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ABSTRACT: Amphiphilic block copolymers within a range of volume
fraction spontaneously form vesicles in aqueous solution, where a water
core is enclosed by a polymer bilayer. Thin-film rehydration is a method
used to produce vesicles routinely; a thin film is immersed in water, the
film swells, and vesicles are formed which bleb off from the film surface.
We have studied the early stages of hydration for PEO−PBO block
copolymer thin films under controlled water vapor conditions to un-
derstand this formation mechanism and so enable more efficient ways to
encapsulate molecules using this method. Neutron and X-ray measure-
ments show that the initial film exhibits weakly ordered structure with
isotropic parallel and vertical orientation; the films initially swell and maintain the same orientation. At a critical point the layer
swells rapidly and makes highly ordered lamellae structure at the same time. The lamellae are almost exclusively oriented parallel
to the substrate and swell with increasing water absorption.

1. INTRODUCTION

Lipid molecules were among the first primitive biological
containers on the primordial earth; they provided compart-
ments that enabled complexity and specific cellular function in
biological systems, all of which are essential for the evolution of
life. It has been speculated that early life began in this envi-
ronment. In this conjecture lipid-like molecules were present
near hot rocky pools. Shallow fresh water pools would fill with
water and over time the water would evaporate. Numerous
drying and rehydration cycles would have resulted in the
production of highly ordered layered lamellar nanostructures
from the arrangement of amphiphilic lipids. When rehydrated
these hierarchical structures would spontaneously self-assemble
into micelles and vesicles. The repetition of wet and dry cycles
would have concentrated amino acids and other small mole-
cules; these would then be incorporated within the aqueous
core of the liposomes as well as the hydrophobic membranes.
These membrane bound structures were the beginning of
cellular based life.

Modern cell biology routinely uses encapsulation processes
to package a payload and transport it to a location where the
payload can then be used. Cell biology works under confine-
ment and not in a large test tube; partitioning of components is
important to exclude certain molecules; corralling or enclosing
molecules together is also vital to cellular function. Currently
our ability to emulate this biological packaging process is poor,
and if we are able to overcome some of these failings we will be
able to fully develop a Synthetic Biology toolkit essential for this
nascent field. Encapsulation technologies at present rely on
forming a lipid vesicle and then extruding it in a solution con-
taining the target molecule that is to be encapsulated. Only a
small fraction is encapsulated in this process. Synthetic poly-
mer based liposomes (polymersomes) are one possible way in
which we can artificially contain a molecule of interest that is
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protected from its surrounding environment. Polymersomes are
vesicles composed of amphiphilic copolymers and have a number
of advantages compared to naturally derived biobased liposomes
in particular: their diverse chemistry, tunable membrane perme-
ability, stability under high shear, variable adhesion, and ability to
store hydrophobic and hydrophilic molecules. Also, they can have
stealth-like properties, making them able to circulate in the body
for a long time. The problem currently is the very low efficiency
with which a particular molecule is sequestered inside. This is
because of the complex structural formation pathway in going
from individual isolated amphiphilic molecules into vesicle aggre-
gates. This is first by the formation of micelles, then rod-like
micelles, and subsequently isolated lamellar sheets. Vesicles then
bud off the sheets in a blebbing or budding-off process. There-
fore, and importantly, the vesicles formation route means that
they do not act like Pac-Man and enclose a volume of solution;
instead, the vesicle water core is filled with water, which has
diffused through the vesicle membrane.
Polymer vesicles1 do have potential as molecular delivery

systems, as they self-assemble and can be easily tailored in size.2

The thin film rehydration3 method has higher encapsulation
efficiency than other preparation methods, as the block copoly-
mer can be mixed with a molecule prior to vesicle formation.4

Other methods such as solvent switching lead to low levels of
encapsulation due to the kinetic formation pathway.5

