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Abstract We aim to answer the question about the cross-section of a planar coronal loop
with a prescribed shape. We restrict the analysis to coronal loops embedded in a planar
potential magnetic field. Then we carry out the analysis in the leading-order approximation
with respect to the small parameter ε equal to the ratio of the characteristic size of the loop
cross-section to the loop length. We show that, in this approximation, the loop cross-section
can be prescribed arbitrarily at one of its footpoints. Then the loop cross-section at any
other point is obtained by stretching or compressing the prescribed loop cross-section in the
direction that is perpendicular to the loop axis and in the plane of the loop. The variation
of the coefficient of stretching or compression along the loop can be chosen arbitrarily. In
particular, it follows from this result that we can consider a planar loop of arbitrary shape
and assume that its cross-section is circular everywhere and has a constant radius.

Keywords Sun · Plasma · Coronal loops · Magnetohydrodynamics · Magnetic equilibrium

1. Introduction

Standing kink waves in coronal magnetic loops were first observed by the Transition Re-
gion and Corona Explorer (TRACE) on 14 July 1998. These observations were reported by
Aschwanden et al. (1999) and Nakariakov et al. (1999). Later, similar observations were
reported by, e.g., Schrijver and Brown (2000), Aschwanden et al. (2002), Schrijver, As-
chwanden, and Title (2002), Aschwanden (2006), and Aschwanden and Schrijver (2011).

Since the standing kink waves in coronal loops were first observed, they have attracted
great attention from theorists. In the first theoretical works related to these waves, the sim-
plest model of a coronal magnetic loop was used, which is a straight homogeneous magnetic

M.S. Ruderman (B)
Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics,
University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
e-mail: m.s.ruderman@sheffield.ac.uk

M.S. Ruderman
Space Research Institute (IKI) Russian Academy of Sciences, Moscow, Russia

mailto:m.s.ruderman@sheffield.ac.uk


424 M.S. Ruderman

tube. The theory of kink-wave propagation in straight homogeneous magnetic tubes was de-
veloped about two decades before they were first observed (e.g. Ryutov and Ryutova, 1976;
Edwin and Roberts, 1983). Then more complicated models were developed with properties
of coronal magnetic loops such as density variation along and across the loop, loop expan-
sion, curvature, torsion, and magnetic twist. For a recent review of the theory of standing
kink waves in coronal magnetic loops see Ruderman and Erdélyi (2009).

A very popular approximation used in the theory of kink waves in coronal loops is the
thin-tube (TT) approximation. It is based on the fact that the size of the loop cross-section
is much smaller than the loop length, so the ratio of these two quantities can be considered
as a small parameter. The use of the TT approximation greatly simplifies the theory of kink
waves in coronal loops. It was assumed in most studies that the loop cross-section is circular.
It is also typical to neglect the loop curvature. In particular, Dymova and Ruderman (2005)
showed that in the TT approximation, kink waves in a straight magnetic tube with a circu-
lar cross-section with constant radius and the density varying along the loop are described
by a wave equation. Ruderman, Verth, and Erdélyi (2008) and Verth and Erdélyi (2008)
generalized this result to include the cross-section radius variation along the loop.

At present, it is not possible to arrive at any conclusion about the shape of the loop cross-
section, so it is not clear how relevant the model of a loop with a circular cross-section is.
Ruderman (2003) and Morton and Ruderman (2011) studied kink oscillations of a loop with
an elliptic cross-section. They found that the main effect of the cross-section ellipticity is that
the frequencies of oscillations polarized along the small and large axis of the cross-section
are different.

Van Doorsselaere et al. (2004) analytically and Terradas, Oliver, and Ballester (2006)
numerically studied the effect of loop curvature on kink oscillations of coronal loops (see
also the review by Van Doorsselaere, Verwichte, and Terradas, 2009). They showed that the
effect of curvature is very small in the TT approximation and can be neglected. However,
these authors assumed that the loop has a half-circle shape and the loop cross-section is a
circle of constant radius. Ruderman (2009) studied kink oscillations of a planar curved loop
of arbitrary shape embedded in a potential planar magnetic field. He showed that, in general,
the loop cross-section is elliptic. The ellipse axis perpendicular to the loop plane is constant,
while the second ellipse axis varies along the loop. As a result, the loop kink oscillation
polarized in the direction perpendicular to the loop plane has a frequency different from that
of the oscillation polarized in the loop plane.

