
This is a repository copy of Transcriptional regulation of SPROUTY 2 by MYB influences 
myeloid cell proliferation and stem cell properties by enhancing responsiveness to IL-3..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/106327/

Version: Accepted Version

Article:

Clarke, M., Volpe, G., Sheriff, L. et al. (6 more authors) (2017) Transcriptional regulation of 
SPROUTY 2 by MYB influences myeloid cell proliferation and stem cell properties by 
enhancing responsiveness to IL-3. Leukemia, 31. pp. 957-966. ISSN 0887-6924 

https://doi.org/10.1038/leu.2016.289

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

 

Transcriptional regulation of SPROUTY 2 by MYB 1 

influences myeloid cell proliferation and stem cell 2 

properties by enhancing responsiveness to IL-3 3 

 4 

Mary Clarke, Giacomo Volpe, Lozan Sheriff, David Walton, Carl Ward, Wenbin Wei, 5 

Stephanie Dumon1, Paloma García1 and Jon Frampton1,2 6 

 7 

Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, 8 

University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 9 

 10 

1 Co-senior authors 11 

2 Corresponding author, Email j.frampton@bham.ac.uk 12 

 13 

Keywords:  MYB / myeloproliferative neoplasm / hematopoietic stem cells / IL-3 signaling 14 

Running title: MYB modulates myeloproliferation through IL-3 signaling 15 

 16 

Word count: 3988 17 

18 



2 

 

ABSTRACT 19 

Myeloproliferative neoplasms (MPN), which overproduce blood cells in the bone marrow, 20 

have recently been linked with a genetically determined decrease in expression of the MYB 21 

transcription factor. Here, we use a mouse MYB knockdown model with an MPN-like 22 

phenotype to show how lower levels of MYB lead to stem cell characteristics in myeloid 23 

progenitors. The altered progenitor properties feature elevated cytokine responsiveness, 24 

especially to IL-3, which results from increased receptor expression and increased MAPK 25 

activity leading to enhanced phosphorylation of a key regulator of protein synthesis, 26 

ribosomal protein S6.  MYB acts on MAPK signaling by directly regulating transcription of the 27 

gene encoding the negative modulator SPRY2.  This mechanistic insight points to pathways 28 

that might be targeted therapeutically in MPN. 29 

30 
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INTRODUCTION 31 

Myeloproliferative neoplasms (MPN) are a heterogeneous group of hematological disorders 32 

characterized by over production of one or more myeloid lineages that can lead to the 33 

evolution of myeloid leukemia. Several genetic lesions have been described that lead to the 34 

evolution of MPN, exemplified by JAK2V617F and mutations in calreticulin (CALR) and the 35 

thrombopoietin receptor, MPL (1-3). Although the JAK2V617F mutation is associated with 36 

more than 95% of polycythemia vera (PV) and 50-60% of essential thrombocythemia (ET) 37 

and primary myelofibrosis (PMF) there are increasing reports of JAK2V617F-negative MPN 38 

and indeed cases of MPN that are negative for mutations in JAK, MPL and CALR. Recently, 39 

a study on MPN patients identified potential mutations that predispose to and drive the 40 

development of MPN (4). One of the polymorphisms identified was rs9376092, which is 41 

found 75 kb telomeric of the gene encoding the oncogenic transcription factor MYB.  42 

Interestingly, this risk allele is associated with reduced MYB RNA expression in both normal 43 

myeloid cells and JAK2V617F mutant BFU-E from ET patients compared to the equivalent wild 44 

type cells. 45 

Studies on mouse models have suggested that decreased activity of MYB can lead to 46 

phenotypes that reflect at least some aspects of MPN (5, 6). We showed that reduced levels 47 

of MYB in mice homozygous for a knockdown allele (MYBKD/KD) result in a MPN-like disorder 48 

resembling human ET, which is underpinned by a KIT+CD11b+Linlow (K11bL) cell that is stem 49 

cell like (5).  50 

In this study we have sought to understand how a lower level of MYB in myeloid progenitors 51 

leads to a gain of stem cell characteristics and the MPN-like phenotype, and thereby shed 52 

light on the observed effect of lower MYB levels on the development of human MPN. We 53 

further characterize MYBKD/KD K11bL cells and show that enhanced IL-3 signaling is a key 54 

consequence of lower MYB activity. The enhanced response to IL-3 is primarily the result of 55 

an increase in MAPK signalling. We demonstrate that these changes arise at least in part 56 
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from reduced activity of the signaling modulator SPROUTY2, the gene expression of which 57 

is directly regulated by MYB. 58 

 59 

MATERIALS AND METHODS 60 

Sources of haematological tissues 61 

Animal experiments were carried out in accordance with UK legislation. Human umbilical 62 

cord blood samples were collected with informed written consent and was approved by the 63 

NRES Committee North West – Haydock.  64 

Flow cytometry and cell sorting 65 

This was performed as previously described (7). All mouse antibodies are listed in 66 

