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Periodic Orbits From -Modulation of

Stable Linear Systems

Xiaohua Xia and Alan S. I. Zinober

Abstract—The �-modulated control of a single input, discrete time,

linear stable system is investigated. The modulation direction is given by
where 0 is a given, otherwise arbitrary, vector. We ob-

tain necessary and sufficient conditions for the existence of periodic points
of a finite order. Some concrete results about the existence of a certain
order of periodic points are also derived. We also study the relationship

between certain polyhedra and the periodicity of the�-modulated orbit.

Index Terms—Delta-modulation, periodic points, sliding-mode control,
polyhedra.

I. INTRODUCTION

The determination of self-excited oscillations or limit cycles, orig-

inated in the work of Poincaré and Lyapunov, is an old and difficult

problem in the classic qualitative theory of dynamical systems [7]. For

discrete-time systems, the problem has been tackled from different an-

gles, from counting the number of types of periodic orbits [6], the arith-

metic of the number of periodic points [4], existence [10], and calcula-

tion [13] of the periodic points.

Hybrid systems resulting from the switching of controllers constitute

a special class of nonlinear dynamical systems [12]. Though stability

properties around a specific limit cycle/periodic orbits have been dis-

cussed [8], there are very few results on the existence and characteriza-

tion of periodic points introduced by switchings. In [11], the existence

of a globally attractive periodic behavior is proved for some switched

flow networks. Periodic points arising from �-modulation have been

characterized for scalar systems in [14], [15] and for a special class of

higher order systems in [5]. Periodic orbits of different order have also

been shown in [16] and [17] to exist when discretizing the equivalent

control based sliding-mode controllers.

In this note, we investigate the �-modulated control of a single

input, discrete time, linear stable system. The �-modulation is de-

signed along a direction given by cTx where c is a given, otherwise ar-

bitrary, vector in Rnnf0g. We define a modulated orbit corresponding

to an orbit of the feedback system. We prove that the periodicity of

the system orbit is related intrinsically to the periodicity of the cor-

responding modulated orbit. Necessary and sufficient conditions are

stated for the existence of periodic points of a finite order. Some con-

crete results about the existence of a certain order of periodic points

are also obtained. The relationship between certain polyhedra and the

periodicity of the �-modulated orbit is explored.

II. GENERAL RESULTS

We consider a discrete-time control system of order n

x
+ = Ax + bu (1)
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where x 2 Rn is the state, x+ denotes the system state at the next

discrete time step, u 2 R is the scalar input, A is an n � n matrix of

real numbers, and b is a column vector of n real numbers. In this note,

we assume thatA is a stable matrix, i.e., the eigenvalues ofA lie within

the unit circle.

For any input sequence fu0; u1; . . .g and an initial state x0, there is
a corresponding orbit of system (1) fx(0); x(1); . . .g, in which

x
(0) = x0

x
(i) = Ax

(i�1) + bui�1
for i = 1; 2; . . .. As usual, the orbit fx(0); x(1); . . .g is called periodic
with period L, if there is a positive integer L such that x(L�1) = x(0).

The smallest such integer L is called a prime period, and we say that

the orbit isL-periodic. Any point in a periodic orbit is called a periodic

point.

The following result concerning periodic orbits from external peri-

odic excitation is well known.

Theorem 1:

i) For a periodic input sequence of period L, there is a periodic

orbit of period L for (1).

ii) This periodic orbit is globally attracting.

Now, we turn to the situation of�-modulated control of system (1).

In this case, the control u is �-modulated feedback defined by

u = sgn(cTx) (2)

in which c 2 Rnnf0g is a fixed, otherwise arbitrary, modulation di-

rection. �-modulation is a very robust scheme of modulation, a con-

cept borrowed from communication. A great advantage of �-modu-

lated feedback is that it needs only a bit of datum to implement the

controller [1]. To avoid confusion, we define

sgn(cTx) =
1; when cTx � 0

�1; when cTx < 0:

Suppose fx0; x1; . . . ; g is an orbit of the closed-loop system (1) and

(2) starting from x0. The sequence defined by fs0; s1; . . . ; g, where
si = sgn(cTxi), for i = 0; 1; . . ., is a binary sequence of 1’s and
�1’s. We will call it a modulated orbit of the closed-loop system (1)

and (2) corresponding to the orbit fx0; x1; . . .g.
Obviously, the modulated orbit of a periodic orbit of the closed-loop

system (1) and (2) is periodic. Therefore, to determine the periodicity

of an orbit of a �-modulated system, from Theorem 1, it is decisive

to see whether the �-modulation in (2) introduces a periodic binary

sequence. This is addressed by the following theorem.