The loop shape is important first of all because it determines the variation of the plasma
density along the loop when the dependence of the temperature on the height in the corona
is given. The density variation along the loop, in turn, affects the ratio of frequencies of
the first overtone and fundamental mode of kink oscillations. This ratio is one of the most
important parameters in coronal seismology because it is used to estimate the atmospheric
scale height in the corona in the framework of the method developed by Andries, Arregui,
and Goossens (2005) (see also the review by Andries et al., 2009).

In the seminal article by Andries, Arregui, and Goossens (2005), the loop was assumed
to have a half-circle shape and a circular cross-section of constant radius. Dymova and
Ruderman (2006) were the first to study the effect of the loop shape on the frequency ratio.
These authors considered loops with the shape of an arc of a circle and a circular cross-
section of constant radius, and they studied the dependence of the frequency ratio on the
ratio of the loop height to the distance between the loop footpoints. Later, this study was
continued by other authors. Morton and Erdélyi (2009) studied kink oscillations of a coronal
loop with an elliptic shape and calculated the dependence of the frequency ratio on the
ellipticity parameter. Orza and Ballai (2013) considered asymmetric loops and studied the
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dependence of the frequency ratio on the loop asymmetry. Both Morton and Erdélyi (2009)
and Orza and Ballai (2013) assumed that the loop cross-section is a circle of constant radius.

It is very easy to obtain an equilibrium with a loop of half-circle shape and circular cross-
section of constant radius embedded in a potential planar magnetic field. The same is true
for a loop with an arc-of-circle shape. However, in view of the study by Ruderman (2009), it
is not at all clear if it is possible to obtain an equilibrium with a planar loop of, for example,
elliptic shape with a circular cross-section of constant radius embedded in a planar potential
magnetic field. Moreover, it is not even clear whether a planar loop with an arbitrary shape
can be embedded in a planar potential magnetic field. Hence, important questions arise: Can
a loop with an arbitrary shape be embedded in a planar potential magnetic field? If the loop
shape is given and the loop is embedded in a planar potential magnetic field, then what can
be its cross-section? In particular, is it possible to have a loop with the circular cross-section
of constant radius and with given shape?

This article aims to answer these questions. It is organized as follows: In the next section
we formulate the problem. In Section 3 we obtain the solution describing an equilibrium
with a planar magnetic tube embedded in a planar potential magnetic field and study the
variation of the loop cross-section along the loop. Section 4 contains the summary and our
conclusions.

2. Problem Formulation

We consider a planar potential magnetic field in the upper part of the x–z-plane defined by
z ≥ 0. The two components of the magnetic field can be expressed in terms of the magnetic
flux function [ψ] as

Bx = ∂ψ

∂z
, Bz = −∂ψ

∂x
, (1)

where ψ satisfies the Laplace equation

∂2ψ

∂x2
+ ∂2ψ

∂z2
= 0. (2)

We assume that the loop axis is defined by the parametric equations

x = x0(s), z = z0(s), (3)

where z0(0) = z0(L) = 0, L is the loop length, s is the length counted along the loop axis,
and z0(s) ≥ 0 for 0 ≤ s ≤ L. We denote this curve as C. Since s is the distance along the
loop, we have the relation

x ′
0

2 + z′
0

2 = 1, (4)

where the prime indicates the derivative with respect to s. We introduce the size of the loop
cross-section as the greatest distance between two points at the cross-section boundary. In
what follows we assume that the ratio of the cross-section size to L is low and does not
exceed ε � 1.

For simplicity, we assume below that z0(s) monotonically increases in the interval (0, sa)

and monotonically decreases in the interval (sa,L), where sa corresponds to the loop apex.
As for x0(s), we assume that it either monotonically increases in the whole interval (0,L), or
monotonically decreases in the interval (0, s1), and then monotonically increases in the inter-
val (s1,L), or monotonically decreases in the interval (0, s1), then monotonically increases
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Figure 1 Three different loop shapes.