Supplementary Table 1. For human CD34+ cell sorting, we used anti-CD34 PE (BD 67 

Biosciences). 68 

Phospho-flow analysis 69 

K11bL cells were cultured in serum-free medium for 90 min, and then stimulated with 70 

20ng/ml IL-3 for 15 min at 37ºC. Phospho-flow was performed as previously described (8). 71 

Antibodies were PE-conjugated (Cell Signalling Technology). For inhibition experiments, 72 

cells were pre-treated with either 1ȝM Rapamycin or 10ȝM U0126 (Sigma) in serum-free 73 

media at 37°C for 1 hour. 74 

Engraftment potential of stem cells 75 

Cell transplantation experiments were carried as previously described (5) with 10 000 K11bL 76 

(CD45.2/CD45.2) cells injected together with 3x105 reference (CD45.1/CD45.2) bone 77 

marrow cells.  78 

Homing assays  79 

Sorted K11bL cells were labeled with 0.3 mg/ml Xenolight DiR (Caliper Life Sciences) for 30 80 

min at 37°C. Cells were washed and re-suspended in 150µl of PBS, and injected via the tail 81 
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vein into lethally irradiate hosts (B6:SJL). Details of IVIS imaging conditions can be found in 82 

Supplementary Information.  83 

Transfection and cell culture 84 

Human CD34+ were sorted and transfected using the 4D-Nucleofector system (Lonza) with 85 

FAM-labeled siRNAs (Supplementary Table 2). Following transfection, CD34+ cells were 86 

cultured for 24 hours in RPMI supplemented with 10% FBS, 50ng/ml SCF, 10ng/ml IL3 and 87 

20ng/ml IL6. After 24 hours cells were plated in complete methylcellulose (Methocult GF 88 

H84435). Colony morphology and number were assessed between 7-14 days.  89 

Transduction of bone marrow cells 90 

Lentiviruses (Origene) expressing shRNA SPRY2 (TG515588) or Il3ra (TG516353) or 91 

SPRY2 ORF together with GFP, were generated as described (9). Bone marrow or K11bL 92 

cells were cultured in the presence of 3µg/ml Polybrene (Sigma) with lentivirus at an MOI of 93 

10. Cells were cultured for 4 hours, washed and either injected into lethally irradiated mice or 94 

further cultured for 20 hours. Infection efficiency was assessed based on GFP expression.   95 

Gene expression analysis 96 

Affymetrix Mouse Gene 1.0 ST array analysis was performed on K11bL cells. The GEO 97 

accession number for the data deposited is GSE74140. Further detail can be found in 98 

Supplementary Information. Quantitative PCR was performed as previously described (5). 99 

TaqMan PCR primers (Applied Biosystems) and primer sequences are listed in 100 

Supplementary Table 3.   101 

X-ChIP analysis 102 

X-ChIP assays were performed as previously described (10) using antibodies from Santa 103 

Cruz Biotechnology and anti-MYB antibody from Merck Millipore. Primers for detection of 104 

MYB binding to the SPRY2 and DUSP6 genes are listed in Supplementary Table 4. 105 

Statistical analysis 106 
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Significance of data sets was assessed using two-tailed unpaired Student’s t-test with 107 

significance set at p<0.05. 108 

 109 

RESULTS 110 

MYB
KD/KD K11bL cells exhibit myeloid bias and have stem cell characteristics 111 

When K11bL cells, which are more abundant in MYBKD/KD mice compared to MYBWT/WT 112 

controls (Figure 1A), were transplanted into lethally irradiated mice they engrafted 113 

significantly, irrespective of whether they were MYBWT/WT or MYBKD/KD (Supplementary 114 

Figure 1A). However, engrafted MYBKD/KD K11bL cells gave rise predominantly in the 115 

peripheral blood to CD11b+ myelomonocytic cells whereas MYBWT/WT K11bL cells largely 116 

differentiated into B220+ B-lymphoid cells (Figure 1B), and all bone marrow K11bL cells 117 

derived from MYBKD/KD donor cells were positive for CD41 (Supplementary Figure 1B). 118 

Importantly, when bone marrow isolated from the primary recipients was transplanted into 119 

secondary hosts, MYBWT/WT K11bL cells failed to support serial engraftment, whereas 120 

MYBKD/KD cells were able to perpetuate the myeloproliferative phenotype (Supplementary 121 

Figure 1C).  122 

We confirmed the MYBKD/KD lineage bias of K11bL cells by in vitro colony assay. MYBKD/KD 123 

cells predominantly formed CFU-M and CFU-M/Mk colonies, failing to produce colonies of 124 

granulocytic or erythroid morphology, whereas MYBWT/WT K11bL cells were able to undergo 125 

a full program of myeloid differentiation  (Supplementary Figure 1D).  Microarray analysis 126 

of K11bL cells confirmed the shift from a lymphoid to a myeloid bias, Gene Ontogeny (GO) 127 

analysis showing that compared to MYBWT/WT K11bL cells, MYBKD/KD cells exhibit higher 128 

expression of genes associated with myeloid differentiation, and reduced levels of lymphoid-129 

associated genes (Supplementary Table 5). 130 

We sought to identify the differences in surface marker and gene expression that might 131 

explain the stem cell-like transplantation behaviour of MYBKD/KD K11bL cells (Figure 1Ci and 132 
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Supplementary Figure 1E).  MYBKD/KD K11bL cells have higher levels of expression of the 133 

integrins CD51 (ĮV), CD41 (αIIb) and CD61 (β3) and the adhesion molecule CD62 (P-134 

selectin).  Since MYBKD/KD K11bL cells have gained stem cell properties, we analysed the 135 

microarray for expression of homing and bone marrow retention molecules together with flow 136 

cytometric analysis of some of the key proteins.  Analysis of RNA expression data for the 137 