In this work we have studied the hydration and ordering of
thin films under controlled water vapor flow conditions to
establish the very early stages before the complex processes.
The materials used in this workethylene oxide−butylene

oxide (EB) diblockshave well characterized equilibrium
phase diagrams in both the melt6 and the semicrystalline
state.7 The exact same EB diblock copolymer used in this study
has been comprehensively studied in the later stages of vesicle
formation.8 In the later stages of vesicle formation the vesicle
forming polymer has already formed a lamellar gel, as deter-
mined by small-angle X-ray scattering.9 In this work we also
wanted to examine how we can solvent anneal these vesicle
forming polymers to get them in a state of readiness for vesicle
formation and so improve their formation rate.
In thin films, the influence of surfaces and interfaces on the

morphology is important.10,11 An early study of poly(ethylene
oxide)−polybutadiene copolymers showed dewetted structures
on hydrophobic substrates that formed terraces with a single
crystal of PEO running throughout each isolated structure.12

These were connected by screw dislocations in the lamellae,
pointing to increased complexity in these types of materials com-
pared to simple diblock copolymer melts. Thin film morphologies

of symmetric (i.e., 50:50) semicrystalline EB diblock copoly-
mers have been extensively studied, and the effects of chain
length, annealing, and substrate surface energy have been exa-
mined. For low molar mass block copolymers of comparable
molecular weight to the ones used here, after annealing the
morphology consists of lamellae oriented parallel to the sub-
strate surface.13 This preferred orientation may be controlled by
changing the functionalization of the substrate surface.14 In the
current study, we follow in detail the way an initially disordered
thin film orders on exposure to water vapor in situ using an
environmental chamber (Figure 1).

2. EXPERIMENTAL SECTION
Materials. The block copolymer PEO115PBO103 (Mw = 12 500)

was prepared by sequential anionic polymerization using high vacuum

Figure 2. In situ measurements of AFM: (a) AFM height image and
cross-sectional height image of the initial dry film surface; (b) AFM
height image and cross-sectional height image of the film surface that
was annealed with water vapor flow for 150 min.

Figure 3. Time-dependent change of the block copolymer films during
the hydration in different water vapor flow temperature conditions,
measured using ellipsometry.

Figure 1. Schematic representation of the water vapor flow chamber
used for the neutron reflectivity experiments. The other chambers
for AFM, ellipsometry, and GISAXS had similar water vapor flow
controlling systems.
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techniques.15 The molecular weight and volume fraction were esti-
mated by gel permeation chromatography and 13C NMR. The volume
fraction of PEO (ϕE) units was 0.37. The melt morphology at 70 °C
for this polymer is hexagonal cylinders of PEO in a matrix of PBO.
Sample Preparation. Silicon substrates of 1 mm thickness 20 ×

20 mm2 were used for grazing-incidence small-angle X-ray scattering
(GISAXS), ellipsometry, and atomic force microscopy (AFM) mea-
surements. For the neutron reflectivity (NR) experiments 100 mm
diameter, 10 mm thickness silicon substrates were used to provide a
large sample area, which enabled the swelling kinetics to be measured
effectively using NR. The silicon substrates were oxygen plasma
cleaned prior to spin coating with monocarboxy-terminated poly-
styrene (PS-COOH, Mw = 13 000, Scientific Polymer Products, Inc.).
A PS-COOH toluene solution (5 wt %) was spin-cast onto the native
oxide surface of the silicon substrates to stabilize the spin-coated block
copolymer and prevented dewetting. The substrates were then ther-
mally annealed at 150 °C under vacuum conditions for 4 days.
Ungrafted PS-COOH polymer was removed by washing the substrates
with toluene. The thickness of the grafted PS layer on the substrates
was less than 3 nm, as measured by NR and ellipsometry. Thin films of
PEO115PBO103 were prepared by spin-coating a solution of the block
polymer in chloroform (0.75 wt %) at 3000 rpm onto the polystyrene
(PS-COOH)-modified silicon substrates. The initial thickness of
the PEO115PBO103 layer was controlled within a range of 70−125 nm.
Neutron reflectivity shows that the PBO layer was preferentially
formed as the first layer on the hydrophobic polystyrene modified
substrate.
Water Vapor Flow Chamber. AFM, GISAXS, ellipsometry, and