Figure 2 The local coordinate
system. The thick line is the loop
axis. The length s along the loop
is measured from the left
footpoint. The coordinate u is
measured from the loop axis
along a normal line to the loop
axis.

in the interval (s1, s2), and then again monotonically decreases in the interval (s2,L), where
0 < s1 < sa < s2 < L. We also assume that the loop axis is a concave curve. The three pos-
sible shapes of the loop are shown in Figures 1a, b, and c. Other assumptions are that the
distance between the loop footpoints is of the order of L, and the smallest radius of the loop
curvature is also of the order of L.

3. Loop Cross-Section

We start by introducing a local curvilinear coordinate system in the vicinity of the loop axis.
To do this, we draw straight lines normal to the loop axis at each point (see Figure 2). We
denote the length along a straight line measured from the point of its intersection with the
loop axis as u. The quantity u is negative when it is measured inside the region bounded
by the loop axis and the x-axis, and positive when it is measured outside. This is a local
coordinate system because the normal lines, in general, intersect at some distance from the
loop axis. However, we only use this coordinate system in the vicinity of the loop axis
defined by the condition |u| ≤ d . We show in Appendix A that it is enough to impose the
restriction that d is smaller than half of the minimum curvature radius of the loop axis and
also smaller than half of the distance between the loop footpoints. Hence, if we assume that
these two quantities are much larger than εL, then we can take d much larger than εL. The
equation of the normal line crossing the loop axis at the point (x0, z0) is

x = x0(s) − uz′
0(s), z = z0(s) + ux ′

0(s). (5)

These equations give the relation between the curvilinear coordinates (s, u) and Carte-
sian coordinates (x, z). Differentiating the identities x ≡ x(s(x, z), u(x, z)) and z ≡
z(s(x, z), u(x, z)) with respect to x and z yields

∂s

∂x
= 1

�

∂z

∂u
,

∂s

∂z
= − 1

�

∂x

∂u
,

∂u

∂x
= − 1

�

∂z

∂s
,

∂u

∂z
= 1

�

∂x

∂s
, (6)
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where

� = ∂x

∂s

∂z

∂u
− ∂x

∂u

∂z

∂s
. (7)

Using Equations (4) and (5), we obtain

� = 1 − κu, κ = x ′
0z

′′
0 − x ′′

0 z′
0, (8)

where κ is the loop-axis curvature. The curvature [κ] is positive if the tangent vector (x ′
0, z

′
0)

to the loop axis rotates counter-clockwise when s increases and negative otherwise. It fol-
lows from the assumption that the loop axis is a concave curve that its curvature is every-
where negative.

With the aid of Equations (4), (5), and (8), we reduce Equation (6) to

∂s

∂x
= x ′

0

1 − κu
,

∂s

∂z
= z′

0

1 − κu
,

∂u

∂x
= −z′

0 + ux ′′
0

1 − κu
,

∂u

∂z
= x ′

0 − uz′′
0

1 − κu
.

(9)

Using Equation (8), we obtain

κ2 = (
x ′

0z
′′
0 − x ′′

0 z′
0

)2 = x ′
0

2
z′′

0
2 − 2x ′

0z
′
0x

′′
0 z′′

0 + x ′′
0

2
z′

0
2
. (10)

Now we use Equation (4) to transform this equation to

κ2 = x ′′
0

2 + z′′
0

2 − x ′
0

2
x ′′

0
2 − 2x ′

0z
′
0x

′′
0 z′′

0 − z′
0

2
z′′

0
2 = x ′′

0
2 + z′′

0
2 − (

x ′
0x

′′
0 + z′

0z
′′
0

)2
. (11)

In accordance with Equation (4), the second term on the right-hand side of this equation is
zero, so eventually we arrive at

κ2 = x ′′
0

2 + z′′
0

2
. (12)

Using Equations (4), (8), (9), and (12), we rewrite Equation (2) in terms of s and u as

∂

∂s

(
1

1 − κu

∂ψ

∂s

)
+ ∂

∂u

(
(1 − κu)

∂ψ

∂u

)
= 0. (13)

We look for the solution to this equation in the form of power series:

ψ =
∞∑

n=0

unψn(s). (14)

In what follows we assume that the loop axis is a magnetic-field line. This implies that
ψ = const. when u = 0. Without loss of generality, we can take ψ = 0 when u = 0. Then
ψ0(s) = 0. Now, substituting Equation (14) in Equation (13) and collecting terms with the
same power of u, we obtain the infinite set of equations for the coefficients ψn(s). It is
convenient to write the first two equations of this set separately. As a result, we have