GO group “cell chemotaxis” (GO:0060326) revealed an increase in expression of genes 138 

associated with homing and invasion of extramedullary sites of hematopoiesis (eg Ccr1) and 139 

lower levels of genes regulating bone marrow retention (eg Vcam1) (Supplementary Table 140 

6). Flow cytometric analysis confirmed the reduction of VCAM1 on the surface of MYBKD/KD 141 

K11bL cells (Figure 1Cii and Supplementary Figure 1E). Consistent with their stem cell 142 

characteristics, MYBKD/KD K11bL cells have higher levels of SCA1 and CD34, and exhibit a 143 

small but significantly higher level of the SLAM marker CD150 (p≤0.01) (Figure 1Ciii and 144 

Supplementary Figure 1E). 145 

MYB
KD/KD K11bL cells have an enhanced response to IL-3 146 

Interestingly, analysis of genes in the GO group “cytokine-mediated signaling pathway” 147 

(GO:0019221) revealed that a number of cytokine receptor genes are more highly expressed 148 

in MYBKD/KD K11bL cells compared to the MYBWT/WT equivalent. Amongst these genes we 149 

identified CSF2RB (IL3RBC) as being more highly expressed in MYBKD/KD K11bL cells (2.25-150 

fold p=7x10-5 Supplementary Table 7). This difference, together with that of the other IL-3 151 

receptor component IL3RA, was confirmed by quantitative PCR (Figure 2A). 152 

Correspondingly, immunofluorescence analysis showed that the expression of IL3RA 153 

(CD123) and CSF2RB (CD131) are greater on MYBKD/KD K11bL cells than the MYBWT/WT 154 

equivalents (Supplementary Figure 2A).  155 

It is well documented that malignant cells can exhibit a heightened response to growth 156 

factors, augmenting their proliferation and survival. Our observations on altered IL-3 receptor 157 

expression on MYBKD/KD K11bL cells combined with the fate of the cells following 158 

transplantation led us to ask if altered responses to IL-3 could be dictating stem cell 159 
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characteristics. When we plated cells in semi-solid media containing a range of 160 

concentrations of IL-3, this revealed that MYBKD/KD K11bL cells have a heightened response 161 

to the cytokine as manifested by higher colony numbers. This enhancement was significant 162 

at all concentrations tested down to 0.02ng/ml (p≤0.05) (Figure 2B). Analysis of colony 163 

morphology showed that MYBWT/WT K11bL cells yielded colonies containing granulocytes 164 

(CFU-G), macrophage (CFU-M), and a mix of both of these cell types (CFU-GM). In 165 

contrast, MYBKD/KD cells formed mainly CFU-M, which were highly proliferative and gave rise 166 

to disperse colonies as well as a few colonies containing both macrophages and 167 

megakaryocytes (Figure 2C). 168 

IL-3 signaling is critical for MYB
KD/KD K11bL cell function 169 

To determine how dependent MYBWT/WT and MYBKD/KD K11bL cells are on signaling through 170 

the IL-3 receptor, even in the presence of other growth factors, we used a neutralizing 171 

antibody against the IL-3 receptor subunit IL3RB to inhibit the response to IL-3. We 172 

observed a marked reduction in colony number from 19±1 to 8±0 (p=0.004) for MYBKD/KD 173 

K11bL cells, but saw no effect on MYBWT/WT cells (Figure 3A), suggesting that MYBKD/KD 174 

K11bL cells are critically dependent on signaling through the IL-3 receptor.  175 

Since IL3RB is common to signaling through both the IL-3 and GM-CSF receptors, we 176 

wanted directly to assess the effect of knocking down the other IL-3-specific subunit, IL3RA. 177 

MYBKD/KD K11bL cells were transduced with lentivirus expressing IL3RA shRNA and were 178 

then transplanted into lethally irradiated mice. Co-expression of GFP from the shRNA vector 179 

indicated that we achieved a transduction rate of ~70% (Figure 3Bi). Engraftment was 180 

apparent after one month, however the proportion of donor cells in the peripheral blood was 181 

markedly reduced when IL3RA was knocked down. By 3 months this difference was more 182 

evident (Figure 3Bii). Interestingly, MYBKD/KD donor cells expressing shRNA IL3RA had a 183 

significantly reduced differentiation towards monocytes (Gr1-CD11b+) compared to control 184 

cells (69±3% compared to 57±2%, p≤0.01) and a corresponding increase in differentiation 185 

towards granulocytes (Gr1+CD11b+) (Supplementary Figure 2B). Similar to previous 186 
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observations, the ratio of shRNA control transduced donor MYBKD/KD cells rapidly increased 187 

between 1 and 7 months following transplantation, whereas the cells expressing shRNA 188 