NR were performed in a water vapor flow chamber to allow control of
the water temperature and moisture content; this is shown schemat-
ically in Figure 1. The amount of water vapor in the flow gas was
controlled by adjustment of the water vapor temperature and flow
rates of dry gas and water infused gas. The sample was maintained at a
constant temperature to avoid thermal expansion. The thickness
change is defined as a ratio of the thickness change from its initial dry
thickness to its total thickness. Sample temperature was fixed during
the measurement, so these results may not include thermal expansion.
Therefore, this thickness change is considered to be almost equal to
the water volume fraction in a thin film sample. For these experimental
conditions, the higher water temperature flow gas included a higher
concentration of water. Optical ports (7 mm diameter) were used as
windows for the ellipsometry measurements, and 0.1 mm thick
double-polished silicon wafers were used as windows for the NR
experiments. Kapton film of 7.5 μm thickness was used as windows for

the GISAXS measurements. It should be mentioned that the chambers
used for each measurement had different volumes and were made of
different materials, so the swelling behavior time scales from each
measurements could not be compared directly.

Atomic Force Microscopy. The atomic force microscopy mea-
surements of the thin film surface were carried out using a SII
NanoTechnology Inc. E-sweep operated in tapping mode. The AFM
tips were SII NanoTechnology Inc. SI-DF3, and these spring constants
were around 1.5 N/m. Dry air was used for the flow gas and H2O
infused gas. The sample was dried with a flow of dry air (flow 1.0 L/min)
for over 2 h before the water vapor annealing started. In the water
vapor annealing measurements, the flow rate of dry air was 0.15 L/min
and the flow rate of H2O infused air was 1.85 L/min. The water vapor
temperature and sample temperature were fixed at 22 °C. Multi-
ple sample areas were measured to minimize any potential sample
damage from the AFM tapping measurements.

Ellipsometry. A spectroscopic ellipsometer (J.A. Woollam Co.
M2000v) was used for the in situ ellipsometry measurements. Dynamic
reflection data (ψ and Δ) were recorded every 10 s over a wavelength
range of 375−1000 nm. The PEO115PBO103 thin films were regarded
as a homogeneous layer during the water vapor hydration process,
permitting us to determine film thickness using a Cauchy model over
the measurement wavelength range.16 Dry nitrogen was used for the
flow gas and H2O infused gas. Samples were dried with dry nitrogen
flow (1.0 L/min) for over 2 h before the water vapor annealing started.
The flow rate of dry nitrogen was 0.0 L/min, and the flow rate of H2O
infused nitrogen was 1.0 L/min in the water vapor annealing mea-
surements. The sample temperature was kept constant at 20 °C.

Grazing Incidence Small-Angle X-ray Scattering. Grazing
incidence small-angle X-ray scattering (GISAXS)17 was performed to
resolve the in-plane and out-of-plane structure of the thin polymer film
during hydration/dehydration. The measurements were performed on
the beamline BL03XU at SPring-8 (Japan) with 0.1 nm wavelength
X-rays.18 The incident angle was fixed as 1.2°. An imaging plate detector
was used for detection of the scattered X-rays. Dry helium was used as
the flow gas to reduce background scattering. The sample was dried with
dry helium flow (1.0 L/min) for over 1 h before the water vapor annealing
started. The flow rate of dry helium was 0.0 L/min, and the flow rate of
H2O infused gas was 1.0 L/min in the in situ measurement. The water
vapor temperature and sample temperature were fixed at 20 °C.

Neutron Reflectivity. Neutron reflectivity (NR)17 was performed
to resolve the out-of-plane structure of the thin polymer film during
hydration/dehydration with a particular emphasis on the (heavy)
water distribution in the layer due to the high sensitivity of neutrons to

Figure 4. In situ GISAXS measurements: (a) initial dry film; (b) after 30 min water vapor annealing; (c) after 34 min water vapor annealing; (d) after
66 min water vapor annealing.
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deuterium in this case. Two different experimental conditions were
chosen to obtain NR data over a wide range of water absorption and
also to capture the fast swelling kinetics. The time-of-flight mode neu-
tron reflectivity measurements were performed on D1719 at the ILL
with neutron wavelengths ranging from 2 to 25 Å and on INTER20 at
ISIS with neutron wavelengths ranging from 1.5 to 14 Å. Dry nitrogen
was used for the flow gas. D2O was used for water vapor gas to reduce
background scattering (the incoherent background from H2O would
have limited the reflectivity dynamic range) and most importantly to
obtain strong scattering contrast between the two polymer com-
ponents. The samples were dried with dry nitrogen flow (1.0 L/min)
for over 2 h before the water vapor annealing started. The flow rate of
dry nitrogen was 0.0 L/min, and the flow rate of D2O infused gas was
1.0 L/min in the water vapor annealing measurements. The sample
temperature was fixed at 20 °C. The water vapor temperature of the

