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1 Introduction

While a full theory of quantum gravity is still elusive, and general relativity is non-

renormalisable as a quantum field theory, certain quantum gravitational predictions can

nevertheless be made. Namely, quantising metric fluctuations around a fixed classical

background and treating the resulting theory as an effective field theory, one obtains un-

ambiguous predictions whenever the relevant scales of the problem are sufficiently far sep-

arated from the fundamental scale where the effective theory breaks down [1, 2]. Effective

field theories have in fact a long history, starting from the Euler-Heisenberg effective La-

grangian for quantum electrodynamics [3, 4], but their predictive value even in those cases

where the underlying fundamental theory is unknown wasn’t properly appreciated until

the works of Weinberg [5, 6]. One especially important effect predicted by effective field

theories of gravity are quantum corrections to the Newtonian potential, which have been
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studied by many authors [1, 7–25]. The usual way of calculating these corrections is to

compute the scattering amplitude for two particles, including loop corrections, and then

construct a potential which would produce the same scattering amplitude, i.e., solving

the inverse scattering problem. Since scattering amplitudes in flat space are gauge- and

reparametrisation-invariant [26, 27], the resulting potential is as well. At one-loop order

and to first order in the mass M of the particle, it reads

V (r) = −GNM

r

[

1 +

(

41

10π
+

[1 + 5
4(1 − 6ξ)2]N0 + 6N1/2 + 12N1

45π

)

~GN

r2

]

, (1.1)

where GN is the Newton constant, the first correction stems from gravitons, Ns is the

number of massless spin-s fields running in the loop and ξ determines the non-minimal

coupling of the scalar fields to curvature (with conformal coupling being ξ = 1/6).

While the inverse scattering technique is well tested and can be easily generalised to

higher orders and to the scattering of particles with spin [28], the calculation is usually very

tedious — even though modern methods for the computation of scattering amplitudes, such

as unitarity or the spinor helicity formalism (see, e.g., [29–31]), simplify it, in some cases

dramatically. However, there is no obvious generalisation of the inverse scattering technique

to curved spaces, where a scattering matrix does not exist in general or, due to horizons,

cannot be observed by any single observer [32, 33]. Fortunately, one can calculate quantum

corrections to the Newtonian potential using the same method which is used for the classical

calculation and with the same ease, namely by solving the gravitational field equations for a

point source [9, 16, 17, 23]. These equations naturally cannot come from the classical action,

but have to be determined from an effective action which takes into account the vacuum po-

larisation due to quantum matter. There are various techniques to calculate the effective ac-

tion, and we will review a particular suitable variant in the next section. Moreover, this ap-

proach can also deal with time-dependent sources and backgrounds and provide results for

the whole dynamical evolution, while the inverse scattering technique by its very construc-

tion is restricted to asymptotic scattering problems. Especially noteworthy in this respect

are results for quantum corrections during the inflationary period of the early universe,

which are potentially much larger than in flat space due to contributions which grow loga-

rithmically with either time or distance [34–36]. Let us finally note that in all cases where

the calculation has been done using both methods, they agree completely on the result.

In this article, we take up the question of calculating the quantum corrections to the

gravitational potentials of a spinning particle. Using a suitable 3+1-decomposition, one

sees that in linearised gravity there are actually four different gauge-invariant potentials

(two scalars which one may take to be the flat-space limit of the Bardeen potentials [37],

one transverse vector and a transverse traceless tensor), of which only one scalar potential

reduces to the Newtonian potential in the Newtonian limit. For a non-spinning particle,

only the scalar potentials are sourced, but even then the quantum corrections are different

for both potentials [9, 16, 17, 23–25, 36]. While the numerical values of the corrections

are practically insignificant, and the Newtonian potential is sufficient to give the correct

scattering amplitude, one can in principle construct experiments which are sensitive to

the other potentials as well, and which then give a different result from the one obtained
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by taking only the Newtonian potential into consideration. For spinning particles, also

the vector potential (or gravitomagnetic potential) is sourced, which is responsable, e.g.,

for the Lense-Thirring effect [38–41]. For particles with quadrupole or higher moments,

one expects that also the tensor potential is sourced, but we do not consider those in

the present work. We stress that the calculation presented here is different from one the

undertaken in ref. [28]: there, the scattering amplitude for two quantum fields of various

spins was obtained, while here we study corrections to the potential of a single classic

(Lewis-Papapetrou) spinning particle, with arbitrary spin. To connect to the work in

ref. [28], one would have to solve the equations of motion for the second (test) particle in

the perturbed geometry, which for spinless particles is geodesic motion and for spinning

particles has additional spin-spin interactions (see, e.g., ref. [42]).

The rest of the article is structured as follows: in section 2 we present the calculation

of the effective action (including renormalisation) and the corrections to the Newtonian

potentials for general matter fields, parametrising the resulting effective action by two

non-local kernels. These two kernels, which couple to the linearised Weyl tensor and

Ricci scalar, respectively, are then calculated for free massive and massless spin-1 gauge

fields, spin-1/2 Dirac fermions and spin-0 scalars in section 3. For the scalar fields we also

include a general coupling to curvature. The results for the quantum-corrected gravitational

potentials are then presented in section 4, including asymptotic expansions and numerical

results (for massive fields). We discuss possible implications and directions for future work

in section 5, and delegate some technical derivations to the appendices.

2 The calculation

2.1 Effective action

The quantum corrections to the gravitational potentials are obtained by solving the field

equations coming from an effective action which includes the vacuum polarisation due

to quantum matter. This action is the standard one-particle-irreducible effective action

obtained by a Legendre transformation. Since we will only consider the vacuum polarisation

from matter fields and not gravitons, it is sufficient to expand the gravitational action to

second order in perturbations.1 As is well known (or can be easily checked), in this case,

and for free (quadratic) theories in general, the effective action is obtained from the classical

one by just integrating out the matter fields. Thus, we have

exp (iSeff[h]) ≡
∫

exp (iS[h, φ])Dφ , (2.1)

where h denotes the linearised metric perturbation and φ a general matter field. As usual,

the functional integral over the matter fields needs to be regularised, and the proper coun-

terterms included in the total action S such as to make Seff finite, and the field equations

are obtained by varying Seff with respect to the metric perturbation hµν . However, the

1This can be formalised in a large-N expansion, considering N matter fields coupled to gravity and

rescaling the Newton constant [43, 44].
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resulting equations are neither real nor causal, since the path integral in equation (2.1) cal-

culates in-out matrix elements instead of true expectation values. The solution is to use the

Schwinger-Keldysh or in-in formalism [45–48], where one duplicates the set of fields, adding

to each usual “+” field a “−” partner. For the “−” fields, time integration is reversed in

the action, and equality of both “+” and “−” fields is enforced at some final time T which

must be larger than any of the times appearing in correlation functions. One can thus view

the time integration as running from the initial time, usually taken to be past infinity, to T

and back, such that this formalism is also called closed-time-path (CTP) formalism. The

“+” and “−” labels then just serve to distinguish between the forward and backward part

of the contour, and the corresponding path integral calculates P- or path-ordered correla-

tion functions which are the usual time-ordered ones if all fields are “+”, anti-time-ordered

if all fields are “−”, and always orders “−” fields in front of “+” fields. Thus, in particular,

G−+(x, x′) ≡ −i 〈0| Pφ−(x)φ+(x′) |0〉 = −i 〈0|φ(x)φ(x′) |0〉 (2.2)

is the usual (positive frequency) Wightman function, while

G++(x, x′) ≡ −i 〈0| Pφ+(x)φ+(x′) |0〉 = −i 〈0| T φ(x)φ(x′) |0〉 (2.3)

is the Feynman propagator (at tree level). The in-in effective action calculated in this

formalism then depends on both “+” and “−” metric perturbations and reads

exp
(

iSeff[h±]
)

≡
∫

exp
(

iS[h+, φ+] − iS[h−, φ−]
)

Dφ± , (2.4)

where we took the reversal of time integration for the “−” fields into account by taking

the usual action for them with a relative minus sign. The corresponding effective field

equations are given by taking a variational derivative with respect to the “+” fields and

setting h+ = h− = h afterwards. As we will see (and can be proven in general [48]), this

gives real and causal evolution equations for the metric perturbation h, even though in

general they are nonlocal.