2ψ2 = κψ1, (15)

6ψ3 = 8κψ2 − ψ ′′
1 − 2κ2ψ1, (16)

(n + 1)(n + 2)ψn+2 = (n + 1)(3n + 1)κψn+1 − ψ ′′
n − n(3n − 1)κ2ψn

+ κψ ′′
n−1 − κ ′ψ ′

n−1 − (n − 1)2κ3ψn−1, n = 2,3, . . . (17)

We can see that we can take ψ1(s) arbitrarily and then calculate ψn(s), n = 2,3, etc., using
Equations (15) – (17). It is proved in Appendix B that the series (14) is convergent if x0(s),
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y0(s), and ψ1(s) are sufficiently “good” functions, i.e. they satisfy all restrictions imposed
in Appendix B, and d is sufficiently small, but still much larger than εL.

In what follows we use only the first non-zero term in the series in Equation (14) and
assume that |u| � εL, so

ψ = uψ1(s)
[
1 +O(ε)

]
. (18)

Consider the plane [�] orthogonal to the loop axis at its left footpoint. Since the vector
eu = (−z′

0(0), x ′
0(0)) is orthogonal to the loop axis at this footpoint [eu ∈ �]. We denote

the unit vector in the y-direction, which is the direction orthogonal to the plane of the loop,
as ey . Since eu ⊥ ey , these two vectors can be considered as the unit vector of Cartesian
coordinates in the plane [�]. The corresponding coordinates are u and y, and the coordinate
origin coincides with the intersection of � and the loop axis.

Now we consider a closed contour � ∈ �. It is defined by the equations

u = u0(t), y = y0(t), (19)

where u0(T ) = u0(0) and y0(T ) = y0(0). We assume that � is a simple contour, i.e. it does
not have self-intersections, and the coordinate origin is inside �. In addition, we assume that
� is convex, i.e. any straight line can intersect it at no more than two points. The numbers
u, y, and s define orthogonal curvilinear coordinates in three-dimensional space. In these
coordinates the equation of the loop axis is u = y = 0. The magnetic line crossing � at a
point with coordinates (u0(t), y0(t)) is defined by the equations y = y0(t) and ψ(u, s) =
ψ(u0(t),0). Varying s from 0 to L, we obtain a part of this line bounded by the two planes
orthogonal to the loop axis at the footpoints. Now we also vary t from 0 to T . Then we obtain
a magnetic surface consisting of magnetic lines crossing the contour �. We can consider this
surface as the surface of the magnetic tube. Then, using Equation (18), we write the equation
of the surface of the magnetic tube as

y = y0(t), uψ1(s) = u0(t)ψ1(0)
[
1 +O(ε)

]
, 0 ≤ s ≤ L, 0 ≤ t ≤ T . (20)

The boundary of the tube cross-section by the plane perpendicular to the tube axis at s = s̄

is defined by the equation

y = y0(t), u = u0(t)
ψ1(0)

ψ1(s̄)

[
1 +O(ε)

]
, 0 ≤ t ≤ T . (21)

We see that, in the leading-order approximation with respect to ε, the tube cross-section
at s = s̄ is obtained from the tube cross-section at s = 0 by stretching or compressing this
latter cross-section in the u-direction with the coefficient ψ1(0)/ψ1(s̄). In particular, if we
take � to be a circle of radius a centred at the loop axis, and we also take ψ1(s) ≡ 1, then
we obtain that in the leading-order approximation with respect to ε, the tube cross-section is
the circle of radius a centred at the loop axis everywhere. Hence, we can consider a planar
loop of arbitrary shape and assume that it has a circular cross-section with constant radius
everywhere.

4. Summary and Conclusions

We have answered the question about the kind of cross-section a planar coronal loop with a
prescribed shape can have. This question arises in relation to works such as those of Morton
and Erdélyi (2009) and Orza and Ballai (2013), where the authors considered kink oscilla-
tions of curved planar loops with prescribed shapes and assumed that the loop cross-section
is circular everywhere and has a constant radius.
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In our analysis we assumed that the loop is embedded in a planar potential magnetic field.
We also assumed that the loop axis is described by an analytical function. We showed that
the loop cross-section can be prescribed arbitrarily at one of the loop footpoints. Then the
loop cross-section at any other point is obtained by stretching or compressing the prescribed
loop cross-section in the direction that is perpendicular to the loop axis and in the plane
of the loop. The variation of the coefficient of stretching/compression along the loop can
be chosen arbitrarily. Note that this result is only valid in the leading-order approximation
with respect to the small parameter ε, which is the ratio of the characteristic size of the loop
cross-section to the loop length.