experiments on D17 was stepwise increased as shown in Figure 6a in
order to cover a wide water absorption range. The water temperature
of the measurements on INTER was fixed as 18 °C to see the fast early
stage kinetics. Neutron reflectivity data were collected every 5 min
repeatedly on INTER while on D17 they were accumulated between
the two solid lines in Figure 6a.

Analysis of the Drying Process after the Hydration and
Ordering. Neutron reflectivity measurements were also performed
during the drying process after the 1400 min of water vapor annealing
measurements on D17. The flow rate of dry nitrogen was changed
to 1.0 L/min, and the flow rate of D2O infused gas was changed to
0.0 L/min at 1400 min from the water vapor annealing start point. The
sample temperature was kept at 20 °C, and the dry nitrogen gas
temperature was fixed at 25 °C. Neutron reflectivity data were col-
lected every minute repeatedly for 190 min and then summed over
10 min. The static GISAXS measurement was performed with the
dried sample after the hydration on BL03XU at SPring-8 in a vacuum
condition. The X-ray wavelength was 0.1 nm and the incident angle
was 1.2°.

3. RESULTS AND DISCUSSION

The thin film samples have a smooth surface (Figure 2a) prior
to vapor annealing. The root-mean-squared roughness param-
eter (RRMS) of the dry thin film surface as determined from
AFM was 4.0 nm. After 150 min water vapor annealing, AFM
reveals a terraced surface morphology. Four different terrace
surfaces were observed from above the surface, and the surfaces
of the top, second, third, and bottom are depicted as yellow,
orange, brown, and dark brown colors, respectively, in Figure 2b.
The thickness values of the top and second terrace layer are
27.8 ± 3.3 and 24.8 ± 4.1 nm, respectively. These thicknesses
are similar to the bulk value of 23 nm for the nonequilibrated
lamellar spacing (Figure 2b).21 The time dependence of the
swelling of the films as they take up water vapor is revealed by
ellipsometry in Figure 3. For water temperatures of 17 °C there
was no appreciable swelling; higher water temperatures lead to
faster swelling and a larger final swelling ratio. The kinetics of

Figure 6. In situ neutron reflectivity measurements. (a) The water vapor temperature conditions for the neutron reflectivity measurements on D17 at
the ILL (i)22 and on INTER at ISIS (ii). The water vapor temperature is plotted against the water vapor annealing time. Neutron reflectivity profiles
were accumulated in between each separated lines, shown by a double-headed arrow on D17 and in every 5 min on INTER. (b) Kinetic neutron
reflectivity results measured using the reflectometers D17 at the ILL and INTER at the ISIS: (i) D17 measurements; (ii) INTER measurements; the
data for both plots are offset to aid clarity. The data set at 100 is the initial reflectivity data for the dry thin film; in the vertical direction is a time
sequence of the profiles obtained during the water vapor annealing, which have been offset for clarity.

Figure 5. One-dimensional scattering profiles of the in-plane mo-
mentum transfer of the GISAXS pattern in Figure 4c (qz = 1.19 nm−1),
Figure 4d (qz = 1.06 nm−1), and Figure 4d (qz = 1.22 nm−1).
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swelling displays initial slow uptake of water until the thickness
is 2.5−5% higher than its initial value; this induction stage is
followed by very rapid swelling and then a final asymptotic
approach to an equilibrium degree of swelling.
The GISAXS data (Figure 4) for the initial dry film contains

