffusion process, starting at x0 – until the time of the

first switch in behaviour, at time T1, when the animal is at

xðT1Þ. If the behaviour switched to is J(t) = j, the next part of

the location trajectory is a realization of the jth diffusion

process, starting at xðT1Þ, and so on.

OUTLINE EXAMPLES

Our two main examples are given after the development of

the statistical methodology. Here, we outline a number of

other existing applications, to illustrate the class of models

covered and hence motivate our methodology. The models

of wood mouse movement in Blackwell (1997, 2003) are spa-

tially homogeneous cases of switching OU processes. The

analysis by Natvig & Subbey (2011) of vertical movement of

cod, based on depth data from recovered data storage tags,

uses a mixture of one-dimensional OU processes, with fish

switching between points of attraction at different depths.

The analysis by Fleming et al. (2014a) of the foraging of

gazelles, based on semi-variogram methods, does not explic-

itly use switching models, but their ‘OU Motion with Forag-

ing’ model is a hybrid of the OU and Integrated OU (IOU;

see Discussion) processes that features correlated velocities at

short lags and restricted space use at larger scales; see also

Fleming et al. (2014b). Finally, Harris & Blackwell (2013)

discuss how various other published models, not precisely in

this class, can be approximately – and sometimes advanta-

geously – represented by switching diffusions.
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Simulation

Our aim is to carry out fully Bayesian inference (see e.g.

Gelman et al. 2013) for the abovemodels, without any approx-

imation due to discretizing time. The key to doing so via

Markov chain Monte Carlo is the simulation of trajectories

augmented by switching times/locations, appropriately condi-

tioned on the observed data; with that in mind, we introduce

the central idea by giving an algorithm for exact simulation of

thesemodels.

Note that such simulation is not trivial. If behaviour does

not depend on location or time, so switching is ‘completely ran-

dom’ and kijðt; xÞ � kij, then it is straightforward to simulate

the whole trajectory exactly (Blackwell 2003) by first simulat-

ing every switch in behaviour. However, in a more realistic

model, kijðt; xÞ depends on x, and so we do not know the time

of the switch unless we know x(t), at least up until the

switch occurs. An obvious approach is to approximate by a

discrete-time representation, but we wish to avoid the poorly

understood discretization error involved.

EXACT SIMULATION

The key assumption we make concerns boundedness of the

transition rates. This means that switches in behaviour are

never forced to occur instantaneously, which fits naturally with

the assumption of separability as defined above and, originally,

by Harris & Blackwell (2013), that is that instantaneous

changes in behaviour do not occur when an animal changes

habitat. More precisely, let kjðt; xÞ ¼
P

i 6¼j kjiðt; xÞ represent

the transition rate away from behaviour j at time t, when at

location x. We assume that kjðt; xÞ is globally bounded above,

and define

j ¼ max
j; t; x

fkjðt; xÞg:

(This is an extension of the idea of uniformization, originating

with Jensen (1953). See Appendix S1 for further generaliza-

tions.) We can then think of the waiting time from any instant

until the next switch in behaviour as being bounded below, in a

probabilistic sense, by the time that would apply if the rate of

switching was always j. So, starting at J(0) = j, x(0) = x, we

can simulate the process forward as follows. Let

T�Exponential ðjÞ;

corresponding to the time of the first event of a process with

constant rate j. This is the first potential time at which a change

in behaviour might occur. Since the behaviour on [0,T) is then

known to be j, we can simulate the location x(T) forward from

x with movement model j. That in turn gives us the informa-

tion to determine whether the potential switch at T is an actual

switch, an event which has probability

kjðT; xðTÞÞ

j
:

If so, we can sample the new state, with state i having probabil-

ity proportional to kjiðT; xðTÞÞ. Knowing J(T ) and x(T ), we

can iterate this procedure forwards.