IL3RA were maintained at their low engraftment ratio, indicating a necessity for the 189 

expression of IL3RA for engraftment of MYBKD/KD K11bL cells (Supplementary Figure 2C). 190 

The influence of enhanced IL-3 signaling on engraftment was further examined with respect 191 

to short term migration and homing following transplantation. Following injection of 192 

fluorescently labeled K11bL cells it was evident after one hour that the MYBKD/KD cells have 193 

distinct homing behavior compared to MYBWT/WT K11bL cells, with the predominant signal 194 

emanating from the spleen. Using the IL3RB blocking antibody we then showed that active 195 

signaling through IL3RB is required for the ability of MYBKD/KD K11bL cells to home towards 196 

the spleen as evidenced by a loss of fluorescence signal (9±1 to 0.44±0.2 photon/s p=0.007) 197 

when IL3RB was blocked (Figure 3C and Supplementary Figure 2D ). 198 

Signaling downstream of the IL-3 receptor is enhanced in MYB
KD/KD K11bL cells 199 

We used phospho-flow cytometry to determine if the enhanced response of MYBKD/KD K11bL 200 

cells is reflected in the phosphorylation status of molecules that could influence the 201 

interpretation of IL-3-mediated signaling. The only significant difference in steady-state 202 

phosphorylation was observed in rpS6Ser235/236 and STAT5Tyr694, the former exhibiting a 203 

median fluorescence intensity (MFI) of 18.9±1.1 in MYBWT/WT K11bL cells versus 52.5±2.4 204 

(p=0.003) in MYBKD/KD cells and the latter being 26.4±1.5 in MYBWT/WT compared to 47.9±0.3 205 

(p=0.0026) in MYBKD/KD cells (Supplementary Figure 3A).  206 

In order to assess the effect of IL-3 stimulation on the dynamics of phosphorylation, K11bL 207 

cells were starved of serum prior to stimulation with IL-3 and subsequent analysis 15 min 208 

later.  We observed differences in both the extent of the response and the relative degree of 209 

phosphorylation of rpS6Ser235/236 and rpS6Ser240/244. Hence, stimulation of K11bL cells with IL-3 210 

led to an increase in rpS6Ser235/236 phosphorylation, reflected in a MFI shift of 105±36 to 211 

232±32 (p=0.009) for MYBWT/WT and 91±29 to 480±82 (p=0.0002) for MYBKD/KD (Figure 4Ai 212 

and Supplementary Figure 3B). This also revealed that MYBKD/KD K11bL cells showed a 213 
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significantly greater increase in the proportion of cells phosphorylated at this site and 214 

reached an overall higher level of phosphorylation, the MFI being twice as great as that seen 215 

in MYBWT/WT K11bL cells (p=0.0063; Supplementary Figure 3B). We therefore also 216 

checked for changes in phosphorylation at the rpS6Ser240/244 site. Following IL-3 stimulation, 217 

no significant increase in phosphorylation was seen in MYBWT/WT K11bL cells, whereas 218 

MYBKD/KD K11bL cells demonstrated a small increase, seen as a shift in MFI of 13.3±3 to 219 

22.9±4 (p=0.02) (Figure 4Ai and Supplementary Figure 3C). 220 

Phosphorylation of rpS6Ser235/236 can occur through activation of the PI3k/AKT/mTOR or 221 

RAS/MAPK pathways, whereas only the former leads to the modification of rpS6Ser240/244 222 

(11). We examined the phosphorylation status of AKT (Thr308 and Ser473) and p44/42 223 

MAPK (ERK1/2) to investigate the relative use of the two pathways. At 15 min post IL-3 224 

stimulation we failed to detect any phosphorylation of AKT or p44/42 MAPK (data not 225 

shown). However, reasoning that the response to IL-3 might be very rapid, we also looked at 226 

phosphorylation at 5 min following IL-3 addition. A significant increase in phosphorylation of 227 

AKTThr308 was seen as a shift in MFI from 6.7±1.5 to 13.8±4.5 (p=0.047) (Figure 4Aii and 228 

Supplementary Figure 3D). We also observed an increase in the percentage of cells 229 

positive for p44/42 MAPK phosphorylation from 4±3% to 23±5% (p=0.04) in MYBKD/KD K11bL 230 

cells but not in the MYBWT/WT equivalent (Figure Aii and Supplementary Figure 3E). 231 

To confirm the dependence of rpS6 phosphorylation on the PI3k/AKT/mTOR and 232 

RAS/MAPK pathways and better to define how the specificity and balance of activity differs 233 

in MYBKD/KD K11bL cells compared to MYBWT/WT cells, we performed IL-3 stimulations 234 

following pre-treatment of the K11bL cells with inhibitors of mTOR (Rapamycin) or MEK 235 