Using dimensional regularisation and thus working in n dimensions, we take the action

to be the sum of gravitational action, matter action, counterterms and point particle action,

S[h, φ] = SG[h] + SM[h, φ] + SCT[h] + SPP[h] , (2.5)

where the gravitational action SG[h] is the expansion to second order in metric perturba-

tions off flat space hµν ≡ gµν − ηµν of the Einstein-Hilbert action

SG =
1

κ2

∫

R
√−g dnx (2.6)

with κ2 = 16πGN with the Newton constant GN. We parametrise the matter action

SM[h, φ] as

SM[h, φ] = SM[φ] +
1

2

∫

hµνT
µν [φ] dnx+

∫∫

hµν(x)hρσ(y)Uµνρσ[φ](x, y) dnx dny , (2.7)
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where SM[φ] is the matter action evaluated in the Minkowski background (which does only

contribute an overall unimportant phase factor), Tµν [φ] is the usual stress tensor, and

Uµνρσ[φ] is the second variational derivative of the matter action which will (for a local

matter action) be proportional to δn(x− y) and its derivatives. The counterterms SCT[h]

are needed to renormalise the effective action, and are given by the expansion to second

order in metric perturbations of

SCT=δ
Λ

κ2

∫ √−g dnx+ δ
1

κ2

∫

R
√−g dnx+ δα

∫

CµνρσCµνρσ
√−g dnx+ δβ

∫

R2√−g dnx ,

(2.8)

where

Cµνρσ ≡ Rµνρσ − 2

n− 2
Rµ[ρgσ]ν +

2

n− 2
Rν[ρgσ]µ +

2

(n− 1)(n− 2)
Rgµ[ρgσ]ν (2.9)

is the n-dimensional Weyl tensor. Note that because of the Gauß-Bonnet identity in four

dimensions, which in (perturbed) flat space reads

∫

(

RµνρσRµνρσ − 4RµνRµν +R2
)√−g dnx = 0 , (2.10)

we only need two terms quadratic in the curvature, which for convenience we have taken

to be the square of the Weyl tensor and the Ricci scalar. Finally, the point particle action

is given by

SPP[h] =
1

2

∫

hµνT
µν
PP dnx , (2.11)

where Tµν
PP is the point-particle stress tensor whose detailed form we give later. Since we

only want to calculate the corrections to the gravitational potentials of the particle, we

neglect the backreaction of the particle to the perturbed geometry. Since the backreaction

is a higher-order correction, it is sufficient to take the particle action to first order in the

perturbation as we have done.

Inserting the action into the definition of the in-in effective action (2.4) and expanding

the exponentials up to quadratic order in the metric perturbation hµν , we obtain (up to

terms which we may ignore since they are independent of hµν)

Seff[h
±]= SG[h

+]− SG[h
−] + SCT[h

+]− SCT[h
−] + SPP[h

+]− SPP[h
−]

+
1

2

∫

h
+
µν

〈

T
µν [φ+]

〉

φ
dn

x+

∫∫

h
+
µν(x)h

+
ρσ(y)

〈

U
µνρσ[φ+](x, y)

〉

φ
dn

x dn
y

−
1

2

∫

h
−

µν

〈

T
µν [φ−]

〉

φ
dn

x−

∫∫

h
−

µν(x)h
−

ρσ(y)
〈

U
µνρσ[φ−](x, y)

〉

φ
dn

x dn
y (2.12)

+
i

8

∫∫

h
+
µν(x)h

+
ρσ(y)

[

〈

T
µν [φ+](x)T ρσ[φ+](y)

〉

φ
−
〈

T
µν [φ+](x)

〉

φ

〈

T
ρσ[φ+](y)

〉

φ

]

dn
x dn

y

+
i

8

∫∫

h
−

µν(x)h
−

ρσ(y)
[

〈

T
µν [φ−](x)T ρσ[φ−](y)

〉

φ
−
〈

T
µν [φ−](x)

〉

φ

〈

T
ρσ[φ−](y)

〉

φ

]

dn
x dn

y

−
i

8

∫∫

h
+
µν(x)h

−

ρσ(y)
[

〈

T
µν [φ+](x)T ρσ[φ−](y)

〉

φ
−
〈

T
µν [φ+](x)

〉

φ

〈

T
ρσ[φ−](y)

〉

φ

]

dn
x dn

y

−
i

8

∫∫

h
−

µν(x)h
+
ρσ(y)

[

〈

T
µν [φ−](x)T ρσ[φ+](y)

〉

φ
−
〈

T
µν [φ−](x)

〉

φ

〈

T
ρσ[φ+](y)

〉

φ

]

dn
x dn

y ,

– 5 –
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where we defined

〈A[φ]〉φ ≡
∫

exp (iSM[φ+] − iSM[φ−])A[φ]Dφ±
∫

exp (iSM[φ+] − iSM[φ−])Dφ± . (2.13)

The divergences that are obtained when taking the expectation values 〈·〉φ must now be

absorbed in the counterterms contained in SCT[h±]. For this, two points are crucial: first,

since the counterterm action only gives “++” and “−−” contributions, that the “+−” and

“−+” terms in the last two lines are not divergent; and second, that the given counterterms

suffice to cancel all divergences, i.e., that the effective theory is renormalisable at this order.

The first point is guaranteed by the in-in formalism, essentially because the mixed expec-

tation values involve the Wightman function (2.2) which is not divergent at coincidence, as

we will see later on in concrete examples. The second point can be shown nicely using the

background field formalism [49–52]: the basic argument is that, since the gauge invariance

of the metric perturbations (following from diffeomorphism invariance of the full theory) is

unbroken at the quantum level, the counterterms in any regularisation which respects the

gauge symmetry, such as dimensional regularisation, must be invariant as well, i.e., scalars

constructed out of curvature tensors. Power counting then determines which of those may

appear at any given loop order, and at one loop the counterterms shown here are sufficient.

What these arguments do not cover are possible finite terms which remain after sub-

tracting the divergences from the expectation values 〈·〉φ. For a general quantum state,

these terms must be taken into account, but for the Minkowski vacuum, some of them

can be absorbed in the counterterms as well. This fact is non-trivial, but follows from the

maximal symmetry of the vacuum state, which leads, e.g., to

〈Tµν [φ]〉φ = cηµν (2.14)

with a constant c which contains both infinite and finite parts. Thus, if the infinite parts

can be absorbed into a counterterms, the finite parts can as well (which in this case is a

renormalisation of the cosmological constant δΛ/κ2), and similarly for 〈Uµνρσ[φ]〉φ, which

we recall gives rise to a local counterterm since it is proportional to δn(x − y) and its

derivatives. In fact, in order to have a renormalised expansion around flat space we must

set the renormalised cosmological constant Λ = 0, which means that it is necessary to

absorb all of the finite part in the counterterm δΛ/κ2 as well. Similarly, in order that

GN (or alternatively κ2 = 16πGN) corresponds to the renormalised, measured Newton

constant, we have to absorb all finite parts in the counterterm δκ−2, such that the coefficient

proportional to R in the effective action (2.12) is exactly 1/κ2. In the following, we thus

take the quantum state for the matter fields to be the Minkowski vacuum and absorb also

the finite parts in the counterterms.

Of course, while the local divergences appearing in the “++” and “−−” stress tensor

two-point functions are canceled by the counterterms proportional to δα and δβ (2.8), the

non-local contributions from these two-point functions (as well as the “−+” and “+−”

ones) cannot be absorbed, and it is those which give rise to the (in principle) observable

corrections to the gravitational potentials. Since the stress tensor is conserved even in the

– 6 –
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regularised theory (when using dimensional regularisation),

∂µT
µν = 0 , (2.15)

and since the Minkowski vacuum is Lorentz invariant, we can write its (regularised) two-

point function in the form

〈Tµν [φ](x)T ρσ[φ](y)〉φ−〈Tµν [φ](x)〉φ 〈T ρσ[φ](y)〉φ = SµνSρσf1(x−y)+2Sµ(ρSσ)νf2(x−y)

(2.16)

with two scalar functions fi and the differential operators

Sµν ≡ ∂µ∂ν − ηµν∂
2 , (2.17)

which are identically transverse. Note that since we are calculating the connected two-

point functions, the result is independent of the known ambiguities in the definition of Tµν

which are given by Tµν → Tµν + tµν✶ with a local tensor tµν constructed out of curvature

tensors (see [53] for a modern proof). Since this ambiguity is proportional to the unit

operator ✶, it drops out of the connected two-point function, and for the same reason the

trace anomaly has no influence on the result.