Considered globally, the times of changes of behaviour form

a point process (Guttorp &Minin 1995) with a rate dependent

on the individual’s movement. This point process can then be

represented as a Poisson process, with rate j, which has been

‘thinned’ – that is each point either retained or deleted, proba-

bilistically (Guttorp &Minin 1995) – in a way that depends on

the movement process. This leads to a natural and efficient

way to extending the simulation over as long an interval as we

desire. Denote the events of this rate j Poisson process by

T1;T2; . . .. For each k in turn, we generate location xðTkÞ by

forward simulation; then, we decide whether there is a switch

atTk, which happens with probability

kJðTkÞðTk; xðTkÞÞ

j
:

If so, we pick the new state, which is jwith probability

kJðTkÞ;j ðTk; xðTkÞÞ

kJðTkÞðTk; xðTkÞÞ
:

In either case, we retain the simulated xðTkÞ as part of the

trajectory. Figure 1 illustrates this process. Effectively, we are

simulating the process at a ‘grid’ of time points, but the careful

use of random time points, rather than the usual regularly

spaced points, enables us to avoid any discretization error.

Inference byMarkov chainMonteCarlo

We can build on the simulation idea of the previous section to

produce a Markov chain Monte Carlo (MCMC; see e.g.

Gelman et al. 2013) algorithm for Bayesian inference for these

models. Given data xðt0Þ; . . .; xðtNÞ, we want to sample from

the posterior distributions for the parameters of the movement

components and of the switching rates.

Our approach involves augmenting the data with the times

of all changes of behavioural state, and associated locations, as

in the homogeneous case in Blackwell (2003); to do so, we

actually sample times, locations and states for all potential

changes, that is at all times of a Poisson(j) process.

The state of our chain is the collection of all times of

potential switches throughout the dataset, T ¼ fTck; k ¼

1; . . .;Mc; c ¼ 0; . . .;N� 1g, where Mc is the number of

potential switches with tc\Tck\tcþ1, plus associated

locations xðTckÞ, initial state Jðt0Þ and changes to states Jck

corresponding to some subset of times R � T , and implied

states at the times of observations Jðt1Þ; . . . JðtNÞ.

TRAJECTORY UPDATES

Our key MCMC step is to sample the trajectory – potential

switches, locations and states – over some time interval

ta; tb; 1� a\b�N conditional on the trajectory outside that

interval, on the states JðtaÞ; JðtbÞ and on the movement and

switching parameters. We use an independence sampler based

on our simulation algorithm to propose the new trajectory.We

define T 0
ab ¼ fT 0

ck; k ¼ 1; . . .;M 0
c ; c ¼ a. . .; b� 1g to be a

realization of a Poisson process of rate j on time interval ta; tb,

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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representing the proposed times of potential switches. Then,

we simulate the process forward as before.

Starting with xðtaÞ and JðtaÞ, we simulate xðT 0
a;1Þ from

movementmodel JðtaÞ, and set the state

J 0
a;1 ¼

j with probability kJðtaÞ;j ðT
0
a;1;xðT

0
a;1ÞÞ=j; j 6¼ JðtaÞ

JðtaÞ otherwise :

�

Then, we simulate xðT 0
a; kþ1Þ from movement model J 0

a; k and

set

J 0
a; kþ1¼

j with probability kJ 0
a; k

; jðT
0
a; kþ1;xðT

0
a; kþ1ÞÞ=j; j 6¼J 0

a; k

J 0
a; k otherwise ;

�

eqn 1

for k ¼ 1; . . .;M 0
a � 1. This defines a new proposed state

J 0ðtaþ1Þ; xðtaþ1Þ is part of the data, so is fixed. This proposal

process is repeated on each subinterval ðtcþ1 � tcÞ;

c ¼ a; . . . b� 1.