(U0126). Treatment of MYBWT/WT cells with Rapamycin but not U0126 resulted in a loss of 236 

phosphorylation of rpS6Ser235/236 from 21.8±3.2% to 12.5±2.7% (p=0.02, Supplementary 237 

Figure 3F). Similar analysis of rpS6 in MYBKD/KD K11bL cells showed that phosphorylation at 238 

Ser235/236 was inhibited by U0126 (45.5±7.1% to 13.7±3.5%; p=9.5x10-05) but not by 239 

Rapamycin, whereas the Ser240/244 site modification was susceptible to inhibition of mTOR 240 
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but not MEK (Figure 4B and Supplementary Figure 3F). This implies that one aspect of 241 

the distinctive cytokine responsiveness seen in MYBKD/KD K11bL cells relates to a shift in the 242 

relative usage of the signaling pathways downstream of the IL-3 receptor. 243 

The baseline phosphorylation of STAT5Tyr694 was lower in MYBKD/KD K11bL cells but upon 244 

stimulation with IL-3 increased to a level similar to that seen in MYBWT/WT cells following their 245 

treatment with cytokine (Figure 4Ci). Consistent with the phosphorylation of STAT5 being 246 

elicited through a JAK protein, we observed no effect on the level of phosphorylation in the 247 

presence of the mTOR or MEK inhibitors (Figure 4Cii). 248 

The expression of signaling-associated genes defines the MYB
KD/KD K11bL phenotype 249 

Based on the phosphorylation results, we further analysed the array data to look at GO 250 

groups associated with signaling. Analysis of deregulated genes involved in intracellular 251 

signal transduction (GO:1902532) (Supplementary Table 8) and in particular proteins 252 

involved in the ERK signalling cascade (GO:0070372) (Supplementary Table 9) highlighted 253 

the altered expression of several genes. In particular, we noted that MYBKD/KD K11bL cells 254 

exhibit lower expression of the genes encoding the inhibitor SPROUTY2 (SPRY2), the dual 255 

specificity phosphatase 6 (DUSP6), and the RAS protein activator (RASA2), and higher 256 

expression of dual specificity phosphatase 3 (DUSP3), and suppressor of cytokine signalling 257 

3 (SOCS3). 258 

In order to confirm which of these differences might reflect direct regulation by MYB we used 259 

our conditional MYB knockout (12). K11bL cells were isolated from control mice 260 

(MYB+/+:Cre) and MYB knockout (MYBF/F:Cre) mice 24 hours after induction of deletion, and 261 

the levels of RNA for MYB and the selected genes were measured by quantitative RT-PCR. 262 

This confirmed that SPRY2 and DUSP6 RNA levels were depleted, whilst the levels of 263 

IL3RA, CSF2RB, CSFR2RB2, CSFR1, SOCS3, DUSP3, MECOM, and CCND1 were higher, 264 

suggesting that the expression of these genes could be directly inhibited by MYB (Figure 265 

5A). 266 
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MYB directly regulates expression of the SPRY2 and DUSP6 genes 267 

We next used X-ChIP to determine if positive regulation of the SPRY2 and DUSP6 genes by 268 

MYB correlates with binding of the protein to gene regulatory regions.  We prepared 269 

chromatin from the murine HSC line HPC-7 (13), and used an antibody against MYB for 270 

immunoprecipitation of SPRY2 and DUSP6 gene fragments corresponding to in vivo binding 271 

sites for the factor. Primers for quantitative PCR were designed around highly conserved 272 

regions that contained potential MYB binding sequences. In this way, we demonstrated MYB 273 

binding to the SPRY2 promoter (-0.55kb from ATG, Figure 5B) and the DUSP6 promoter (-274 

2.7kb from ATG, Figure 5C), whereas there was no significant enrichment of either the 275 

SPRY2 enhancer (-26kb from ATG) or the DUSP6 distal promoter (-2.7kb from ATG) 276 

(Supplementary Figure 4). 277 

Reduced MYB expression in human progenitors mirrors the changes seen in MYB
KD/KD 278 

K11bL cells 279 

To examine if our observations in the mouse system are paralleled in human cells we 280 

transfected CD34+ cord blood cells with MYB siRNA.  This achieved a 50% reduction in 281 

MYB gene expression at 24 hours, and upon plating cells in methylcellulose containing 282 

myeloid growth factors we observed that knockdown of MYB leads to an increase in CFU-M 283 

and CFU-Mk and a reduction in CFU-G, CFU-GEMM and BFU-E, in line with the broad 284 

phenotypic changes seen in MYBKD/KD K11bL cells (Figure 6A). We also showed that the 285 

knockdown of MYB in the human cells led to a significant decrease in the expression of 286 

SPRY2 and increased expression of IL3RA and CSF1R, exactly as we saw in murine 287 

MYBKD/KD K11bL cells, however, unlike in mouse K11bL cells, the expression of DUSP6 was 288 

significantly increased (Figure 6B).  289 

Manipulation of SPRY2 expression in MYB
WT/WT cells partially recapitulates the 290 