Using the expansions from appendix A and integrating by parts, it follows that
∫∫

hµν(x)hρσ(y)SµνSρσf(x− y) dnx dny =

∫∫

R(x)R(y)f(x− y) dnx dny , (2.18a)
∫∫

hµν(x)hρσ(y)Sµ(ρSσ)νf(x− y) dnx dny =

∫∫

Rµνρσ(x)Rµνρσ(y)f(x− y) dnx dny , (2.18b)

for an arbitrary function f(x−y), where the right-hand sides must be understood to second

order in the metric perturbation. Furthermore, also the Gauß-Bonnet identity in flat space

has — to second order in the metric perturbation — a non-local counterpart
∫∫

(Rµνρσ(x)Rµνρσ(y) − 4Rµν(x)Rµν(y) +R(x)R(y)) f(x− y) dnx dny = 0 , (2.19)

and we obtain from the definition of the Weyl tensor (2.9) that
∫∫

Cµνρσ(x)Cµνρσ(y)f(x− y) dnx dny

=

∫∫
(

Rµνρσ(x)Rµνρσ(y)− 4

n−2
Rµν(x)Rµν(y)+

2

(n−1)(n−2)
R(x)R(y)

)

f(x−y) dnx dny .

(2.20)

Taking everything together, it follows that

i

8

∫∫

hµν(x)hρσ(y)
[

〈Tµν [φ](x)T ρσ[φ](y)〉φ − 〈Tµν [φ](x)〉φ 〈T ρσ[φ](y)〉φ
]

dnx dny

=

∫∫

Cµνρσ(x)Cµνρσ(y)Kbare
C2 (x− y) dnx dny+

∫∫

R(x)R(y)Kbare
R2 (x− y) dnx dny

(2.21)

with the two bare, unrenormalised kernels

Kbare
C2 (x) =

i(n− 2)

4(n− 3)
f2(x) , (2.22a)

Kbare
R2 (x) =

i

8
f1(x) +

i

4(n− 1)
f2(x) . (2.22b)

– 7 –
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These two kernels are nothing else but the spin-2 and spin-0 parts of the graviton self-energy,

which for free fields was calculated long ago in the time-ordered (the “++”) case [10, 11, 54]

(see also [55] for a scalar field with general mass and curvature coupling). These works

were done in momentum space, where the extraction of the differential operators (2.16) just

corresponds to a reordering of the pµ, and the spin-2 and spin-0 parts are the coefficients

of the two tensor structures one can form out of the pµ and the flat metric ηµν which are

transverse and have the correct symmetries. However, for our purposes it is vastly more

useful to have the kernels in position space, and since we need in addition the “+−” and

“−+” cases, we will thus rederive them for fields of different spins in the next section.

The divergent parts of the bare kernels Kbare
C2 and Kbare

R2 can now be absorbed by the

counterterms proportional to δα and δβ (2.8) for the “++” and “−−” kernels, obtaining

renormalised kernels K++
C2/R2 and K−−

C2/R2 , while the “−+” and “+−” kernels are already

finite. We can thus take the unregularised limit n→ 4, and the full renormalised effective

action then reads

Sren
eff [h±]=

1

κ2

∫

R+
√

−g+ d4x− 1

κ2

∫

R−
√

−g− d4x+
1

2

∫

h+µνT
µν
PP d4x− 1

2

∫

h−µνT
µν
PP d4x

+

∫∫

C+µνρσ(x)C+
µνρσ(y)

[

K++
C2 (x− y) + αδ4(x− y)

]

d4x d4y

−
∫∫

C−µνρσ(x)C+
µνρσ(y)K−+

C2 (x− y) d4x d4y

−
∫∫

C+µνρσ(x)C−

µνρσ(y)K+−

C2 (x− y) d4x d4y

+

∫∫

C−µνρσ(x)C−

µνρσ(y)
[

K−−

C2 (x− y) − αδ4(x− y)
]

d4x d4y

+

∫∫

R+(x)R+(y)
[

K++
R2 (x− y) + βδ4(x− y)

]

d4x d4y

−
∫∫

R−(x)R+(y)K−+
R2 (x− y) d4x d4y

−
∫∫

R+(x)R−(y)K+−

R2 (x− y) d4x d4y

+

∫∫

R−(x)R−(y)
[

K−−

R2 (x− y) − βδ4(x− y)
]

d4x d4y ,

(2.23)

understood to second order in the perturbation hµν .

2.2 Effective field equations

The effective field equations are now obtained by taking a variational derivative of the

renormalised effective action (2.23) with respect to h+µν and setting h+µν = h−µν = hµν
afterwards. Using the expansions from appendix A, we obtain

Eµν = 0 , (2.24)
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where

Eµν ≡ Rµν − 1

2
Rgµν − κ2

2
Tµν
PP − κ2

∫

R(y)
(

∇µ∇ν − gµν∇2
)

×
[

K++
R2 (x−y)+K++

R2 (y−x)−K−+
R2 (y−x)−K+−

R2 (x−y)+2βδ4(x−y)
]

d4y

+ 2κ2
∫

Cµρνσ(y)∇ρ∇σ

×
[

K++
C2 (x−y)+K++

C2 (y−x)−K−+
C2 (y−x)−K+−

C2 (x−y)+2αδ4(x−y)
]

d4y ,

(2.25)

understood to first order in the perturbation hµν . As explained before, since we neglect the

backreaction of the particle on the perturbed geometry it is sufficient to expand the point

particle action to first order in hµν , such that Tµν
PP is to be evaluated on the background.

While in Fourier space the different kernels have a vastly different form, in position

space they are very similar [56, 57]. In general, they are distributions, singular at the

origin x = y, and — for the Minkowski vacuum state that we are considering — Lorentz-

invariant. For a suitable choice of renormalisation conditions (i.e., of the finite parts of the

counterterms δα and δβ), they are then the same functions of the invariant distance (x−y)2,

but with a different prescription on how to make the resulting distribution well defined:

KAB
C2/R2(x− y) = KC2/R2

[

(x− y)2AB

]

, A,B = ± . (2.26)

The different prescriptions are the limits as ǫ → 0, understood in the distributional sense

(i.e., after integrating with a smooth test function), of

(x− y)2++ ≡ (x− y)2 −
(∣

∣x0 − y0
∣

∣− iǫ
)2
, (2.27a)

(x− y)2−+ ≡ (x− y)2 −
(

x0 − y0 − iǫ
)2
, (2.27b)

(x− y)2+− ≡ (x− y)2 −
(

x0 − y0 + iǫ
)2
, (2.27c)

(x− y)2−− ≡ (x− y)2 −
(
∣

∣x0 − y0
∣

∣+ iǫ
)2
. (2.27d)

Especially, we see that

K++
C2/R2(y − x) = K++

C2/R2(x− y) (2.28)

and

K−+
C2/R2(y − x) = K+−

C2/R2(x− y) , (2.29)

which can be used to simplify the effective field equations.