Since we are simply simulating forward, we need also to take

into account the consistency of our simulated path with the

observed data in the interval, xðtaþ1Þ; . . .; xðtbÞ, and with the

data and augmentation outside the interval. Therefore, the

simulated path is merely a proposal; it may be accepted or

rejected, as with a more conventional Metropolis–Hastings

update (see e.g. Gelman et al. 2013). Given the algorithm as

described so far, we require for consistency that the final simu-

lated state at T 0
b�1;M0

b�1

matches the existing augmentation

JðtbÞ; if not, rejection is automatic. Otherwise, we need to con-

dition on the locations xðtaþ1Þ; . . .; xðtbÞ. Our proposal comes

from the (conditional) prior, so theHastings ratio is

Y

b�1

c¼a

fðxðtcþ1ÞjxðT
0
c;M0

c
Þ; J 0

c;M 0
c
Þ

fðxðtcþ1ÞjxðTc;Mc
Þ; Jc;Mc

Þ
eqn 2

and we accept or reject the proposed reconstruction

accordingly.

Because of the possibility of rejection, it is necessary that the

algorithm as a whole starts with a feasible path, even though

the proposal does not depend on the current path (except at

the fixed endpoints). Initialization of the algorithm therefore

(a) (b)

(c) (d)

Fig. 1. Diagram of the simulation algorithm. The dotted horizontal line represents the time axis; movement is indicated in 1 dimension by the ’noisy’

line above the time axis; behavioural state is indicated by the solid lines below. (a) The process has been simulated up to some initial time indicated

by the vertical dashed line. Potential changes of state (+) are simulated as a Poisson process. (b) No change in state can occur until the first potential

switch, so the process can be simulated forward in the initial state. The new location determines the probability of an actual switch. In this case, the

behaviour changes from its current value (circle) to a new one (solid dot). (c)With the state for the next time interval known, the process can be simu-

lated forward – using the new behaviour – and the next potential switch resolved. (d) This process is iterated to simulate as far as required. Here, the

third potential switch shown happens not to be an actual switch.

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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involves augmentation with some switching points as well as

an initial assignment of states.

PARAMETER UPDATES

Given the augmented trajectory, we know exactly when the

animal was following each of its different movement

processes, so the inference about the movement parameters is

straightforward. Often, we can adequately represent prior

knowledge about them via conjugate priors, and then carry

out Gibbs sampling (see e.g. Gelman et al. 2013); this may be

possible even when some parameters are shared between

states. See Blackwell (2003) for details. Alternatively, we can

use standard random-walk Metropolis–Hastings updates for

these parameters.

With the augmentation described, we also know exactly the

times of changes in state. However, because the transition rates

may depend on location, and location is knownonly at selected

times, we do not have ‘full’ information about the rates as in

the spatially homogeneous case, even with the augmentation.

Instead, we have complete information about j from the pro-

cess of potential switches, and ‘sample’ information about the

rates in general, relative to j, from the changes in state (or

otherwise) at those potential switches. The likelihood for the

rate parameters is thus the product of a likelihood based on
P

Mc �PoissonððtN � t0ÞjÞ and on single-trial multinomial

(or ‘categorical’) likelihoods based on probabilities like those

in eqn 1. We can regard j as being determined by the kijð�Þs,

and they can all be updated simultaneously using a simple

Metropolis–Hastings step. More simply, we may instead

choose to use priors that are bounded above for all kijð�Þs, and

keep j fixed at the maximum of those upper bounds. Then the

likelihood consists only of multinomial terms, and it may be

possible to carry out Gibbs updates on the kijð�Þs, depending

on how those rates are parameterized.

In principle, the above updates of behaviour, path and

parameters are sufficient to give a completeMCMCalgorithm.

In practice, mixing can be improved substantially by including

some ‘local’ updates to the trajectory (see Appendix S1). Some

other details and refinements necessary for the fully worked

examples are also described in Appendix S1; a number of other

variants or extensions are covered in the closing discussion.