In particular, it follows from the result we obtained that we can consider a planar loop of
arbitrary shape and assume that its cross-section is circular everywhere and has a constant
radius.
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Appendix A: Proof That the Map (s,u) → (x, z) Is Bijective

In this section we consider the map (s, u) → (x, z) defined by Equation (5). We slightly
extend the curve C beyond the footpoints. This can be done in infinitely many ways. For
example, we can use small arcs of circles of radii equal to the curvature radii at points
(x0(0),0) and (x0(L),0) (see Figure 3). These circles are centred at the centres of curvature.
The arc lengths are equal to δ � L. We denote the extended curve as C̃. Note that this curve
is not only smooth, but it also has a continuous curvature. The lines normal to C̃ at its end
points have equations

x = x0(−δ) − uz′
0(−δ), z = z0(−δ) + ux ′

0(−δ), (22)

x = x0(L + δ) − uz′
0(L + δ), z = z0(L + δ) + ux ′

0(L + δ). (23)

We denote the first line as 
− and the second as 
+. Now we introduce two curves C̃− and
C̃+ defined by the equations

x = x0(s) + dz′
0(s), z = z0(s) − dx ′

0(s), s ∈ [−δ,L + δ], (24)

x = x0(s) − dz′
0(s), z = z0(s) + dx ′

0(s), s ∈ [−δ,L + δ], (25)

respectively, where d is sufficiently small. The exact restriction on d will be imposed later.
Consider the rectangle D in the plane (s, u) defined by −δ < s < L + δ, |u| < d , and the
domain R bounded by the lines 
− and 
+, and by the curves in C̃− and C̃+ in the plane (x, z).
Equation (5) defines a map F : D → R.

First we show that the map F is injective. This means that F(sa, ua) �= F(sb, ub) if
(sb, ub) �= (sa, ua). We assume the contrary, that there are two points, (sa, ua) ∈ D and
(sb, ub) ∈ D, such that F(sa, ua) = F(sb, ub) = (x, z). This implies that the two normal
lines to the curve C̃, one at point A and the other at point B, intersect at point C ∈ R, where
A and B are the points on the curve C̃ corresponding to s = sa and s = sb . Since C ∈ R,
we have |AC| = da < d and |BC| = db < d . We introduce the angle [θ ] between the tangent
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Figure 3 Sketch of the
domain R.

Figure 4 Illustration for the
proof that the map F is injective.

vector to C̃ and the line AB connecting the points A and B (see Figure 4). This angle takes
the values θa and θb at points A and B. The distance between the points A and B is given by

|AB| =
∫ sb

sa

cos θ ds. (26)

Using the relation dθ/ds = κ(s), we transform this expression to

|AB| =
∫ θb

θa

cos θ

κ
dθ. (27)

Let κm = max |κ| for s ∈ [−δ,L + δ]. Taking into account that −κm ≤ κ ≤ 0 and θb < 0, we
obtain from Equation (27) the estimate

|AB| ≥ sin θa + sin |θb|
κm

= 2

κm

sin
θa + |θb|

2
cos

θa − |θb|
2

. (28)

It is straightforward to see that ∠BAC = π/2 − θa , ∠ABC = π/2 − |θb|, and, consequently,
∠ACB = θa + |θb|. Then, using the law of sines, we obtain

cos θa

|BC| = cos θb

|AC| = sin(θa + |θb|)
|AB| . (29)
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Figure 5 Illustration of the
proof that the map F is injective
for the case when the loop axis
has the shape shown in Figure 1b
and the angle between the
normals is larger than π .