Expanding then the effective field equations (2.25) to first order in the perturbation

hµν and integrating by parts, using that the kernels only depend on the difference x − y,

we obtain finally

Eµν = −∂ρ∂(µhν)ρ +
1

2
∂2hµν +

1

2
∂µ∂νh+

1

2
ηµνSρσhρσ +

κ2

2
Tµν
PP

+ κ2
∫

LC2(x− y)

(

Sµ(ρSσ)ν − 1

3
SµνSρσ

)

hρσ(y) d4y

+ 2κ2
∫

LR2(x− y)SµνSρσhρσ(y) d4y ,

(2.30)
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where the operators Sµν are defined by equation (2.17) and we set

LC2(x− y) ≡ K++
C2 (x− y) −K+−

C2 (x− y) + αδ4(x− y) , (2.31a)

LR2(x− y) ≡ K++
R2 (x− y) −K+−

R2 (x− y) + βδ4(x− y) . (2.31b)

It is well known that linearised gravity is invariant under the gauge symmetry

hµν → hµν + 2∂(µξν) (2.32)

for any vector ξµ, and one easily checks that the effective field equations (2.30) are invariant

under this symmetry. To simplify the equations further, we single out the time direction

and perform a decomposition of hµν into irreducible components under spatial rotations

and translations. This decomposition takes the form [58–60]

hµν = hinvµν + LXηµν = hinvµν + 2∂(µXν) , (2.33)

where the gauge-invariant part

hinvµν ≡ 2δ0µδ
0
νΦA + 2

(

ηµν + δ0µδ
0
ν

)

ΦH + 2δ0(µVν) + hTT
µν (2.34)

does not change under infinitesimal coordinate transformations, while the change of Xµ

under the gauge transformation (2.32) is given by the simple one

Xµ → Xµ + ξµ . (2.35)

The two scalars ΦA and ΦH are the flat-space analogues of the Bardeen potentials [37],

while Vµ is a spatial transverse vector (i.e., V0 = ∂µVµ = 0) and hTT
µν a symmetric, spatial

transverse and traceless tensor (i.e., hTT
0ν = ∂µhTT

µν = 0 = ηµνhTT
µν ). These four are the

gauge-invariant gravitational potentials that we are interested in.

We now insert the above decompositions (2.33) and (2.34) into the effective field equa-

tions (2.30). There are four spatial-scalar equations, obtained from E00, ∂iE
0i, δijE

ij and

∂i∂jE
ij ; two spatial-vector equations, obtained from E0i and ∂iE

ij after subtracting the

pure-divergence part; and one spatial-tensor equation, obtained from Eij after subtracting

divergence and trace parts. To properly subtract those parts, one needs to use that the

point particle stress tensor is conserved, which translates to

∂iT
0i = −T 00′ , ∂iT

ij = −T 0j′ , (2.36)

where a prime denotes a time derivative, and one needs to assume that the Laplacian has

a unique inverse, e.g., with vanishing boundary conditions at spatial infinity. This will

be the case for the point particle, and taking suitable linear combinations of the resulting
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equations we obtain

△ΦA = −κ
2

4
T (S) +

2

3
κ2
(

△− 3∂2
)

∫

LC2(x− y)△ (ΦA + ΦH) (y) d4y

+ 2κ2△
∫

LR2(x− y)
(

△ΦA − 2△ΦH + 3Φ′′
H

)

(y) d4y ,

(2.37a)

△ΦH = −κ
2

4
T 00
PP − 2

3
κ2△

∫

LC2(x− y) (△ΦA + △ΦH) (y) d4y

− 2κ2△
∫

LR2(x− y)
(

△ΦA − 2△ΦH + 3Φ′′
H

)

(y) d4y ,

(2.37b)

△Vi = −κ2T (V)
i − 2κ2∂2

∫

LC2(x− y)△Vi(y) d4y , (2.37c)

∂2hTT
ij = −κ2T (TT)

ij − 2κ2∂2
∫

LC2(x− y)∂2hTT
ij (y) d4y , (2.37d)

where we defined

T ≡ δijT
ij
PP − T 00

PP , (2.38a)

T (S) ≡ T 00
PP + δijT

ij
PP + 3

∂k

△ T 0k′
PP , (2.38b)

T
(V)
i ≡ −

(

δij −
∂i∂j
△

)

T 0j
PP , (2.38c)

T
(TT)
ij ≡

(

δikδjl−
1

2
δijδkl+

1

2

∂i∂j
△ δkl

)

T kl
PP+

(

2
∂(iδj)k

△ − 1

2
δij
∂k
△− 1

2

∂i∂j∂k
△2

)

T 0k′
PP . (2.38d)

Of the four spatial-scalar equations, only two are independent, while the other ones can

be obtained from the ones shown by taking time-derivatives. Similarly, only one of the

two spatial-vector equations is independent, and shown above. Note that these effective

field equations are coupled integro-differential equations, and that they are real and causal

due to the support properties of the integrand. We have to distinguish three cases: a) y

is in the forward lightcone of x, b) y and x and spacelike separated, and c) y is in the

backward lightcone of y. In case a), we have y0 > x0 and therefore (x− y)2++ = (x− y)2−
(

−x0 + y0 − iǫ
)2

= (x − y)2+− [see equation (2.27)], while in case b) we can perform the

limit ǫ → 0 straightforwardly since (x− y)2 >
(

x0 − y0
)2

for spacelike separations, and

then also (x−y)2++ = (x−y)2+−. In both cases, we thus see that LC2/R2(x−y) = 0. In case

c), we have y0 < x0, which leads to (x−y)2++ =
[

(x− y)2+−

]∗
, and thus LC2/R2(x−y) does

not vanish, but since the kernels KC2/R2 have an explicit factor of i (2.22) the difference

appearing in the kernels LC2/R2(x − y) is real. It is thus explicitly seen how the in-in

formalism guarantees real and causal field equations [48].

We can now distinguish two contributions to the gravitational potentials: the first one

is entirely classical and is obtained from the full equations (2.37) taking only the classical

stress tensor of the point particle into account, while the second one represents the quantum

corrections in which we are interested. As can be seen from the explicit form of the effective

field equations (2.37), this second contribution is suppressed by an explicit factor of κ2,

and we thus decompose

ΦA = Φcl
A + κ2Φqu

A , (2.39)
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and analogously for the other gravitational potentials. For the classical contribution, we

therefore obtain the equations

△Φcl
A = −κ

2

4
T (S) , (2.40a)

△Φcl
H = −κ

2

4
T 00
PP , (2.40b)

△V cl
i = −κ2T (V)

i , (2.40c)

∂2hTT,cl
ij = −κ2T (TT)

ij , (2.40d)

which can be solved once the point-particle stress tensor has been specified, which we will

do in subsection 2.3. It can also be nicely seen that the spatial-scalar and spatial-vector

equations are constraint equations, such that the two scalars and the vector are fully

determined once the stress tensor has been given, while the tensor contains the dynamical

degrees of freedom (besides being sourced by the tensor part of the stress tensor). The

quantum contribution is sourced by the classical potentials, and we obtain from the full

equations (2.37) that

△Φqu
A =

2

3

(

△− 3∂2
)

∫

LC2(x− y)△
(

Φcl
A + Φcl

H

)

(y) d4y

+ 2△
∫

LR2(x− y)
(

△Φcl
A − 2△Φcl

H + 3Φcl′′
H

)

(y) d4y ,

(2.41a)

△Φqu
H = −2

3
△
∫

LC2(x− y)
(

△Φcl
A + △Φcl

H

)

(y) d4y

− 2△
∫

LR2(x− y)
(

△Φcl
A − 2△Φcl

H + 3Φcl′′
H

)

(y) d4y ,

(2.41b)

△V qu
i = −2∂2

∫

LC2(x− y)△V cl
i (y) d4y , (2.41c)

∂2hTT,qu
ij = −2∂2

∫

LC2(x− y)∂2hTT,cl
ij (y) d4y . (2.41d)

2.3 Spinning point particle

In the classical formulation of spinning particles within general relativity [61–67], spin is

described by an antisymmetric spin tensor Sµν(τ) in addition to the four-velocity

uµ(τ) ≡ dzµ(τ)

dτ
(2.42)

with zµ(τ) being the position of the particle at proper time τ , and the linear momentum

pµ(τ). In absence of spin, we have pµ = Muµ where M is the mass of the particle, but this

does not hold in general if the spin tensor does not vanish. The stress tensor takes then

the form (see refs. [68–70] for a review)