MYB
KD/KD stem cell phenotype 291 
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Based on the apparent importance of enhanced IL-3-dependent RAS/MAPK signaling in 292 

MYBKD/KD K11bL cells and the conserved MYB-dependent expression of SPRY2 in both 293 

mouse and human progenitor cells, we reasoned that SPRY2 is pivotal to the way in which 294 

IL-3 can influence stem cell characteristics of myeloid progenitors. In order to assess the 295 

degree to which SPRY2 is responsible for the gain of stem cell function, we transduced 296 

MYBWT/WT K11bL cells with a lentiviral vector expressing shRNA directed against SPRY2 and 297 

assayed their ability to form hematopoietic colonies in vitro. MYBWT/WT K11bL cells 298 

transduced with control virus demonstrated normal colony formation in complete 299 

methylcellulose.  In contrast, MYBWT/WT cells transduced with lentivirus expressing SPRY2 300 

shRNA (which exhibited >95% knockdown - Supplementary Figure 5A) demonstrated 301 

reduced CFU-G colonies and increased CFU-M colonies, similar to the situation seen for 302 

MYBKD/KD K11bL cells (Figure 7A).  Secondary plating of MYBWT/WT K11bL cells experiencing 303 

SPRY2 knockdown resulted in colonies that covered the plate, whereas control cells formed 304 

very small, sparsely distributed colonies (Supplementary Figure 5B). These SPRY2 305 

knockdown MYBWT/WT K11bL secondary colonies showed increased levels of KIT and CD34 306 

compared to the control cells (Supplementary Figure 5C). 307 

Transplantation assays of MYBWT/WT K11bL cells transduced with control or SPRY2 shRNA 308 

revealed a higher donor to reference ratio when levels of SPRY2 were reduced (Figure 7B). 309 

This enhanced engraftment was further amplified by 3 months but the contribution to 310 

peripheral myeloid cells (CD11b+) was not altered (Supplementary Figure 5D). Secondary 311 

transplantation revealed the acquisition of long-term repopulating ability by the SPRY2 312 

knockdown K11bL cells (Supplementary Figure 5E). We then asked if over expression of 313 

SPRY2 in MYBKD/KD K11bL cells could reverse their proliferation and differentiation 314 

characteristics. Colony forming assays of MYBKD/KD K11bL cells transduced with a lentivirus 315 

expressing SPRY2 resulted in a significant reduction in colony number in complete 316 

methylcellulose (Figure 7C). Additionally the SPRY2-overexpressing MYBKD/KD K11bL cells 317 
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gave rise to a lower proportion of megakaryocyte colonies and increased granulocytic 318 

colonies compared to K11bL cells infected with control virus (Figure 7C). 319 

 320 

DISCUSSION 321 

MYB was originally shown to be a critical regulator of hematopoiesis since complete ablation 322 

abolished definitive hematopoiesis (14). The role that MYB plays in adult hematopoiesis has 323 

been studied using mouse models with reduced activity of the protein (5, 6, 12, 15), 324 

revealing a role for MYB in immature proliferating hematopoietic cells.  Here we have sought 325 

to link recent observations on the genetic predisposition to MPN caused by lower levels of 326 

expression of MYB (4) with the phenotype seen in our mouse model for decreased MYB 327 

activity. We show that lower MYB levels in myeloid progenitors results in; (i) altered short-328 

term homing towards the spleen, (ii) differentiation towards myelomonocytic cells, and (iii) a 329 

stem cell phenotype, including self-renewal potential that is not seen in the normal 330 

equivalents and giving a phenotype more similar to those described in some chronic myeloid 331 

leukemia (CML) and acute promyelocytic leukemia (APL) stem cells (16, 17).  332 

Key to the MYBKD/KD phenotype is altered IL-3 signaling, particularly along the RAS/MAPK 333 

pathway. Our results suggest that enhanced IL-3 signaling is responsible for aspects of the 334 

aberrant stem cell phenotype, including homing to the spleen, engraftment potential, and 335 

lineage bias. Such acquired properties likely have relevance to the leukemia stem cell-336 

specific role of IL-3 receptor in acute myeloid leukemia (AML), which has been shown to be 337 

an effective target for an anti-IL3RA (CD123) antibody (18). 338 

We are presently investigating the mechanisms by which increased IL-3-dependent signaling 339 

leads to the MYBKD/KD phenotype. The RAS/MAPK pathway appears to be central and, 340 

although the nature of the critical targets remains unclear, we found evidence for the 341 

activation of ribosomal protein S6, which itself plays an essential role in protein translation of 342 

several pro-survival protein genes such as MYC, BCL-XL, and SURVIVIN, and might 343 
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therefore contribute to the gain of stem cell properties. Interestingly, there are descriptions of 344 

the importance of ERK/MAPK in self-renewal of both embryonic and adult stem cells (19, 345 

20). The RAS/MAPK pathway is frequently activated in hematological malignancy and has 346 

been implicated in the sensitivity and resistance of cells to therapy (21), including in other 347 