Theorem 2: The �-modulated system (1) and (2) has a periodic

orbit of period L if and only if there are �0; �1; . . . ; �L�1 2 f�1; 1g
such that

cT (I �AL)�1 L�1
j=0 AL�j�1b�i+j � 0; when �i = 1

cT (I �AL)�1 L�1
j=0 AL�j�1b�i+j < 0; when �i = �1

(3)

for i = 0; 1; . . . ; L� 1, in which �i+j = �(i+j)modL.

Proof: (Necessity) If fx0; x1; . . .g is a periodic orbit with period
L, then denote

�i = si = sgn(cTxi)

0018-9286/04$20.00 © 2004 IEEE
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for i = 0; 1; . . . ; L � 1. Since fx0; x1; . . .g is periodic with a period

L, we can obtain

xi = (I � A
L)�1 L�1

j=0

A
L�j�1

b�i+j

for i = 0; 1; . . . ; L � 1. Hence

c
T (I � A

L)�1 L�1
j=0

A
L�j�1

b�i+j = c
T
xi

which implies the conditions of the theorem.

(Sufficiency) Denote

x
(i) = (I �A

L)�1 L�1
j=0

A
L�j�1

b�j+i (4)

and

f(x) = Ax + b sgn (cTx):

It is straightforward to verify that under the conditions of the theorem

f
(i)(x(0)) = x

(i)

for i = 0; 1; . . . ; L � 1, and

f
(L)(x(0)) = x

(0)

i.e., the orbit starting at x(0) has period L.

A�-modulated system can have many periodic points. The first in-

teresting result is the following.

Corollary 1:

i) If (A; b) is controllable, then there is a c 2 Rn such that the

closed-loop system (1) and (2) has n-periodic orbits.

ii) If (cT ; A) is observable, then there is a b 2 Rn such that the

closed-loop system (1) and (2) has n-periodic orbits.

Proof: Weprove i) only. Interested readers canwork out the proof

for ii) similarly.

The controllability of (A; b) implies [9] the existence of the inverse

of

(An�1
b . . .Ab b)�1:

For n � 1, we can therefore choose

c
T = (1; 0; . . . ; 0)(An�1

b . . .Ab b)�1(I � A
n)

then for any binary sequence fs0; s1; . . . ; sn�1g
c
T (I �A

n)�1(An�1
bs0 + � � �+Absn�2 + bsn�1) = s0:

The inequalities in (3) automatically hold. By Theorem 2, for this

choice of c, any n binary sequence gives rise to an orbit of period n.

Choose a sequence s0 = 1; si = �1, for i = 1; . . . ; n�1, according
to (4), the periodic orbit generated by it consists of the following n

points:

x
(i) = (I � A

n)�1 n�1
j=0

A
n�j�1

bsj+i:

We show that these n points are different, therefore this orbit is n-pe-

riodic.

To this end, we will prove that x(0); x(1); . . . ; x(n�1) are linearly

independent. As a matter of fact, if we denote the following matrix:

� =

1 �1 � � � �1

�1 1 � � � �1
. . .

�1 �1 � � � 1

then it is routine to check that

x
(0)

; x
(n�1)

; x
(n�2)

; . . . ; x(1) = (I �A
n)�1(An�1

b � � �Ab b)�:

For n � 3;� is invertible and one can derive

��1 = n�3
2n�4 � 1

2n�4 � � � � 1
2n�4

� 1
2n�4 n�3

2n�4 � � � � 1
2n�4

. . .

� 1
2n�4 � 1

2n�4 � � � n�3
2n�4 :

Therefore, x(0); x(1); . . . ; x(n�1) are linearly independent, and the

proof is complete.

Of course, a�-modulated feedback system can have periodic orbits

with periods higher than the dimension of the system. We use the fol-

lowing two-dimensional (2-D) example to show that there can be very

“large” periods.