Tµν
PP(x) =

∫

δ(x− z(τ))p(µ(τ)uν)(τ) dτ −∇α

∫

δ(x− z(τ))Sα(µ(τ)uν)(τ) dτ (2.43)

with the covariant δ distribution

δ(x− y) ≡ δn(x− y)
√

−g(x)
. (2.44)
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From its covariant conservation, using that d/ dτ = uµ∇µ, we find the equation of motion

for the particle (the Mathisson-Papapetrou equation), which reads

dpα
dτ

= −1

2
Rαβµνu

βSµν , (2.45)

and the spin precession equation

dSµν

dτ
= pµuν − pνuµ . (2.46)

Given initial conditions, the solution of these equations is only unique if we specify an

additional constraint equation for the spin tensor. The ones studied in the literature are

the Frenkel-Pirani condition [71, 72]

Sµνuµ = 0 (2.47)

and the Tulczyjew condition [64, 65]

Sµνpµ = 0 . (2.48)

Note that for either of these conditions, the spin tensor is conserved in magnitude, as

follows from
d (SµνSµν)

dτ
= 4Sµνpµuν = 0 . (2.49)

For a background Minkowski spacetime, the Riemann tensor vanishes, and thus the

equation of motion reduces to
dpµ

dτ
= 0 . (2.50)

We are interested in a particle at rest at the origin, such that

zµ(τ) = τδµ0 (2.51)

and

uµ(τ) = δµ0 , (2.52)

which has the correct normalisation

uµuµ = −1 . (2.53)

Taking then pµ = Muµ with constant M as in the spinless case, the equations of mo-

tion (2.50) and (2.46) are satisfied for a constant spin tensor Sµν . Moreover, both the

Frenkel-Pirani (2.47) and Tulczyjew conditions (2.48) are satisfied. Since Sµν is antisym-

metric, we can then alternatively fully characterise the spin of the particle by the spin vector

Sµ ≡ 1

2
ǫµνρσu

νSρσ , (2.54)

which is also seen to be constant and purely spatial, i.e., Sµu
µ = 0.
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For this particle, the components of the stress tensor (2.43) are easily calculated to be

T 00
PP = Mδ3(x) , (2.55a)

T 0i
PP = −ǫijkSj∂kδ3(x) , (2.55b)

T ij
PP = 0 , (2.55c)

and since the stress tensor is time-independent, for the combinations (2.38) we obtain

T (S) = −T = Mδ3(x) , (2.56a)

T
(V)
i = ǫijkS

j∂kδ3(x) , (2.56b)

T
(TT)
ij = 0 . (2.56c)

We note at this point that it is also possible to introduce a non-minimal spin-gravity

coupling [73, 74]. Similarly to the case of a non-minimally coupled scalar field, this addi-

tional coupling does not change the equations of motion for the particle in the present case

(geodesic motion in flat space), but gives rise to a modified stress-energy tensor. However,

the corrections are of quadratic order in the spin tensor, and working to first order in spin

we can neglect them.

The classical field equations for the gravitational potentials (2.40) then reduce to

△Φcl
A = △Φcl

H = −κ
2

4
Mδ3(x) , (2.57a)

△V cl
i = −κ2ǫijkSj∂kδ3(x) , (2.57b)

∂2hTT,cl
ij = 0 , (2.57c)

and using that

δ3(x) = − 1

4π
△1

r
(2.58)

with r ≡ |x|, we obtain the solutions

Φcl
A = Φcl

H =
κ2M

16πr
, (2.59a)

V cl
i =

κ2

4π
ǫijkS

j∂k
1

r
= −κ

2(S × r)i
4πr3

, (2.59b)

hTT,cl
ij = 0 . (2.59c)

Using that κ2 = 16πGN and taking Xµ = 0 in the decomposition (2.33), we obtain the

linearised metric perturbation in the form

hµν dxµ dxν = 2
GNM

r
dt2 + 2

GNM

r
dx2 − 8

GN(S × r)i
r3

dt dxi

= 2
GNM

r
dt2+2

GNM

r

(

dr2+r2 dθ2+r2 sin2 θ dφ2
)

−8
|S|
r

sin2 θ dt dφ ,

(2.60)
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where the second equality is obtained by switching to the usual spherical coordinates where

we have, assuming that S is oriented in the z-direction,

(S × r)i
r3

dxi =
|S|
r

sin2 θ dφ . (2.61)

This is exactly the far-field form of the Kerr metric [75] if we identify the rotation parameter

a with

a =
2|S|
GNM

(2.62)

and thus the angular momentum J of the Kerr metric with J = 2|S|. If we would have

taken into account the backreaction of the particle on the geometry, or kept terms of higher

order in spin (in the case of a non-minimal spin-gravity coupling), this classical result would

obtain corrections of second or higher order in M and a. It would be interesting (but beyond

the scope of this work) to see if these corrections coincide with a higher-order expansion

of the classical Kerr metric.

Since the solutions for the classical gravitational potentials (2.59) are time-

independent, the sources on the right-hand side of the equations for the quantum contribu-

tions (2.41) are also time-independent after the change of integration variable y → x − y.

All time derivatives acting on them thus vanish, and after removing an overall Laplacian

we obtain

Φqu
A = −4

3

∫

LC2(y)△
(

Φcl
A + Φcl

H

)

(x− y) d4y

+ 2

∫

LR2(y)△
(

Φcl
A − 2Φcl

H

)

(x− y) d4y ,

(2.63a)

Φqu
H = −2

3

∫

LC2(y)△
(

Φcl
A + Φcl

H

)

(x− y) d4y

− 2

∫

LR2(y)△
(

Φcl
A − 2Φcl

H

)

(x− y) d4y ,

(2.63b)

V qu
i = −2

∫

LC2(y)△V cl
i (x− y) d4y , (2.63c)

hTT,qu
ij = 0 . (2.63d)

Inserting the solutions for the classical potentials (2.59) [or alternatively (2.57)] into the

right-hand side, this further simplifies to

Φqu
A =

κ2M

6

∫

[4LC2(s,x) + 3LR2(s,x)] ds , (2.64a)

Φqu
H =

κ2M

6

∫

[2LC2(s,x) − 3LR2(s,x)] ds , (2.64b)

V qu
i = 2κ2ǫijkS

j∂k
∫

LC2(s,x) ds , (2.64c)

hTT,qu
ij = 0 . (2.64d)

To obtain expressions for the quantum corrections, it thus remains to calculate the Weyl

and Ricci kernels for the different prescriptions contained in LC2/R2 (2.31), and integrate

the resulting expressions over time, which we will do in the next section.
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3 The Weyl and Ricci kernels

In this section, we calculate the kernels KAB
C2/R2(x−y) for the “++” and “+−” prescriptions.

We emphasise again that these two kernels are nothing else but the spin-2 and spin-0 parts

of the graviton self-energy, which for free fields was calculated long ago in the time-ordered

(the “++”) case [10, 11, 54]. As explained before (2.26), the corresponding result for the

“+−” prescription can be simply obtained by Fourier transforming to coordinate space, and

replacing the “++” prescription for (x−y)2 by the “+−” prescription (2.27). Moreover, for

conformal theories (such as gauge fields in four dimensions, massless fermions or massless

conformally coupled scalars), even strongly coupled ones, one could also use the general

result for the two-point function of the stress-energy tensor [76], which up to constant

factors again gives exactly the kernels we need. However, we would like to present a

way of calculation for massive quantum fields using Mellin-Barnes integrals, which works

directly in coordinate space, and has the advantage that the results are both suited for

numerical evaluation and allow a straightforward derivation of asymptotic expansions, both

for small and large distances from the particle. Moreover, Mellin-Barnes integrals have been

successfully used for calculations in (Anti-)de Sitter space, where Mellin space seems to

play the same simplifying role as Fourier space for a flat background [77–83], such that this

calculation should be quite directly generalisable to those backgrounds.