MPN models such as the KRAS mutant mouse (22).  348 

We explored the mechanisms by which reduced MYB activity leads to enhanced IL-3 349 

signaling, and found that these involved multiple direct and indirect targets, and including 350 

both positively and negatively regulated genes. Aside from what appears to be coordinated 351 

positive regulation of several cytokine receptor genes, MYB also normally seems to provide 352 

a coordinated controlling influence on RAS/MAPK signaling by promoting the expression of 353 

negative pathway regulators, including SPRY2 and DUSP6.  SPRY2, which prevents the 354 

interaction between RAS and GRB2-SOS (23) following their recruitment by SHC when it 355 

associates with the IL-3 receptor, seems to be relevant in both the mouse and human 356 

systems we examined.  The lower expression of SPRY2 would be expected to release the 357 

inhibition of RAS, leading to an increased sensitivity to IL-3.  Interestingly, knockdown of 358 

SPRY2 in wild type progenitor cells both shifted their phenotype and enhanced engraftment 359 

potential, partially reflecting the overall phenotype of the MYBKD/KD cells.  360 

We postulate a working model for the signaling pathways utilized in K11bL cells in both 361 

MYBWT/WT and MYBKD/KD mice (Figure 8), and clearly our study has opened up a whole new 362 

chapter in the understanding of the pivotal role of MYB in both normal and malignant 363 

hematopoiesis. Although numerous additional mechanisms undoubtedly combine to give rise 364 

to the complete MYBKD/KD MPN-like phenotype, our findings suggest that IL-3-dependent 365 

signaling plays a major role, affecting the regulation of genes responsible for migration, 366 

proliferation, and differentiation. For those hematological disorders where MYB activity is 367 

affected, including MPN, the knowledge that signaling downstream of IL-3 receptor is 368 

affected as a direct result of altered MYB levels could open up the possibility for a more 369 

direct approach to treatment. 370 
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SUPPLEMENTARY METHODS 449 

Bone marrow cell isolation and culture 450 

All mice were maintained on a C57/BL6 background and sacrificed at 4 weeks of age as a 451 

source of bone marrow. Conditional deletion of MYB was induced by intraperitoneal injection 452 

of 250ȝg poly(inosinic-cytidylic) acid (pIpC, Sigma) and 24 hours later were sacrificed for 453 

bone marrow analysis. Peripheral blood was collected from the tail vein into acid citrate 454 

dextrose (ACD) solution. Sorted mouse K11bL cells were plated in complete methylcellulose 455 

medium (Methocult M3434, Stem Cell Technologies) containing TPO (25ng/ml). Methocult 456 

lacking growth factors (M3234) was used to assess the response to specific cytokines.  457 

Homing assays 458 

For live animal imaging, mice were shaved and imaged using an IVIS spectrum under 2.5% 459 

iso-fluorane (Caliper Life Sciences). Mice were imaged ventrally at 1 and 24 hours. Images 460 

were acquired by trans-illumination at 745nm excitation and 800nm emission with exposure 461 

times ranging from 1.4 seconds to 60 seconds, medium binning and f-stop 2. IVIS data was 462 

analysed using Living Image 4.0 software (Caliper Life Sciences). 463 

Gene expression analysis 464 

Scanned images of microarrays were analyzed using the Affymetrix GeneChip Command 465 

Console. Probe level quantile normalization (24) and robust multi-array analysis (25) on the 466 

raw CEL files were performed using Affymetrix Expression Console. Differentially expressed 467 

genes were identified using limma with absolute fold change >1.5 and p<0.01 (26). Gene 468 

ontogeny was analysed using Gene Ontology Enrichment Analysis Software Toolkit 469 

(GOEAST). 470 

  471 
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FIGURE LEGENDS 472 

Figure 1 A) Whole bone marrow cells were gated for expression of KIT and CD11b and then 473 

analysed for expression of lineage markers ****p≤0.0001. B) Primary donor-derived cells in 474 

the peripheral blood analyzed for expression of myeloid, B-cell, and T-cell markers at 3 475 

months post-transplantation. Numbers represent average percentage of total cells. C) 476 

Representative (N=10) flow cytometry profiles of MYBWT/WT (black) and MYBKD/KD (red) 477 

K11bL cells (isotype control - solid grey).  478 

Figure 2 A) Quantitative RT-PCR analysis of RNA expression for the indicated genes in 479 

K11bL cells (N=3). B) 500 sorted K11bL cells from MYBWT/WT and MYBKD/KD mice were 480 

plated in methylcellulose with varying concentrations of IL3. Colony number was scored after 481 

7 days (N=2). C) Colony morphology of K11bL cells plated in M3234 containing 20ng/ml IL-482 

3. Inset: i) Representative images of MYBWT/WT CFU-G (left), CFU-GM (middle), and CFU-M 483 

(right) colonies, and ii) MYBKD/KD CFU-M colonies 484 

Figure 3 A) Sorted K11bL cells were incubated in the presence of 30ȝg/ml of isotype or anti-485 