Example: fisher

BACKGROUND AND MODELLING

Our first example uses a subset of data on a male fisher col-

lected by SDL in suburban New York (LaPoint et al. 2013a,

b). Fishers are medium-sized, terrestrial carnivores typically

found within the boreal and northern deciduous forests of

much of North America (Powell 1993). A GPS collar attached

to the fisher attempted to acquire the animal’s location every

10 min; a few observations are missing, leading to longer inter-

vals. A corresponding map of the local environment is also

available from the US National Land Cover Database

(NLCD2006 Land Cover layer; Fry et al. 2011), as a discrete

set of known habitat types, defined on a grid with 30m930m

pixels, shown in Fig. 2 along with the observations that we will

be using.We selected a 24-h extract from the data, long enough

to exhibit a range of behaviours but short enough that the

fisher’s movement is clearly centred on a single point of attrac-

tion, a short-term resting place. Interest thus focusses on the

dependence of the dynamics of themovement on the habitat.

A possible type of model for this situation is what might be

called ‘adaptive’ movement, in which there is a single move-

ment process associated with each habitat type. To maintain

separability, switching to the associated movement process

does not occur instantaneously on entering a given habitat; this

would be unrealistic in this example, as in many others, in that

the mapped boundaries are clearly not perfectly accurate.

Instead, behaviour switches from state i to state j at some finite

rate only when the animal is in habitat j. In this example, we

assume time-homogeneity; writing the n habitat regions as

A1; . . .;An, the transition rates are thus

kijðt; xÞ ¼
aij x 2 Aj

0 otherwise;

�

and for this particular extract from the data, we have n=3, as

can be seen in Fig. 2. The behavioural aspects of this model are

20 m

Fig. 2. Fisher locations (points, linked

chronologically with dashed lines) and habitat

data (coloured 30 m by 30 m grid cells)). The

habitats are (1) ‘developed open space’ (central

band, orange); (2) ‘deciduous forest’ (mostly

to the left, green) and (3) ‘woody wetlands’

(mostly to the right, blue).

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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similar to those of the ‘patch’ model of Beyer et al. (2013),

though they only simulate from discrete-time approximations

to their models.

There are several ways in which differences in movement

behaviour between the three states could be modelled. To

illustrate the idea, bearing in mind the subset of data selected

above, we take all three movement processes to be OU

processes, with a common point of attraction l, but different

values of the long-term covariance matrix Λ and of the matrix

parameter B controlling the dynamics of the process. All three

values for both matrices are taken to be multiples of the iden-

tity matrix with different scalar multipliers, that is

Bi ¼ biI3;Ki ¼ viI3; i ¼ 1; 2; 3, an assumption of circularity

which is not essential to the details here. Blackwell (1997)

discusses some of the modelling issues in setting the form of

B. We consider some variations of this model when fitting to

the data.

For longer term modelling of the movement of this fisher,

we would need to allow for additional states with different cen-

tres of attraction, not unlike the wild boar model below. That

in itself does not involve any new difficulties, but we prefer to

keep this first example as simple as possible.

GPS error is relatively small compared with other forms of

location data, and stationary field tests (LaPoint et al. 2013a)

suggest that the error here is smaller than the resolution of the

habitat data. For the purposes of illustrating the methods, we

neglect observation error; this is revisited in theDiscussion.

RESULTS

The results here are based on prior distributions that are the

same across all states, and on 10 million iterations of the

MCMC algorithm after burn-in; for further details of imple-

mentation, see Appendix S2.

The posterior distributions for the parameters varying

between states, bi and vi, are shown in Fig. 3, thinned by

a factor of 1000 purely for ease of presentation. There

are clear differences in the parameters, and hence the

movement, between states and therefore between habitats.

States 1 and 3 have similar values for bi, but very distinct

values for vi; the difference in posterior medians is around

2�6 on the log scale, or a factor of about 14. The param-

eters for state 2 are less well estimated, because of the

small amount of time spent in the corresponding habitat,

and there is a clear overlap of posterior distributions with

state 3, though the most likely values are quite different

for bi, the speed of ‘reversion’ to the mean location.

Comparison with a typical discrete-time approximation

(details omitted) also shows that the method here extracts

much more of the limited information available from

these observations.

Posterior distributions for the other parameters, l (Fig. S1)

and kij (Fig. S2), are given in the Supporting Information. The

former are muchmore informative; this is as expected, since all

observations are affected by l, whereas only the (uncertain)

transitions give information about the kijs.