Now we impose the restriction that d < 1/2κm. Since |AC| < d < 1/2κm and |BC| < d <

1/2κm, it follows from Equation (29) that

|AB| < sin(θa + |θb|)
κm(cos θa + cos θb)

= sin θa+|θb |
2

κm cos θa−|θb |
2

. (30)

It follows from Equations (28) and (30) that 2 cos[(θa − |θb|)/2] < 1 and, consequently,

cos
(
θa − |θb|

)
< 0. (31)

Since 0 < θa ≤ π/2 and 0 < |θb| ≤ π/2, the inequality in Equation (31) cannot be satisfied,
and we arrive at the contradiction. Hence, the normal lines at A and B cannot intersect in R.

It is obvious that the proof presented above is only valid when the angle ∠ACB is smaller
than π . This is always true when the loop axis has the shape shown in Figure 1a. However,
when it has either the shape shown in Figure 1b or that shown in Figure 1c, it is also possible
that ∠ACB is larger than π . We consider the case shown in Figure 1b and assume that the
angle between the normal lines at A and B counted from the second line counter-clockwise
is larger than π (see Figure 5). Let ϑ be the angle between the tangent to C̃ and the positive
x-axis counted counter-clockwise from the x-axis. For the case shown in Figure 1b, π/2 <

ϑa < π and −π/2 ≤ ϑb ≤ 0, so ∠ACB = ϑa −ϑb < 3π/2. We draw the arc AD of the circle
of radius 1/κm that touches the curve C̃ at A. This arc cannot cross C̃ because otherwise
the absolute curvature of C̃ would have to exceed κm somewhere between A and the point
of intersection. The second end of this arc cannot be on AC because, by assumption, |AC|
is smaller than the half of the curvature radius. Since 2π −∠ACB > 2π − 3π/2 = π/2, it
follows that |AD| > (2/κm) sin(π/4) = √

2/κm. Now we have

|AC| + |BC| ≥ |AC| + |CD| > |AD| >
√

2

κm

, (32)

which again contradicts the assumption that C ∈ R because, in that case, we would have
|AC| + |BC| < 2d < 1/κm.

Finally, we consider a loop with the axis of the shape in Figure 1c and assume that the
angle between the normals is larger than π (see Figure 6). At points D and E the tangents to
the curve C̃ are vertical. It is straightforward to see that if A is above D, as in Figure 6a, or B
is above E, as in Figure 6b, then the proof is the same as for a loop with the axis of shape (b).
Therefore we only need to consider the case where both A is below D and B is below E.
Then it is obvious that |AC| + |BC| is larger than the distance between the end points of the
curve C̃. We introduce df = x0(L) − x0(0). Then we have for the distance between the end
points of the curve C̃

x0(L + δ) − x0(−δ) > df − 2δ. (33)
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Figure 6 Illustration of the proof that the map F is injective and has the shape shown in Figure 1c and the
angle between the normals is larger than π .

Now we impose the addition restriction d < df /2 − δ. Then we have that on the one hand
|AC| + |BC| > df − 2δ, but on the other hand |AC| + |BC| < 2d < df − 2δ, and again we
arrive at the contradiction.

Hence, to summarize, we have proved that the map F is injective if d < min(1/2κm, df /

2 − δ). To finish the proof that F is bijective, we now need to prove that for any point
(x, z) ∈ R there is a point (s, u) ∈ D such that F(s,u) = (x, z).

First of all, we note that F can be extended on the closure D of D. Then it is straight-
forward to see that F is a bijection of the boundary of D on the boundary of R. Now we
assume that there is point A ∈ R such that no point from D is mapped in A. There are two
possibilities: Either there is a point in any vicinity of A that is the image of a point from D,
or there is a vicinity of A such that no point in this vicinity is the image of a point from D.

Consider the first possibility. In this case, we can construct a sequence of points {An} con-
verging to A and such that, for each point An, there is point Bn ∈ D such that F(Bn) = An.
Since {An} is converging and |�| is bounded from below by a positive constant, it follows
that {Bn} is a Cauchy sequence and, consequently, it converges to a point B. Since F is
continuous, it follows that F(B) = A, and we arrive at a contradiction. Note that B is not at
the boundary of D because the boundary of D is mapped into the boundary of R.

Assume now that there is a vicinity [V] of A such that no point in this vicinity is an image
of a point from D. We consider a simple closed contour [L] enclosing V and such that each
point of this contour is the image of a point from D. Such a contour definitely exists. For
example, we can take the boundary of R. The contour [L] is the image of the contour S ∈ D,
F(S) = L. Now we contract S into a point. Since F is continuous, L also has to contract
into a point. During this process, a part of L must be in V . But this is impossible because,
by assumption, no point in V is an image of a point from D. Hence, we again arrive at a
contradiction. As a result, we conclude that any point in R is an image of a point from D,
which means that F is bijective.