diffraction spots for the in-plane direction and out-of-plane
directions; the initial spin-coated film has weakly ordered,
phase-separated structures that are oriented vertically and hori-
zontally. The peak position, q*, of the in-plane orientation is
0.281 nm−1, and its d spacing (d = 2π/q*) is 22.4 nm. The
pattern and d spacing remain little changed during the initial
phase of water uptake, but after 34 min exposure, the diffraction
spots from the in-plane direction disappeared, and strong
diffraction spots with higher orders in the out-of-plane direction
appeared. We conclude that at this point the film abruptly
switches lamellar orientation where the lamellae are exclusively
parallel to the substrate interface. After this structural change,
the diffraction spots in the out-of-plane direction shifted to
lower q region, and the widths of the spots became narrower
with water vapor annealing (Figure 5). These may indicate that
the lamellae kept swelling and orientating parallel after the
structural change point.
Figures 6b-i22 and 6-ii are the in situ neutron reflectivity re-

sults for different time scales of vapor exposure. The reflectivity
profiles at 100 (lowest data set) are the data for the initial dry
thin films before hydration. They show weak, broad peaks for
the initial dry films at a q value of 0.34 nm−1 (d = 18.5 nm).
The next data set in the vertical direction begins a sequence of
neutron reflectivity measurements obtained in situ during
water vapor annealing. The fourth profile in the sequence of
Figure 6b-itaken after 220−300 minshows a series of
strong diffraction peaks, with many higher orders. The peak
positions shift to lower q with further exposure. Toward the
end of the process, the critical edge moves to higher q due to
the severely water (D2O) saturated conditions causing con-
densation on the film surface; here macroscopic surface water
droplets cause diffuse scattering. Figure 6b-ii shows a similar
sequence with finer time resolution for the earlier stages of the
process. The structural rearrangement transition to exclusive
out-of-plane ordering, which is also seen in the GISAXS mea-
surements, is bracketed by the two dotted line profiles, showing
that it is completed in less than 15 min.
The reflectivity at early times was modeled with a single

laterally homogeneous layer with weakly ordered domains; at
later times a linear combination of multilamellar layers was used,
corresponding to highly ordered lamellar structures almost entirely
oriented parallel to the substrate (Figure 7a−c). To fit such
lamellar structures, a linear combination model was used which
included two distinct lamellar layer models with different
numbers of layers (for example, 5 and 6 layers were used in
Figure 7b). The film may also have many nonequilibrium la-
mellar layer structures throughout the film thickness. However,
in this analysis, such complicated inner structures were
excluded, and a single homogeneous layer model was used to
fit the data and obtain an average for the total layer thickness
and an effective average scattering length density of the film. In
the fitting procedure, the calculated water volumes from the
thickness change and the scattering length density profile were
kept consistent with each other. The scattering length density
values of PEO, PBO, and D2O were calculated to be 6.45 ×
10−7, 2.09 × 10−7, and 6.33 × 10−6 Å−2, respectively (calculated
using the NIST database). The densities of PEO and PBO were
estimated as 1.14 and 1.01 g/cm3, respectively, by the Van

Krevelen’s group additive method.23 The package Motofit24

was used for fitting the reflectivity data. The scattering length
density of the top PEO layer has a lower value than the other
buried PEO layers. This does not mean the top PEO layer has
lower water absorption but is a result of summing two lamellar
layers models with different number of layers. Lower scattering
length density (SLD) corresponds to PBO layers, and higher SLD
corresponds to water (D2O) swollen PEO layers in Figure 7c.
The errors of the total thickness and the SLD value with the
single layer model were estimated smaller than ±1.4% and
±7.4%, respectively. The errors of the PBO layer thickness,
PEO layer thickness, and the SLD value of the PEO layer with
the mutilayers model were estimated smaller than ±2.4%,
±2.0%, and ±7.3%, respectively.
Figure 8 shows the evolution of the scattering length density

profiles during the hydration process for two different time
scales. Film thickness and scattering length density increase
with water absorption, and periodic lamellar structure appears
after the structural transition point.
Figure 9 shows the volume of absorbed water and the

thickness changes of the PEO−PBO bilayer and the PBO layer
with water vapor exposure time. The volume of absorbed water

Figure 7. (a) Neutron reflectivity profile of a single layer model. (b)
Neutron reflectivity data fitted to a lamellar model with 5 and 6 layers
along with a linear mixed combination of the two models. (c)
Scattering length density profiles of (b).
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increased rapidly after it reached 2.5 vol % water, in agreement
with the ellipsometry swelling results. The intensity of the first
diffraction peak and the thickness of the PEO−PBO bilayer and
PBO layer also increased rapidly after the volume of absorbed
water reached 2.5%.