To illustrate the methodology, Fig. 4 shows two portions

(for clarity) of a sampled realization of the trajectory, from the

MCMC output. Figure 4(a) covers all three habitats, and

states, in an interval of around 20 min; the fisher moves from

left to right, with changes in behaviour taking place soon after

entering each habitat, as shown by the triangular points.

Figure 4(b) covers a 1-h interval which is more typical, with the

fisher spending most of the time in habitat (and state) 1, with

an excursion into habitat (and state) 3 encompassing a single

observation (the rightmost square point). The model with

state-dependent bi and vi can be compared with a homoge-

neous model with common values of b and v across all states.

Direct use of the MCMC output again allows us to do this

straightforwardly, by calculating the Deviance Information

Criterion (DIC; Spiegelhalter et al. 2002). The more detailed

3-state model is overwhelmingly preferred, with DDIC � 154.

An intermediate model, merging only states 2 and 3, could be

investigated in a similar way, for example if it was felt that the

distinctions between some habitats might be irrelevant to the

animal itself.

This model addresses one criticism of the simple Dunn &

Gipson (1977) model, that it can represent only bivariate

normal stationary distributions. Dunn & Brisbin (1985) men-

tion a possible remedy based on transforming the underlying

space, but the model here gives a more ecologically meaningful

solution by exploiting known habitat information.

To explore the robustness of the modelling here, an alterna-

tive model was tried, which is simpler but less biologically

interpretable, though in fact versions of it are widely used with

approximate fitting techniques. Instead of the mixture of three

OU processes, we fitted three Brownian motion models, each

with a different diffusion parameter and all with zero drift.

Details are omitted, but that analysis confirmed differences

between the states.

A natural refinement would be to allow the transition rates

to depend on the habitat in a more sophisticated way, varying

close to boundaries in order to make the adaptation of

movement to habitat more symmetric rather than lagging
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Fig. 3. State-dependent parameters for the fishermodel. The three clus-

ters correspond to states 1–3 (red, green, blue, respectively).
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behind location. Such a model could still be fitted using the

methodology described here.

Example: wild boar

BACKGROUND AND MODELLING

Our second example uses part of an extensive data set on wild

boar Sus scrofa, collected by the Animal and Plant Health

Agency’s National Wildlife Management Centre (formerly

part of the Food and Environment Research Agency) to inves-

tigate the possible side effects of immunocontraceptive vacci-

nes (Quy et al. 2014). Animals were tracked using GPS collars,

with fixes every 15 or 30min (night/day). Themovement beha-

viour represented by these data is quite complex; there is a

clear, but not completely regular, 24-h cycle of activity, so

some inhomogeneity of behaviour over time is necessary in the

modelling. Each animal uses a number of distinct nests, return-

ing to the same location sometimes on successive days but also

after longer intervals. Here, we use 355 observations, shown in

Fig. 5, for one female wild boar over a period of 5 days, short

enough to facilitate visualization and interpretation, yet long

enough to show the re-use of different nests and other key fea-

tures of behaviour from the wider data.

An additional complexity is the uneven spacing of data. The

intention was to record locations every 15 min while the ani-

mals are most active – at night, for this population – and every

30 min at times when they are likely to be less active, but the

schedule of fixes is pre-programmed, and does not necessarily

correspond to an individual’s behaviour on a given day or

night. There are also a few missing or slightly irregular obser-

vations, leading to a few intervals that are neither 15 nor 30

min.

While there is inevitably some observation error on the

locations, it is small on the scale of the movements themselves.

An upper bound is provided by the variation in observed loca-

tions during the day time, when the animal is less active. This

variation is orders of magnitude smaller than occurs during

active periods; neglecting the error may affect our assessment

of the amount of movement during less active phases, but is

unlikely to affect our overall conclusions. Here, we ignore any

observation error; see the Discussion for the alternative.