Consider a 2-D system

x
+
1 = �1x1 + sgn(cTx)

x
+
2 = �2x2 + sgn(cTx)

where j�1j < 1; j�2j < 1. Given any n, it can be verified that the

following construction of c gives a 2n-periodic orbit:

c
T = 1� �

n�1
2 ((1 + �

n
2 ) (1� �2)) ;

� 1� �
n�1
1 ((1 + �

n
1 ) (1� �1))

and the 2n-periodic orbit starts from

( (1� �
n
1 )/ ((1 + �

n
1 ) (1� �1)) ; (1� �

n
2 )/ ((1 + �

n
2 ) (1� �2))) :

Fig. 1 shows three orbits generated in this way for �1 = 0:5; �2 =
0:8196.
Criterion (3) is useful in deriving concrete results about the existence

of periodic orbits of a certain order.

Proposition 1:

i) System (1) under the �-modulation of (2) has a fixed (1-peri-

odic) point if and only if

c
T (I � A)�1b � 0:

ii) System (1) under the�-modulation of (2) has a 2-periodic orbit

if and only if

c
T (I + A)�1b < 0:

iii) System (1) under the�-modulation of (2) has a 3-periodic orbit

if and only if

2maxfcT (I � A
3)�1b; cT (I �A

3)�1Abg
< c

T (I � A)�1b � 2cT (I � A
3)�1A2

b:

Authorized licensed use limited to: Sheffield University. Downloaded on March 22,2010 at 07:16:48 EDT from IEEE Xplore.  Restrictions apply. 
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Fig. 1. 10-, 20-, and 350-periodic orbits.

iv) System (1) under the�-modulation of (2) has a 4-periodic orbit

if and only if

2 max
0�i�2

c
T (I �A

4)�1Ai
b < c

T (I � A)�1b � 2cT (I �A
4)�1A3

b

or

c
T (I �A)�1b > 2maxfcT (I � A

4)�1(A+ I)b

c
T (I � A

4)�1(A2 + A)bg:

Proof: Item i) is a special case of (3) when L = 1. To prove ii),

note that the only 2-periodic binary sequence is f1;�1g (f�1; 1g is

regarded as equivalent to f1;�1g). By invoking (3), we have

c
T (I � A

2)�1(A� I)b > 0

which is equivalent to

c
T (I +A)�1b < 0:

Similarly, for the case iii) the only 3-periodic binary sequence is

f1;�1;�1g. By invoking (3), we have

c
T (I �A

3)�1(A2 �A � I)b � 0

c
T (I �A

3)�1(A2 +A � I)b > 0

c
T (I �A

3)�1(A2 �A + I)b > 0:

These inequalities can be rewritten as stated in iii).

In item iv), there are only two 4-periodic binary sequences

f1;�1;�1;�1g and f1;�1;�1; 1g. Along similar lines, one can get

the inequalities in iv).

III. POLYHEDRA AND PERIODICITY

In this section, we study interesting properties of some polyhedra

and their relationship to the maximal length of a periodic modulated

orbit. By the maximal length of a binary sequence, we mean the max-

imal number of consecutive ones or minus ones. For example, the 4-pe-

riodic sequence f1;�1;�1;�1g has a maximal length of 3, while

f1;�1;�1; 1g has a maximal length of 2.

Define

S
+

0 = fx j cTx � 0g

...

S
+

k = S
+

k�1 \ fx j cTAk
x

+ c
T (Ak�1 + A

k�2 + � � �+ A+ I)b � 0g

and, similarly

S
�
0 = fx j cTx < 0g

...

S
�
k = S

�
k�1 \ fx j cTAk

x

+ c
T (Ak�1 + A

k�2 + � � �+ A+ I)b < 0g:

Lemma 1:

i) For k = 1; 2; . . .

S
+

k = fcTAx + c
T
b � 0 j x 2 S

+

k�1g

and

S
�
k = fcTAx � c

T
b < 0 j x 2 S

�
k�1g:

ii) If for some k � 0; S+k+1 = S+k (S
�
k+1 = S�k ), then S+j =

S+k (S
�
j = S�k ), for j � k.

Proof: Item i) is implied by definition of S+k and S�k .

Note that S+k ’s are polyhedra. We make use of Farkas’ Lemma [2]

to prove ii).