3.1 Gauge field

It is well known that the classical action

S0 ≡ −1

4

∫

FµνFµν
√−g dnx (3.1)

with the field strength tensor

Fµν ≡ ∇µAν −∇νAµ (3.2)

constructed from the spin-1 field Aµ cannot be quantised straightforwardly because of

gauge invariance, namely invariance of the action under the transformation

Aµ → Aµ + ∇µχ (3.3)

for an arbitrary function χ. The modern way to deal with this gauge invariance is the

BRST formalism [84–88]. One first introduces the usual ghost c, antighost c̄ and auxiliary

(Nakanishi-Lautrup) field B in the theory, and then defines a differential s by its action on

the fields

sAµ = ∂µc , sc = 0 , sc̄ = iB , sB = 0 . (3.4)

Furthermore, one defines s to be fermionic, such that it satisfies a graded Leibniz rule

s(FG) = (sF )G± F (sG) (3.5)

for arbitrary functionals F and G, with the sign depending on whether F is bosonic or

fermionic. From the explicit action (3.4) one also sees that the BRST differential is nilpotent

s
2 = 0, and increases the ghost number by 1 if one assigns ghost number 0 to Aµ and B,
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ghost number 1 to c and ghost number −1 to c̄. Gauge-fixing and ghost terms are then

obtained by adding a term of the form sΨ to the action, where Ψ is a suitable integrated

functional of ghost number −1. For the usual covariant gauges, we take

Ψ = −i

∫

c̄

(

ξ

2
B +G[A]

)√−g dnx , (3.6)

with the gauge-fixing functional

G[A] ≡ ∇µA
µ , (3.7)

and performing the BRST transformation the total action reads

S ≡ S0 + sΨ = −1

4

∫

FµνFµν
√−g dnx− 1

2ξ

∫

(∇µA
µ)2

√−g dnx

+
1

2ξ

∫

(ξB + ∇µA
µ)2

√−g dnx+ i

∫

c̄∇2c
√−g dnx .

(3.8)

Since the original action was gauge-invariant and the BRST transformation just acts as

a gauge transformation with the gauge parameter replaced by the ghost (3.4), we have

sFµν = 0, and since furthermore s
2 = 0 one sees that the gauge-fixed action is still BRST-

invariant, sS = 0.

The advantage of this formalism is that one can see easily by a short calculation that

the expectation value of a BRST-exact functional vanishes. Namely, one has

〈sF 〉φ =

∫

(sF ) eiSDφ
∫

eiSDφ =

∫

s

(

F eiS
)

Dφ
∫

eiSDφ , (3.9)

for any functional F , where Dφ denotes an integral over all fields Aµ, c, c̄ and B, and where

the second equality follows because of the BRST invariance of the total action. Now we have

sF = ± (∂µc)
δ

δAµ
F ± iB

δ

δc̄
F = ± δ

δAµ
[(∂µc)F ] ± δ

δc̄
(iBF ) (3.10)

for any functional F (with the signs depending on whether F is bosonic or fermionic), and

thus the integral in the numerator of equation (3.9) is a total derivative, and vanishes. In the

same way, it is seen that expectation values of BRST-invariant functionals are independent

of the choice of gauge-fixing functional G[A], and more generally independent of Ψ: under

the change Ψ → Ψ+ δΨ and for any functional F with sF = 0, we have to first order in δΨ

∫

F ei(S+sδΨ)Dφ =

∫

F eiS (1 + i sδΨ)Dφ =

∫

F eiSDφ± i

∫

s

(

F eiSδΨ
)

Dφ =

∫

F eiSDφ ,
(3.11)

where the sign again depends on whether F is bosonic or fermionic. In particular, classically

gauge-invariant functionals are BRST-invariant, and their correlation functions are thus in-

dependent of the gauge fixing. These considerations are of course formal and dependent on

a regulator which leaves the BRST transformations (3.4) unchanged, such as dimensional

regularisation. However, one can (with much more effort) make them mathematically

precise; see, e.g., refs. [89–94] for a rigorous treatment of all IR, UV and gauge issues.
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In particular, the stress tensor Tµν defined by

Tµν ≡ −2
δS

δgµν
= −2

δS0
δgµν

− 2 s
δΨ

δgµν
≡ Tµν

0 + sTµν
Ψ (3.12)

is gauge- and thus BRST-invariant. Its two-point function, from which the Weyl and Ricci

kernels are calculated according to equations (2.16) and (2.22), is thus independent of the

gauge fixing, and moreover we have

〈Tµν(x)T ρσ(y)〉φ − 〈Tµν(x)〉φ 〈T ρσ(y)〉φ = 〈Tµν
0 (x)T ρσ

0 (y)〉φ − 〈Tµν
0 (x)〉φ 〈T

ρσ
0 (y)〉φ (3.13)

according to the general arguments presented above. While for Abelian theories (and thus

in the free-field case) the ghosts decouple, and one can ignore them in purely gauge-theoretic

calculations, the inclusion of their stress-energy is crucial for the equality (3.13) to hold,

since both gauge-fixing and ghost terms are generated from the same Ψ. Namely, if one

were to perform an explicit calculation of the stress-tensor two-point function including

Tµν
Ψ , one would find that the contribution from the ghosts exactly cancels the one from the

gauge-fixing term, while the second-to-last term in the total action (3.8) is algebraic and

only gives rise to contact terms ∼ δn(x− y), which can be absorbed in counterterms.

A short calculation using the expansions from appendix A leads for the flat Minkowski

background to the well-known

Tµν
0 = FµαF ν

α − 1

4
ηµνFαβFαβ (3.14)

and thus

〈Tµν
0 (x)T ρσ

0 (y)〉φ−〈Tµν
0 (x)〉φ 〈T

ρσ
0 (y)〉φ=Fµαργ(x, y)Fν

α
σ
γ(x, y)+Fµασγ(x, y)Fν

α
ρ
γ(x, y)

− 1

2
ηρσFµαγδ(x, y)Fν

αγδ(x, y) − 1

2
ηµνFαβργ(x, y)Fαβ

σ
γ(x, y)

+
1

8
ηµνηρσFαβγδ(x, y)Fαβγδ(x, y) (3.15)

with

Fµνρσ(x, y) ≡ 〈Fµν(x)Fρσ(y)〉φ − 〈Fµν(x)〉φ 〈Fρσ(y)〉φ . (3.16)

This last expectation value can be evaluated using the gauge field two-point function

Gµν(x, y) ≡ −i 〈Aµ(x)Aν(y)〉φ , (3.17)

which in turn is obtained from the quadratic part of the action (3.8). By shifting the

auxiliary field B → B − ξ−1∂µA
µ, only the first two terms in the action (3.8) contribute,

and we obtain

Gµν(x, y) = ηµνG0((x− y)2) − (1 − ξ)
∂µ∂ν
∂2

G0((x− y)2) , (3.18)

where

G0(x
2) ≡ −i

Γ
(

n
2 − 1

)

4π
n
2

(x2)−
n−2

2 (3.19)
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is the massless scalar field two-point function in n dimensions, and the second term involv-

ing ∂−2 can be calculated explicitly using

(x2)−p =
1

2(1 − p)(n− 2p)
∂2(x2)1−p (3.20)

with p = (n− 2)/2. We then calculate

Fµνρσ(x, y) = −2i∂ρ∂[µGν]σ(x, y) + 2i∂σ∂[µGν]ρ(x, y)

= −8iηµ[ρησ]νG
′
0((x− y)2) + 16i(x− y)[µην][ρ(x− y)σ]G

′′
0((x− y)2)

= −8i

[

ηµ[ρησ]ν + n
(x− y)[µην][ρ(x− y)σ]

(x− y)2

]

G′
0((x− y)2)

(3.21)

using that

x2G′′
0(x2) = −n

2
G′

0(x
2) , (3.22)

as follows from the explicit expression (3.19) for the massless scalar two-point function.

From equation (3.15) we then obtain

〈Tµν
0 (x)T ρσ

0 (0)〉φ − 〈Tµν
0 (x)〉φ 〈T

ρσ
0 (0)〉φ = −8(n2 − 8)

(

ηµ(ρησ)ν − ηµνηρσ
)

[

G′
0(x

2)
]2

− 2n(n− 2)(n− 1)ηµνηρσ
[

G′
0(x

2)
]2

+ 16n(3n− 8)
x(µην)(ρxσ)

x2
[

G′
0(x

2)
]2

(3.23)

+ 4n(n− 4)2
(

ηµν
xρxσ

x2
+ ηρσ

xµxν

x2

)

[

G′
0(x

2)
]2 − 8n2(n− 2)

xµxνxρxσ

(x2)2
[

G′
0(x

2)
]2
.

where we have set y = 0 to shorten the expressions, since the two-point function is trans-

lation invariant.