Appendix B: Investigation of the Sum Convergence

In this appendix we study the convergence of the series in Equation (14). We assume that
the functions x0(s), y0(s), and ψ(s) satisfy the inequalities

∣∣x(m)

0 (s)
∣∣ < Lh−m

1 ,
∣∣y(m)

0 (s)
∣∣ < Lh−m

1 ,
∣∣ψ(m)

1 (s)
∣∣ < C2h

−m
2 , (34)

where h1 and h2 are positive constants much larger than εL, C2 is a positive constant,
m = 0,1, etc., and f (m)(s) denotes the mth derivative of function f (s). First we assume
that these inequalities are valid for s ∈ [0,L]. The first two inequalities in Equation (34)
imply that x0(s) and y0(s) are analytic functions in the interval [0,L] and the radius of
convergence of the infinite Taylor series of these functions at any point of this interval is
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larger than or equal to h1. At the end point of the interval we have to take s ≥ 0 and s ≤ L in
these Taylor series. In Appendix A we described one possible extension of functions x0(s)

and y0(s) using the arcs of circles. With the use of this extension we obtained the curve C̃
that is smooth and curves continuously. In this section we use another extension of curve C.
Using the expansion of x0(s) and y0(s) in the infinite Taylor series at the end points of the
interval [0,L], we can define them in the vicinities of points s = 0 and s = L. As a result, we
obtain functions x0(s) and y0(s) that are analytic in the interval (−δ,L + δ) for sufficiently
small positive δ. Hence, we obtain the analytic curve C̃.

It follows from the inequalities in Equation (34) that we can find such positive constants
h and C, h being much larger than εL, that

∣
∣κ(m)

∣
∣ < h−m−1,

∣
∣ψ(m)

1

∣
∣ < Ch−m, m = 0,1, . . . . (35)

Now we prove that
∣∣ψ(m)

n

∣∣ < C(n/h)m(5/h)n−1, n = 2,3, . . . , m = 0,1, . . . . (36)

It follows from Equation (15) that

2ψ
(m)

2 =
m∑

l=0

(
m

l

)
κ(l)ψ

(m−l)

1 , (37)

where
( m

l

)
is a binomial coefficient. Using Equation (35), we obtain from Equation (37)

∣∣ψ(m)

2

∣∣ ≤ 1

2

m∑

l=0

(
m

l

)∣∣κ(l)
∣∣∣∣ψ(m−l)

1

∣∣ <
C

2hm+1

m∑

l=0

(
m

l

)
= 2mC

2hm+1
<

5C

h

(
2

h

)m

. (38)

Hence, the inequality (36) is valid for n = 2.
In what follows we need estimates for the derivatives of κ2 and κ3. We have

(
κ2

)(m) =
m∑

l=0

(
m

l

)
κ(l)κ(m−l). (39)

It follows from this equation and Equation (35) that

∣∣(κ2
)(m)∣∣ ≤

m∑

l=0

(
m

l

)∣∣κ(l)
∣∣∣∣κ(m−l)

∣∣ < h−m−2
m∑

l=0

(
m

l

)
= 2mh−m−2. (40)

Hence, eventually,

∣
∣(κ2

)(m)∣∣ <
1

4
(2/h)m+2. (41)

Continuing, we obtain

(
κ3

)(m) =
m∑

l=0

(
m

l

)
(
κ2

)(l)
κ(m−l). (42)

Now using Equations (35) and (42) yields

∣
∣(κ3

)(m)∣∣ ≤
m∑

l=0

(
m

l

)∣
∣(κ2

)(l)∣∣
∣
∣κ(m−l)

∣
∣ <

1

4

m∑

l=0

(
m

l

)(
2

h

)l+2

hl−m−1

= h−m−3
m∑

l=0

(
m

l

)
2l = 3mh−m−3. (43)
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Hence, eventually we obtain

∣
∣(κ3

)(m)∣∣ <
1

27
(3/h)m+3. (44)

Differentiating Equations (16) yields

6ψ
(m)

3 = 8
m∑

l=0

(
m

l

)
κ(l)ψ

(m−l)