Authorized licensed use limited to: Sheffield University. Downloaded on March 22,2010 at 07:16:48 EDT from IEEE Xplore.  Restrictions apply. 
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If S+k+1 = S+k , then by [2, Th. 4.7], there is a nonnegative vector

p = (p0; p1; . . . ; pk�1)T ; pi � 0, for i = 0; 1; . . . ; k � 1, such that

cTAk = pT

cT

cTA
...

cTAk�1
pT

0

cT b
...

cT (Ak�3 + � � �+A + I)b

cT (Ak�2 + � � �+A + I)b

� cT (Ak�1 + � � �+A+ I)b:

It can be easily verified that

cTAk+1 = pT

cTA

cTA2

...

cTAk�1
cTAk

= ~pT

cT

cTA
...

cTAk�1
where

~pT = pk�1p0; p0 + pk�1p1; . . . ; pk�3 + pk�1pk�2; pk�2 + p2k�1 :

Clearly, ~p is a nonnegative vector.

To proceed, note that

cT (Ak + � � �+ A+ I)b

= cTAkb+ cT (Ak�1 + � � �+A + I)b

� p0c
T b+ p1c

TAb+ � � �+ pk�1cTAk�1b
+ p1c

T b+ � � �+ pk�1(cT (Ak�2 + � � �+ A+ I)b)

= p0c
T b+ p1c

T (A+ I)b+ � � �

+ pk�2(cT (Ak�2 + � � �+ A+ I)b)

+ pk�1(cT (Ak�1 + � � �+ A+ I)b)

� p0c
T b+ p1c

T (A+ I)b+ � � �

+ pk�2(cT (Ak�2 + � � �+ A+ I)b)

+ pk�1p1cT b+ pk�1p2cT (A+ I)b+ � � �

+ p2k�1(cT (Ak�2 + � � �+ A+ I)b)

= ~pT

0

cT b
...

cT (Ak�3 + � � �+A+ I)b

cT (Ak�2 + � � �+A+ I)b

:

This, again by [2, Th. 4.7], proves that S+k+2 = S+k . A mathematical

induction argument shows that S+j = S+k , for all j � k.

Following completely similar lines, we can prove the case for S�k .

Then, we can define

S+
1

=
i

S+i

and

S�
1

=
i

S�i :

If P is a polyhedron, denote AP + b as

AP + b = fAx+ b j x 2 Pg:

By the definition of a polyhedron and [2, Cor. 2.5], AP + b is a poly-
hedron.

Firstly, we have the following simple result.

Proposition 2: If the �-modulated system (1) and (2) has a fixed

point, then

(AS+0 + b) \ S+
1
6= ;:

Proof: When there is a fixed point, there is always a fixed point

x satisfying cTx � 0. In fact, when y satisfying cT y < 0 is a fixed

point, then y = Ay � b and, therefore, �y = A(�y) + b. So, �y is

a fixed point in S+0 .

It is then easy to see that

x 2 AS+0 + b \ S+
1
:

Proposition 3:

a) If there is a finite integer k such that S+k = ;, then the maximal

length of any periodic modulated orbit is smaller than k.
b) If there is a finite integer k such that (AS+0 + b)\S�k = ;, then

the maximal length of any periodic modulated orbit is smaller

than k.

Proof:

i) By definition of S+k , any orbit starting from S+0 can only stay

in S+0 for at most k times. Also, by symmetry, S�k = ; when

S+k = ;. Therefore, any periodic modulated orbit cannot have

the same sign for more than k times.

ii) A periodic modulated orbit with a maximal length 1 corresponds

to a fixed point (1-periodic). For any periodic orbit with a peri-

odic greater than 1, there are points in both S+0 andS�0 . Suppose

�x is a periodic point in S+0 followed by a point y = Ax + b in
S�0 . By assumption, y =2 S�k ; y cannot be followed bymore than

k� 1 points in S�0 . This proves that the maximal length of con-

secutive minus ones is less than k. By symmetry, the maximal

length of consecutive ones is also less than k.

IV. CONCLUDING REMARKS

We have derived necessary and sufficient conditions for the exis-

tence of periodic points of a finite-order arising from�-modulated con-

trol along an arbitrary direction of a single-input, discrete-time, linear

stable system. Some definite results about the existence of a certain

order of periodic points are also obtained. The relationship between

certain polyhedra and the periodicity of the �-modulated orbit is also

explored.