We fit a multistate diffusion model to represent the

underlying movement and capture some of these beha-

vioural features; movement in each state is taken to follow

an OU process. For present purposes, we treat the number

of nests used by an individual as known; we denote this by

n. We also divide behaviour into three types: resting at a

nest, foraging and heading for a nest. This leads us to a

model with 3n distinct states: resting in each of the nests,

foraging prior to using each of the nests and heading

towards each of the nests. For illustration, we assume

Fig. 4. Two partial reconstructed trajectories

for the fisher model. Squares correspond to

data points; triangles to switches in behaviour;

dots to other potential switches. In part (a)

(top), states 1–3 are shown in red, green, blue,

respectively; in part (b) (bottom) only states 1

and 3 occur.
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circularity of the OU processes, a common centre for each

state relating to a particular nest, and common b and v

parameters across all n states of each type (resting, foraging,

returning). Thus, the 3n movement behaviours are

described by a total of 2n + 6 parameters: lx1 ; l
y
1; . . .; l

x
n ; l

y
n;

b1; b2; b3; v1; v2; v3.

The 3n distinct states give a flexible structure to represent

a range of specific modelling assumptions, through con-

straints on how the parameters differ between states. With

the parameter constraints actually used, as described above,

having n foraging states simply means that the animal’s

centre of attraction while foraging depends on where it will

end that night’s activity. Relaxing some constraints could

model the idea that which nest is to be used might influence

other parameters of the foraging itself. Having three types of

behaviour seems to be the minimum to fit the range of activ-

ity adequately; more detailed modelling of behaviour might

require more states, while remaining within this general class

of models. A fuller exploration of these models is ongoing,

but is beyond the scope of this study.

The form of the transition rates between states is more com-

plex than with the fisher, because of the ‘structure’ of the states

and the need to represent inhomogeneity over time.We give an

overview here; details are given in Appendix S2, and examples

are shownwith the results.

The switch from ‘resting’ to ‘foraging’ is assumed to take

place at a similar but not identical time each day. We set the

rate of ‘waking up’, kiðtÞ; i ¼ 1; . . .; n to be

kiðtÞ ¼
a

1þ expð�aðtmod1� taÞÞ

for a ‘most likely’ time of day ta, and rate parameter a, at time

tmeasured in days; we denote this by haðtÞ. This gives a transi-

tion rate that, over each day, increases steeply up to the time ta

and then asymptotically approaches a. Each of the n foraging

states, n + 1, . . ., 2n, is then assumed to be equally likely.

The transition from foraging to returning to a nest is

assumed to have a similar form, denoted by hbðtÞ, but in this

case, the state switched to is necessarily j = i + n. The transi-

tion rate is taken to be independent of location, but it would be

natural and straightforward to allow it to depend on, for exam-

ple, distance from the destination nest.

Finally, the transition from returning to resting is taken to

occur at a uniform (and presumably high) rate c once the

animal is within some distance q of its target nest.

This parameterization of the rates is fairly parsimonious,

with just six parameters, a; ta; b; tb; c; q, in addition to the nest

locations already defined. The rates can be collected together

as the generator (Guttorp & Minin 1995) of the behaviour

processKðt; xÞ ¼ ðkijðt; xÞÞ, as shown inAppendix S2.

RESULTS

We used proper but rather uninformative priors on most

parameters; the number and locations of the nests were taken

as known, since they are very clear from the data. This assump-

200 m

Fig. 5. Data used in wild boar example (black dots, linked in time sequence). The open red circles indicate nest locations; see text for details.
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tion can be relaxed; see Appendix S2 for details. Similarly, the

parameter q is fixed on the basis of exploratory analysis. The

results here are based on 6 million iterations of the MCMC

algorithm after burn-in; further details of implementation are

again included inAppendix S2.