Using the explicit form of the massless scalar two-point function (3.19), one checks

in a long but straightforward calculation that the connected stress tensor two-point func-

tion (3.23) has the form (2.16), where

f1(x) =
(n3 − 8n2 + 10n+ 16)

(n+ 1)(n− 1)

Γ2
(

n
2 − 1

)

128πn
(x2)2−n , (3.24a)

f2(x) =
(2n2 − 3n− 8)

(n+ 1)(n− 1)

Γ2
(

n
2 − 1

)

128πn
(x2)2−n . (3.24b)

The bare, unrenormalised kernels Kbare
C2/R2 (2.22) are thus given by

Kbare
C2 (x) = i

(2n2 − 3n− 8)(n− 2)

(n+ 1)(n− 1)(n− 3)

Γ2
(

n
2 − 1

)

512πn
(x2)2−n , (3.25a)

Kbare
R2 (x) = i

(n− 4)2(n− 2)

(n− 1)2
Γ2
(

n
2 − 1

)

1024πn
(x2)2−n . (3.25b)

For the “+−” prescription (2.27c), i.e., the Wightman two-point function, (x2+−)−2 is a

well-defined distribution in four dimensions, and we can thus simply take the limit n → 4

of the bare kernels. For the “++” prescription (2.27a), i.e., the time-ordered two-point
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function, this is not the case. To extract the divergent part and obtain a renormalised

kernel, we use equation (3.20) with p = n− 2 and add an “intelligent zero” to obtain

(x2)2−n =
1

2(n− 3)(n− 4)
∂2
[

(x2)3−n − µ
n−4

2 (x2)1−
n
2

]

+
µ

n−4

2

2(n− 3)(n− 4)
∂2(x2)1−

n
2

(3.26)

with the renormalisation scale µ, introduced to make the above equation dimensionally

correct. The first term has a well-defined limit as n→ 4, given by

1

2(n− 3)(n− 4)
∂2
[

(x2)3−n − µ
n−4

2 (x2)1−
n
2

]

→ −1

4
∂2

ln(µ2x2)

x2
, (3.27)

which for any prescription is a well-defined distribution in four dimensions, while using the

massless scalar two-point function (3.19) the second term can be expressed as

µ
n−4

2

2(n− 3)(n− 4)
∂2(x2)1−

n
2 = i

2π
n
2 µ

n−4

2

(n− 3)(n− 4)Γ
(

n
2 − 1

)∂2G0(x
2) . (3.28)

Since for the “++” prescription G0(x
2
++) is the time-ordered two-point function, i.e., the

propagator, we have

∂2G0(x
2
++) = δn(x) , (3.29)

and thus this second term must be subtracted for the kernel Kbare
C2 using the counterterm

δα (2.8), while the explicit factor of (n−4)2 in Kbare
R2 (3.25) leads to a vanishing contribution

to δβ in the limit n → 4. Since for the “+−” prescription G0(x
2
+−) is the Wightman

function fulfilling ∂2G0(x
2
+−) = 0, as explained before equation (2.26) the renormalised

kernels can be written in unified form

KC2(x) = − i

1280π4
∂2

ln(µ2x2)

x2
, (3.30a)

KR2(x) = 0 , (3.30b)

where the “++” and “+−” prescriptions are simply to be applied to x2 according to

equation (2.27). This procedure is just the usual renormalisation, but performed in position

space instead of the more well-known momentum space; see, e.g., ref. [95] and references

therein for more information.

The kernels LC2/R2 appearing in the final expression for the quantum corrections to

the gravitational potentials (2.64) and defined by equation (2.31) now read

LC2(x) = − i

1280π4
∂2
[

ln(µ2x2++)

x2++

− ln(µ2x2+−)

x2+−

]

+ αδ4(x) , (3.31a)

LR2(x) = βδ4(x) . (3.31b)

The integral over time is calculated in appendix B and given by equation (B.7), from which

we finally obtain (with r ≡ |x|)
∫

LC2(s,x) ds = − 1

640π3
△ ln(2µr)

r
+ αδ3(x) = − 1

640π3
△ ln(r)

r
+

[

α+
ln(2µ)

160π2

]

δ3(x) ,

(3.32a)
∫

LR2(s,x) ds = βδ3(x) , (3.32b)
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where the second equality was obtained using equation (2.58). Note that we cannot evaluate

△ ln(r)/r directly, since the result would be too singular at the origin to be a well-defined

distribution. Only if we restrict to r > 0, we can calculate

△ ln(r)

r
= − 1

r3
(r > 0) , (3.33)

and then of course the terms ∼ δ3(x) do not contribute either.

3.2 Massive, minimally coupled scalar

The most general action for a free scalar field φ is given by

S = −1

2

∫

(

∇µφ∇µφ+m2φ2 + ξRφ2
)√−g dnx , (3.34)

and includes a coupling to the Ricci curvature scalar with strength ξ. Using the expansions

from appendix A and specializing to flat space, the corresponding stress tensor is easily

calculated and reads

Tµν = ∂µφ∂νφ− 1

2
ηµν

(

∂ρφ∂ρφ+m2φ2
)

− ξSµνφ2 . (3.35)

For the case of minimal coupling ξ = 0, the renormalised stress-tensor two-point func-

tion has been calculated in position space in ref. [57]. It is of the general form given

in equation (2.16), and the kernels Kbare
C2/R2 defined according to equation (2.22) can be

renormalised to obtain an expression of the form (2.26), where the renormalised kernels

read

KC2(x) = −i∂2
(

ln(µ2x2)

15360π4x2

)

+ i

∫

C∗

(m2)z(x2)z−2 Γ(−z)Γ(1 − z)Γ(2 − z)

2048π
7

2 Γ
(

7
2 − z

)

dz

2πi
, (3.36a)

KR2(x) = −i∂2
(

ln(µ2x2)

9216π4x2

)

+ i

∫

C∗

(m2)z(x2)z−2 Γ(−z)Γ(2 − z) [3Γ(3 − z) − Γ(1 − z)]

6144π
7

2 Γ
(

7
2 − z

)

dz

2πi
.

(3.36b)

The integrals appearing here are of Mellin-Barnes form, running over the contour C∗ in the

complex plane from ℑm z = −i∞ to ℑm z = +i∞ with 0 < ℜe z < 1 (see ref. [57] for a

short introduction to Mellin-Barnes integrals). Since the Γ functions decay exponentially

in imaginary directions [96], these integrals are absolutely convergent and well suited for

numerical evaluation. It will be advantageous to further simplify the above expressions,

and we use equation (3.20) with p = 2 − z to extract a d’Alembertian operator from the

integral (which is justified because of the absolute convergence, and since both before and

after the extraction the integrals are well-defined distributions in four dimensions). Using

Γ function identities [96] to simplify the integrands, this results in

KC2(x) = −i∂2

[

ln(µ2x2)

15360π4x2
−
∫

C∗

(m2)z(x2)z−1 Γ2(−z)Γ(1 − z)

8192π
7

2 Γ
(

7
2 − z

)

dz

2πi

]

, (3.37a)

KR2(x) = −i∂2

[

ln(µ2x2)

9216π4x2
−
∫

C∗

(m2)z(x2)z−1Γ2(−z) [3Γ(3 − z) − Γ(1 − z)]

24576π
7

2 Γ
(

7
2 − z

)

dz

2πi

]

.