Some of the results can be extended to the multiple-input case and

this is currently under investigation.
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A Gramian-Based Controller for Linear Periodic Systems

Pierre Montagnier and Raymond J. Spiteri

Abstract—This note proposes a new design method for the control of

linear time-periodic systems. The method is based on the reachability
Gramian and a specific form for the feedback gain matrix to build a
novel control law for the closed-loop system. The new controller allows

assignment of all the invariants of the system. Calculating the feedback
requires solving a matrix integral equation for the periodic Floquet factor

of the state-transition matrix of the closed-loop system.

Index Terms—Floquet, Gramian, invariant factors, periodic feedback,
periodic systems.

I. INTRODUCTION

Linear time-invariant (LTI) systems are the most common way of

analyzing engineering processes. Consequently, they have been exten-

sively studied, and many different strategies have been developed over

the years for their control. Yet, modeling real-world processes often

Manuscript received June 12, 2002; revised September 16, 2003 andApril 19,
2004. Recommended by Associate Editor F. M. Callier. The work of P. Mon-
tagnier was supported in part by NSERC under Strategic Project STR192 750.
The work of R. J. Spiteri was supported by NSERC.

P. Montagnier is with the Centre for Intelligent Machines, McGill University,
Montreal, QC H3A 2A7, Canada (e-mail: pierrem@cim.mcgill.ca).

R. Spiteri is with the Faculty of Computer Science, Dalhousie University,
Halifax, NS B3H 1W5, Canada (e-mail: spiteri@cs.dal.ca).

Digital Object Identifier 10.1109/TAC.2004.832665

leads to a linear time-periodic (LTP) system; see, e.g., [1] and the ref-

erences therein.

Unfortunately, results established for LTI systems do not usually

hold for time-varying systems. LTP systems are an exception in that

they all exhibit similar behavior, thus forming a unified class. More-

over, several aspects of Floquet–Lyapunov theory for LTP systems have

connections with LTI systems, raising the prospect of being able to take

advantage of this well-established body of knowledge.

A. Notation and Definitions

Let ( n)[ m�=n] denote the real field (space of real n-vectors)

[set of real matrices withm rows and n columns], ( n)[ m�n] de-
note the complex field (space of complex n-vectors) [set of complex

matrices with m rows and n columns], denote the set f1; 2; . . .g; I
denote the identity matrix of order n, and superscript T (�1) denote
matrix transpose (inverse). Consider the continuous-time system de-

scribed by the differential equation

_x(t) = A(t)x(t) +B(t)u(t) (1)

and its corresponding uncontrolled form

_x(t) = A(t)x(t) (2)

whereA( � ) 2 n�n;B( � ) 2 n�r are piecewise continuous, T -pe-

riodic matrix functions. Denote by �(�; 0) the state-transition matrix

(STM) of (2). The matrix�(T; 0) is called the monodromy matrix.

B. Floquet Theory

We give the main results and refer to [2] and [3] for a complete treat-

ment. For 2 f ; g define the following set of matrix functions:

LT = fL( � ) : ! n�n :

L(0) = I;L(t+ T ) = L(t);detL(t) 6= 0 8t

L( � )absolutely continuous with

a piecewise-continuous derivativeg:

Theorem 1: (Representation Theorem) The STM�(�; 0) of system
(2) can be factored as

�(t; 0) = L(t) exp(tF);where L( � ) 2 LT ;F 2 n�n
: (3)

Theorem 2: (Reducibility) The Lyapunov transformation x(t) =
L(t)z(t) transforms the original LTP system into an LTI system _z(t) =
Fz(t), where L( � ) and F are the same as those in (3).

One disadvantage of Theorems 1 and 2 is that the Floquet factors

L(t) and F may be complex even if �(T; 0) is real. It is well known
(see e.g., [4]) that it is always possible to obtain real Floquet factors

by treating (2) as having 2T -periodic coefficients. However, in this

case calculations must be made over two periods. Recently, [5] and [6]

demonstrated how to obtain a real representation from computations

performed on one period by generalizing a result from [3]. The two

main results are reproduced as follows.

Theorem 3: Consider (2) and let �(�; 0) be its (real) state-transi-

tion matrix. Let Y 2 n�n such that (i) Y�(T; 0) has a real loga-

rithm; (ii)�k(T; 0) = [Y�(T; 0)]k for some positive integer k. Then,

for any FY 2 n�n satisfying exp(TFY ) = Y�(T; 0), the real
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