IL3RB neutralizing antibody prior to plating in complete methylcellulose. Colony number was 486 

assayed after 7 days (**p≤0.01 N=3). B) MYBKD/KD K11bL cells were transduced with 487 

lentivirus carrying shRNA control or shRNA Il3ra before being injected into lethally irradiated 488 

mice: i) Transduced cells remaining in culture were assessed for transduction efficiency by 489 

GFP expression; ii) Peripheral blood from recipient mice was analyzed at 1 and 3 months 490 

post-transplantation to assess engraftment, the gates showing the CD45.2+ donor cells with 491 

the respective average reference:donor ratios. C) Staining with DiR and injection into lethally 492 

irradiated B6:SJL recipient mice. Recipients were imaged by IVIS after 24 hours by trans-493 

illumination. The oval region highlighted indicates the region of the spleen measured. 494 

Images are representative of N=4. 495 

Figure 4. Representative plots depicting phospho-flow analysis of K11bL cells, and the 496 

response to IL-3 stimulation. A) K11bL cells were serum-starved (solid black/red) prior to 497 

stimulation with 20ng/ml IL-3 (dashed black/red) for 15 min and then fixed and permeabilzed 498 
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before staining with antibodies against i) phospho-rpS6Ser235/236 and phosphor-rpS6Ser240/244  499 

(N=9). And ii) phospho-AKTThr308, phospho-AKTSer473 and phospho-p44/42 MAPK following 500 

IL-3 stimulation (N=3). (isotype control – pale grey) B) MYBKD/KD K11bL cells were incubated 501 

with IL-3 in the presence and absence of mTOR inhibitor Rapamycin (1ȝM, red) or the MEK 502 

inhibitor U0126 (10ȝM, blue) (N=3).  C) Staining of K11bL cells for P-Stat5Y694 following i) 503 

serum starvation (solid black/red) and stimulation with Il3 (dashed black/red) and ii) following 504 

stimulation with IL3 in the presence of either Rapamycin (red) or U0126 (blue).  505 

Figure 5 A) K11bL cells from MYB++:Cre and MYBFF:Cre bone marrow were sorted 24 hours 506 

following intraperitoneal injection of pIpC to induce Myb gene deletion. Expression of the 507 

indicated signaling-associated genes was analyzed by quantitative RT-PCR and normalized 508 

against β2M. Error bars represent SEM (N=3).  B) Alignment of mammalian sequences for 509 

the SPRY2 gene, showing the gene exonic structures, the presence of CpG islands, the 510 

overall degree of sequence conservation, and the detail of the sequence conservation 511 

around potential MYB binding sites (red box) that were spanned by the Q-PCR primers. The 512 

histogram shows the results of quantitative PCR performed on HPC7 ChIP samples pulled 513 

down by MYB antibody and analysed for enrichment of binding on sequences for SPRY2. 514 

The histogram illustrates the relative enrichment as determined by Q-PCR (N=3, 515 

***p≤0.001). C) A similar analysis to that described in (B) for the DUSP6 gene. 516 

Figure 6 A) Human CD34+ cells were isolated from human umbilical cord blood by FACS 517 

and transfected with either siRNA control or siRNA MYB and after 24 hours FAM+ cells were 518 

plated in complete methylcellulose and assayed for their ability to undergo full myeloid 519 

differentiation after 10 days in culture. B) Cells were also collected at 24 hours for the 520 

preparation and analysis of RNA expression. The histograms illustrate quantitative RT-PCR 521 

measurements of RNA expression for the MYB, SPRY2, DUSP3, DUSP6, IL3RA and 522 

CSF1R genes ** p≤0.001,**** p≤0.0001.  523 

Figure 7 A) MYBWT/WT K11bL cells were transduced with shRNA SPRY2 and a 524 

corresponding shRNA control and 24 hours later were sorted on the basis of GFP 525 
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expression and plated in complete methylcellulose. After 7 days in culture colonies were 526 

counted and their size scored GM: granulocyte / macrophage, G: Granulocyte, M: 527 

Macrophage, Mixed: containing all types. (N=3). B) MYBWT/WT K11bL cells were transduced 528 

with shRNA SPRY2 and transplanted into lethally irradiated recipients. Peripheral blood was 529 

sampled monthly and the ratio of test donor to reference cells was determined. C) 530 

Overexpression of SPRY2 in MYBKD/KD K11bL cells followed by plating in complete 531 

methylcellulose (*p≤0.05) showing both colony number and myeloid differentiation potential 532 

in control and SPRY2 over expressing MYBKD/KD K11bL cells.  533 

Figure 8 Working model of pathway utilization in MYB
WT/WT and MYB

KD/KD K11bL cells. 534 

Schematic representation of IL-3 receptor signaling in K11bL cells, illustrating the differences 535 

in rpS6 phosphorylation observed in MYBWT/WT versus MYBKD/KD cells and how this appears 536 

to relate to changes in the signaling pathways utilized and the MYB-regulated signaling 537 

modulator SPRY2. The thickness of the arrows and the representation of the rpS6 538 

phosphorylation sites gives a relative indication of the extent of pathway involvement and 539 

how this differs between the MYBWT/WT and MYBKD/KD cells. 540 
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