2 − ψ
(m+2)

1 − 2
m∑

l=0

(
m

l

)(
κ2

)(l)
ψ

(m−l)

1 . (45)

Then, using Equations (35), (41), and (44), and Equation (36) with n = 2, we obtain

∣
∣ψ(m)

3

∣
∣ ≤

m∑

l=0

(
m

l

)(
4

3

∣
∣κ(l)

∣
∣
∣
∣ψ(m−l)

2

∣
∣ + 1

3

∣
∣(κ2

)(l)∣∣
∣
∣ψ(m−l)

1

∣
∣
)

+ 1

6

∣
∣ψ(m+2)

1

∣
∣

<
C

hm+2

[
m∑

l=0

(
m

l

)(
20

3
2m−l + 1

3
2l

)
+ 1

6

]

= C

hm+2

(
7 · 3m + 1

6

)
< C

(
3

h

)m(
5

h

)2

. (46)

Hence, we see that the inequality (36) is valid for n = 3. Now we use the method of math-
ematical induction. Assume that the inequalities (36) are valid for 2 ≤ n ≤ k, where k ≥ 3,
and prove that they are then also valid for n = k + 1. It follows from Equation (17) with
n = k − 1 that

k(k + 1)ψk+1 = k(3k − 2)κψk − ψ ′′
k−1 − (k − 1)(3k − 4)κ2ψk−1

+ κψ ′′
k−2 − κ ′ψ ′

k−2 − (k − 2)2κ3ψk−2. (47)

Differentiating this equation yields

k(k + 1)ψ
(m)

k+1 =
m∑

l=0

(
m

l

)
[
k(3k − 2)κ(l)ψ

(m−l)
k + κ(l)ψ

(m−l+2)

k−2

− (k − 1)(3k − 4)
(
κ2

)(l)
ψ

(m−l)

k−1 − κ(l+1)ψ
(m−l+1)

k−2

− (k − 2)2
(
κ3

)(l)
ψ

(m−l+1)

k−2

] − ψ
(m+2)

k−1 . (48)

It follows from Equations (35), (41), (44), (48), and the assumption that the inequalities (36)
are valid for n ≤ k that

k(k + 1)
∣∣ψ(m)

k+1

∣∣ ≤
m∑

l=0

(
m

l

)[
k(3k − 2)

∣∣κ(l)
∣∣∣∣ψ(m−l)

k

∣∣ + ∣∣κ(l)
∣∣∣∣ψ(m−l+2)

k−2

∣∣

+ (k − 1)(3k − 4)
∣∣(κ2

)(l)∣∣∣∣ψ(m−l)

k−1

∣∣ + ∣∣κ(l+1)
∣∣∣∣ψ(m−l+1)

k−2

∣∣

+ (k − 2)2
∣∣(κ3

)(l)∣∣∣∣ψ(m−l)

k−2

∣∣] + ∣∣ψ(m+2)

k−1

∣∣

<
C

hm+k

m∑

l=0

(
m

l

)[
k(3k − 2)5k−1km−l + (k − 2)25k−3(k − 2)m−l

+ (k − 1)(3k − 4)5k−22l (k − 1)m−l + (k − 2)5k−3(k − 2)m−l

+ (k − 2)25k−33l (k − 2)m−l
] + C(k − 1)m+25k−2h−m−k

= C

hm

(
5

h

)k{
(k + 1)m

[
k(3k − 2)

5
+ (k − 1)(4k − 5)

25
+ 2(k − 2)2

125

]
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+ (k − 1)m

[
(k − 1)2

25
+ (k − 2)2 + k − 2

125

]}

< C

(
k + 1

h

)m(
5

h

)k 97k2 − 96k + 40

125
< k(k + 1)C

(
k + 1

h

)m(
5

h

)k

.

(49)

Hence, we have proved that the inequalities (36) are valid for n ≤ k + 1. In accordance
with the mathematical induction, this means that they are valid for any n. It follows from
the inequality (36) that the series in Equation (14) as well as any series obtained from this
series by term-by-term differentiating m times with respect to s and l times with respect
to u, where m and l are any non-negative integer numbers, are convergent with the radius
of convergence larger than or equal to h/5. Since h is of the order of L, this radius of
convergence is much larger than εL.
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