The posterior distributions for the movement parameters in

the three types of states are shown in Fig. 6, in the form of

samples taken from theMCMCoutput. The results show clear

differences between the three types of behaviour. Unsurpris-

ingly, in the resting states, the variance vi is much smaller, and

the mean-reverting tendency bi much stronger. For the other

two types of states, the parameters aremore similar, but clearly

distinct. Estimation of the product bivi for those two types is

also much more precise than estimation of either parameter

individually, since that product determines individual step sizes

more directly.

This shows that the model in which the boar essentially

cycles through these three types of state each day does indeed

capture differences in movement behaviour. However, some

care is needed in the interpretation of the second and third

types of states as ‘foraging’ and ‘returning to nest’; the model

only confirms that they have statistically distinct parameters.

We need to consider how these types are used in the fitted

reconstructions in order to interpret them. Figure 7 shows the

assignment of the behavioural states to the observations; those

that are essentially uniquely categorized are shown in green,

blue and red for resting, foraging and returning to the nest,

respectively, while those where there is more than a negligible

probability (at least 0.002) of being in either a foraging or a

returning state are shown in purple. A very few observations

that may be classed as either resting or not are shown in their

most likely state, for clarity. The sequence of events is clearer

in Fig. 8 in which observations are plotted as x coordinates

only, against time, with points coded in the same way. Figures

S3 and S4 in the Supporting Information show an individual

trajectory, sampled randomly from its posterior distribution

and again plotted in the original space and against time,

respectively.

There are two key messages from the allocations of states in

Figs 7 and 8. First, allocation is usually clear but there can be

considerable uncertainty about the transition between the

states of types 2 and 3. Secondly, there can be real differences

over time in the way in which activity is split between those two

types. Bearing in mind the uncertainty on classification, it is

clear that during the 1st, 3rd and 5th nights of activity covered

by these data, a large proportion of the observations – perhaps

nearly all of them – are classified as ‘returning’ while on the

2nd night, most of the observations are ‘foraging’. The overall

conclusion is that separation of the non-resting activity into

one behaviour with high spread v and low reversion b and

another with lower spread and higher reversion is meaningful,

but that they should not necessarily be labelled in the way ini-

tially suggested. Study of a more extensive data set should help

to clarify both the timing and the interpretation.

We can also look directly at the rate functions controlling

the transitions between states. Figure 9 shows the rates in

transitions per hour as a function of time of day, hað�Þ and

hbð�Þ, based on posterior median point estimates of a; ta; b and

tb. Recall that a and b represent the maxima of time-varying

rates. The rate of transitions from ‘returning’ to ‘resting’, c,

which is constant over time, is also shown for ease of compar-

ison, using its posterior median. It is clear that hað�Þ increases

quickly over time, around the time ta, whereas hbð�Þ increases

more slowly; the rate c is estimated to be much higher than

either. So the daily cycle of behaviour can be summarized as:

start ‘foraging’ at a fairly well-defined time, close to ta; switch

to ‘returning’ at some time of night that is muchmore variable;

switch to ‘resting’ very quickly once within range of the appro-

priate nest. For reference, Fig. S5 shows the posterior densities

for the parameters a,b and c and Fig. S6 shows the posterior

densities for ta and tb.

Discussion

We have shown that, for a rich class of movement models built

from standard modelling components, exact fitting to data
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Fig. 6. State-dependent parameters for the

wild boar model. The three clusters corre-

spond to resting, returning and foraging states

from left to right (green, red and blue, respec-

tively).
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using MCMC is possible. The key idea is to relate behavioural

switching that may be complex and heterogeneous, both spa-

tially and temporally, to amuch simpler homogeneous Poisson

process of potential switches. This enables exact inference for

realistically complex models and opens up the prospect of

more coherent and informative, and better understood, statis-

tical inference for movement data in continuous time.We have

illustrated the method for two real examples; both are spatially

heterogeneous, and one also incorporates time-heterogeneity

in behaviour.

The methodology applies to a wide range of models, and

inevitably, for some of them, implementation requires detailed

understanding of the modelling, statistical and computational

issues. Nevertheless, some cases are rather easier to handle.