To understand the mechanism behind the structural change
from the neutron reflectivity results, in Figure 10 we plot the
thickness changes of the PEO−PBO bilayer and the PBO layer.
We also plot the first diffraction peak intensity against the
volume of absorbed water in Figure 10. The initial bilayer
thickness was 18.2 nm, rather less than the 22.4 nm evaluated
using GISAXS. This may indicate that the film was extended in
the horizontal direction and fixed its structure during the rapid
nonequilibrium spin-coating process. After the structural transi-
tion, the bilayer thickness gradually increased with water ab-
sorption, while the PBO layer thickness slightly decreased. To
maintain the overall mass of the hydrophobic PBO layer, its
thickness decrease must be accompanied by a swelling in the
horizontal direction, i.e., parallel to the surface. As the lamella
area is fixed by the chemical bonds between PBO−PEO, the
PEO layer must be swollen in the horizontal direction as well.
The diffraction peak intensity also increased abruptly in the

same range from 2.5% to 5% in water volume content followed
by a further rapid increase up to 10% in water volume. This
suggests that lamellae could be gradually oriented parallel to the
substrate in this water volume range. After that, the intensity in-
creased according to the water absorption because of enhance-
ment of the PEO layer scattering length density with D2O.
The experimental values for bilayer thickness were compared

with self-consistent field theory (SCFT) calculations using the
program “OCTA”.25 The solid and broken lines in Figure 10
are the calculated bilayer and PBO layer thicknesses supposing
a bulk, equilibrium system at the measured water concentration.
At higher water volume fractions there is a good correspond-
ence between data and theory for both the bilayer and PBO

Figure 8. Evolution of scattering length density profiles during the hydration process: (a) from the D17 data; (b) from the INTER data. The
horizontal axis z means film depth, and the origin position of z is the interface between modified polystyrene layer and the PEO115PBO103 film layer.
The initial film thicknesses for the D17 sample and the INTER sample were 119.2 and 77.8 nm, respectively.

Figure 9. Structural changes during the rehydration process. The
PEO−PBO bilayer thickness, PBO single layer thickness, the first
diffraction peak intensity, and also the volume of the absorbed water as
a function of the water vapor annealing time from the INTER results.
The thicknesses of the bilayer and the PBO layer are indicated by filled
symbols, these values were evaluated from the initial weak diffraction
peak position, and those indicated by open symbols were evaluated
using the scattering length density profiles.
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layer thicknesses, implying the film can equilibrate on a faster
time scale than water diffusion. However, below 2.5% in the
water volume fraction, both the layer thicknesses are much
lower than the SCFT calculations, showing that the blocks are
unable to rearrange quickly enough to stay in local equilibrium
with the increasing water content. After the abrupt structural
change, the bilayer and PBO layer thickness are slightly higher
than the SCFT calculation results. During the onset of rapid
structural change, the film formed ordered lamellar structures
which swell and expand rapidly. Such a rapid deformation of
the lamellar structure may induce internal stress and cause the
lamellar grains to compress each other. Such internal stress may
increase the thickness of the horizontally ordered lamellae.
From all the results, the structural model of the hydration

and ordering for PEO115PBO103 thin films during water vapor
annealing is shown in Figure 11. The initial dry spin-coated film
has some weak phase-separated structures that are oriented
parallel and vertical to the substrate. This does not change until
the 2.5% water absorption point is reached. When the water
volume exceeds about 2.5%, the film swells rapidly and forms
an ordered lamellar structure. The lamellae are then gradually
oriented parallel to the substrate until around 10% water con-
tent, after which the lamellar thickness increases with water
absorption. It is still not clear what determines such rapid
structural changes. One possibility is that the PEO block forms

crystalline domains in the initial spin-coated film, which remain
and pin the structure up to this specific amount of water
absorption. Another possibility is that the PEO phase regions
are isolated in the initial film, preventing water penetration into
the film.
We have also examined the drying process after the film was

hydrated and ordered (Figure 12a).22 There is a diffraction
peak with diffuse scattering in the reflectivity profile after ex-
tended water vapor annealing. The peak position is 0.163 nm−1,
and the corresponding d-spacing is 38.5 nm. It is difficult to be
definitive about the structural origin of this peak. One possi-
bility is that this peak arises from the lamellae unbinding length
scale, which does not change during the total changes in the
absorbed water content due to the preferential water absorption
into one layer. Another possibility is that the stacked lamella
changes to a different ordered structure with increased water
absorption. In the bulk state, this block copolymer forms a
sponge phase structure at higher water volume fractions.6 But,
given that the diffraction peak observed in the thin film is sub-
stantially larger than that expected for the sponge phase, this
seems a less likely explanation.
During the drying process the strong diffraction peak of the

stacked lamellae appeared, and the initial “wet” peak shifted to
higher q. The intensity of the stacked lamellae diffraction peak
gradually decreased throughout the drying process and finally
disappeared. To see the structural change in the sample plane
as well, a static GISAXS measurement was also performed on
the hydrated and ordered dried film after a long hydration
period. Figures 12b and 12c show the GISAXS pattern and the
integration for the in-plane momentum transfer direction.
There were two peaks in the in-plane direction. The diffraction
peak in the in-plane direction at position 0.292 nm−1 (d-spacing
21.5 nm) with its second order at 0.593 nm−1 shows that the
nanostructure of the film changed dramatically after the film
dried. We conclude that the GISAXS pattern for the dry film is
due to crystallization of the PEO, with the crystal stems ori-
ented perpendicular to the lamellae. Because of the restriction
of the block copolymer nanostructure, the vertically confined
PEO has crystallized between the confining walls of the amor-
phous PBO, with a characteristic in plane length scale. An earlier
SAXS study has previously identified this same identical behavior

Figure 10. Structural changes during the rehydration process. The
PEO−PBO bilayer thickness, PBO single layer thickness, and also the
first diffraction peak intensity as a function of the volume of absorbed
water. The bilayer thickness from the D17 results is indicated by
triangle symbols and those of INTER by square symbols. The PBO
layer thickness from the D17 results are displayed by circle symbols,
while those of INTER are indicated by inverted triangle symbols. The
thickness of the bilayer and the PBO layer are indicated by filled
symbols, evaluated using the initial weak diffraction peak position, and
those indicated by open symbols were evaluated using the scattering
length density profiles. The diffraction peak intensity is indicated by
plus signs for the D17 results and by × symbols for INTER results.
Solid line and broken line show calculation of the bilayer thickness and
the PBO layer thickness results of a bulk lamella system of A(PEO
model)−B(PBO model) diblock copolymer and C(water model)
homopolymer by SCFT calculations with Nblock A = 37, Nblock B = 63,
and Nblock C = 3. Interaction parameters χAB = 0.4, χAC = 0.0, and χBC =
3.0. Calculated structural sizes were scaled by multiplying the same
constant value.

Figure 11. Drawing of the proposed structural model during the
rehydration process: (a) the initial dry film; (b) with water absorption
volume up to 2.5%; (c) after the rapid structural change region; (d)
above 10% in the water absorption volume.
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for a similar semicrystalline block copolymer system of poly-
(ethylene)−poly(vinylcyclohexane). A simple Markov model
was used to simulate the diffuse scattering within and between a
linear positioning of poly(ethylene) crystallites.26

4. CONCLUSION
In summary, the hydration and ordering of a vesicle forming
PEO−PBO block copolymer thin film was investigated. In situ
GISAXS and neutron reflectivity experiments showed that there
is a fast structural transition in the hydration process, where the
film swells rapidly and forms highly ordered lamellae exclusively
oriented parallel to the substrate. The experimental results
were complemented by self-consistent field theory calculations,
which showed a good agreement after the fast reordering of the
lamellae during swelling. In situ measurements during sub-
sequent drying of the sample showed that the structural change
is partly reversible. Solvent annealing may thus be a promising
route to improve vesicle formation by effectively ordering the
surface on a mesoscopic length scale.
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