Models which are time-homogeneous, and where the spatial

heterogeneity involves a discrete set of habitats, such as the

‘adaptive’ model used in the fisher example, can be set up with

a minimal level of coding. The implementation details given in

that example are likely to be widely applicable, and to give at

least reasonable performance, though there will always be

scope for improvement through experimentation, as in more

conventional MCMC inference. More complex models, like

the wild boar example, are likely to require more user input.

Work is underway on generic software for this methodology;

in the meantime, those interested in applying this approach are

encouraged to contact the first author.

In addition to implementation details, some aspects of

the method itself could be tailored to particular models.

For example, rather than a global upper bound j on

transition rates, it may be feasible to define state-dependent

bounds jðiÞ ¼ maxt;xfkiðt; xÞg or time-dependent bounds

jðtÞ ¼ maxi; xfkiðt; xÞg. In general, this will not increase the

range of models that can be fitted but potentially gains

efficiency, as j(�) can be more closely matched to the actual

switching rates in a model, reducing the number of potential

switches and hence the computational cost. There is a trade-

off, since this loses the convenience of potential switches form-

ing a homogeneous Poisson process when the bound is global;

instead, they would form a time-inhomogeneous Poisson

process, which would complicate the algorithm and introduce

its own computational cost.

We have described and implemented the technique in terms

of simulating partial trajectories from the model, as described

above. In fact, a wide range of processes can be used for

proposing new trajectories, provided allowance is made in the

Hastings ratio in eqn 2. We have experimented with proposing

locations from a Brownian bridge over the interval being

updated, that is from xðtaÞ to xðtbÞ in the notation above, to

benefit from the information in xðtbÞ. Our results so far suggest

that a clear net computational gain may not be easy to obtain,

but there are almost certainly cases in which more general

proposals are warranted, and our experimentation continues.

In the current modelling, we have ignored the measure-

ment error on locations, but for some applications this will be

important. Measurement error can be incorporated by

separating the movement and observation processes, and

Fig. 7. Classification of observations in the wild boar model plotted in geographic space. Observations are shown here as resting (green), foraging

(blue), returning (red) or uncertain (either foraging or returning – purple). See text for details.
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including the true locations at the times of observations and of

potential switches as state variables that are reconstructed as

additional data augmentation within the algorithm. This

increases the complexity of implementation and the computa-

tional cost, but does not involve any new ideas.

Another extension to the models, as indicated above, is

to allow a semi-Markov process for behaviour, that is, to

allow the transition rate to depend on the time since the

most recent transition; this amounts to allowing the time

spent in a behavioural state to have a distribution other

than the exponential, and then using the hazard function of

that distribution as the transition rate. This would give

additional flexibility both in modelling short-term behaviour

and in the collection of relevant time-scales at which the

model could capture the properties of the data, in the sense

of Fleming et al. (2014a). Implementing this is straightfor-

ward, since in our ‘forward simulation’ of a proposed path,

we will know the time of the previous actual switch, but
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will add an extra term in the Hastings ratio for path

updates.

An important feature of some recent models (Johnson et al.

2008; Fleming et al. 2014a,b) is the autocorrelation of veloci-

ties over time, not represented within the ‘building blocks’

described here or in Harris & Blackwell (2013) (though of

course some autocorrelation of speed is introduced by beha-

vioural switching itself). Autocorrelation of velocity means

that the position process itself, x(t), is no longer Markovian.

However, as Johnson et al. (2008) note, for their Integrated

OU (IOU) model, in which velocity rather than position fol-

lows an OU process, the joint process of position and velocity

isMarkovian, and its joint distribution conditional on an ear-

lier value is multivariate normal. Thus, our method can be

readily extended to the IOUmodel with switching, by treating

all observations as incomplete – observing only location and

not velocity – and incorporating velocities at the times of

observations and of potential switches as further augmenting

variables.

Finally, we have considered here only a single animal; the

approach would apply to multiple simultaneously tracked ani-

mals, as in Langrock et al. (2014) and the continuous-time

models ofNiu et al. (in press).
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