(3.37b)
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Define now the contour C to also run from ℑm z = −i∞ to ℑm z = +i∞, but with −1 <

ℜe z < 0. Since the integrands have only one pole between the two contours at z = 0 and

are otherwise holomorphic, by the Cauchy integral and residue theorems we have
∫

C∗

f(z)
dz

2πi
=

∫

C

f(z)
dz

2πi
+ Resz=0 f(z) , (3.38)

and it follows that

KC2(x) = i∂2





2γ + 46
15 + ln

(

m2

4µ2

)

15360π4x2
+

∫

C

(m2)z(x2)z−1 Γ2(−z)Γ(1 − z)

8192π
7

2 Γ
(

7
2 − z

)

dz

2πi



 , (3.39a)

KR2(x) = i∂2





2γ + 19
15 + ln

(

m2

4µ2

)

9216π4x2
+

∫

C

(m2)z(x2)z−1Γ2(−z) [3Γ(3 − z) − Γ(1 − z)]

24576π
7

2 Γ
(

7
2 − z

)

dz

2πi



 .

(3.39b)

Using the massless scalar two-point function (3.19), we can express the first term as

1

x2
= 4π2iG0(x

2) . (3.40)

Since for the “+−” prescription G0(x
2
+−) is the (negative) Wightman function, we have

∂2G0(x
2
+−) = 0 and the first terms drop out of the kernels (3.39). For the “++” prescrip-

tion, however, G0(x
2
++) is the propagator and we have

∂2G0(x
2
++) = δ4(x) . (3.41)

These terms can then be absorbed by a finite renormalisation of the parameters α and

β in the effective action (2.23) [or alternatively in equation (2.31)], and we will assume

that this has been done, such that the kernels KC2/R2 only consist of the integral terms in

equation (3.39).

It then only remains to calculate the integrals (2.64) for the combinations

LC2/R2 (2.31), which can be done using appendix B, specifically the result (B.5), and

again using the absolute convergence of the Mellin-Barnes integrals to justify the exchange

of integrals. We then obtain (with r ≡ |x|)
∫

LC2(s,x) ds = ∂2
∫

C

(m2)zr2z−1Γ2(−z)Γ
(

1
2 − z

)

8192π3Γ
(

7
2 − z

)

dz

2πi
+ αδ3(x) , (3.42a)

∫

LR2(s,x) ds = ∂2
∫

C

(m2)zr2z−1Γ2(−z) [3Γ(3 − z) − Γ(1 − z)] Γ
(

1
2 − z

)

24576π3Γ(1 − z)Γ
(

7
2 − z

)

dz

2πi
+ βδ3(x) ,

(3.42b)

and using that

∂2r2z−1 = △r2z−1 (3.43)

and some Γ function identities [96], this simplifies to
∫

LC2(s,x) ds = △
∫

C

(m2)zr2z−1 Γ2(−z)

1024π3(1 − 2z)(3 − 2z)(5 − 2z)

dz

2πi
+ αδ3(x) , (3.44a)

∫

LR2(s,x) ds = △
∫

C

(m2)zr2z−1 Γ2(−z) [3(2 − z)(1 − z) − 1]

3072π3(1 − 2z)(3 − 2z)(5 − 2z)

dz

2πi
+ βδ3(x) . (3.44b)
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Again, since we have −1 < ℜe z < 0 on the integration contour C, we cannot evaluate the

Laplacian directly as the result would be too singular at the origin to be a well-defined

distribution. If we restrict to r > 0 we have

△r2z−1 = 2z(2z − 1)r2z−3 (r > 0) , (3.45)

and then the local terms ∼ δ3(x) have to be disregarded as well.

3.3 Massive scalar with general curvature coupling

The fastest way to arrive at the proper expressions for ξ 6= 0 is to reuse the result of Mart́ın

and Verdaguer [55], who tell us that in the general case the kernel KC2 is ξ-independent

[and thus equal to its value for ξ = 0 (3.39a)], while the kernel KR2 has a factor of

(

(1 − 6ξ) + 2
m2

∂2

)2

(3.46)

acting on a ξ-independent function. We thus have to rewrite our result (3.39b), which has

ξ = 0, to include a factor of
(

1 + 2m2∂−2
)2

, and can then simply perform the extension

(it has been checked in ref. [57] that the Fourier transform of the result (3.39b) coincides

with the minimal-coupling result of ref. [55]).

For this, we first calculate (using equation (3.20) and shifting the integration variable)

m2∂−2

∫

C

(m2)z(x2)z−1f(z)
dz

2πi
=

∫

C

(m2)z(x2)z−1 1

4z(z − 1)
f(z − 1)

dz

2πi
, (3.47)

such that

(

1 + 2
m2

∂2

)2 ∫

C

(m2)z(x2)z−1f(z)
dz

2πi

=

∫

C

(m2)z(x2)z−1

[

f(z) +
f(z − 1)

z(z − 1)
+

f(z − 2)

4z(z − 1)2(z − 2)

]

dz

2πi
.

(3.48)

Comparing with the kernel KR2 for the minimally coupled case (3.39b), we thus have to

find a function f(z) such that

f(z) +
f(z − 1)

z(z − 1)
+

f(z − 2)

4z(z − 1)2(z − 2)
=

Γ2(−z) [3Γ(3 − z) − Γ(1 − z)]

Γ
(

7
2 − z

) , (3.49)

which a bit of guesswork reveals to be

f(z) =
4Γ(1 − z)Γ2(−z)

3Γ
(

3
2 − z

) . (3.50)

The kernel KR2 for the minimally coupled case (3.39b) can thus be written as

KR2(x) = i∂2
(

1 + 2
m2

∂2

)2 ∫

C

(m2)z(x2)z−1 Γ(1 − z)Γ2(−z)

18432π
7

2 Γ
(

3
2 − z

)

dz

2πi
, (3.51)
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and the extension to general curvature coupling reads

KR2(x) = i∂2
(

1 − 6ξ + 2
m2

∂2

)2 ∫

C

(m2)z(x2)z−1 Γ(1 − z)Γ2(−z)

18432π
7

2 Γ
(

3
2 − z

)

dz

2πi

= i∂2
∫

C

(m2)z(x2)z−1 Γ2(−z)Γ(1 − z)

73728π
7

2 Γ
(

7
2 − z

)

×
[

(1 − 6ξ)2(5 − 2z)(3 − 2z) − 2(1 − 6ξ)(5 − 2z)z + z(z − 1)
] dz

2πi

(3.52)

where we used equation (3.47) and Γ function identities [96] to arrive at the second equality.

The calculation of the integral (2.64) for the combination LR2 (2.31) is now done in

the same way as for the minimally coupled case, and we obtain (with r ≡ |x|)
∫

LR2(s,x) ds = βδ3(x) + △
∫

C

(m2)zr2z−1 Γ2(−z)

9216π3(5 − 2z)(3 − 2z)(1 − 2z)

×
[

(1−6ξ)2(5−2z)(3−2z)−2(1−6ξ)(5−2z)z+z(z−1)
] dz

2πi
.

(3.53)

3.4 Massive fermion

For the γ matrices and the spin connection in curved space, we follow the conventions of

Weinberg [97] and Freedman/van Proeyen [98], to which we refer the reader for details

(with the main difference to usual particle physics texts being the absence of most factors

of i). The action for a free massive fermion reads

−
∫

ψ̄ (γµ∇µ −m)ψ dnx , (3.54)

and the (symmetric) stress tensor in a flat-space background is given by

Tµν =
1

2
ψ̄γ(µ∂ν)ψ − 1

2

(

∂(νψ̄
)

γµ)ψ . (3.55)

The fermionic propagator Gm(x) can be obtained from the massive scalar propagator

Gm2(x2) in the usual way

Gm(x) ≡ −i
〈

ψ(x)ψ̄(0)
〉

= − (γµ∂µ +m)Gm2(x2) . (3.56)

For the stress tensor two-point function we then obtain

Tµνρσ(x, y) ≡ 〈Tµν(x)Tρσ(y)〉
φ
− 〈Tµν(x)〉

φ
〈Tρσ(y)〉

φ

=
1

4
tr
[

γ(µ∂
x
ν)Gm(x− y)γ(ρ∂

y

σ)Gm(y − x)
]

− 1

4
tr
[

γ(µ∂
x
ν)∂

y

(ρGm(x− y)γσ)Gm(y − x)
]

− 1

4
tr
[

Gm(x− y)γ(ρ∂
y

σ)∂
x
(µGm(y − x)γν)

]

+
1

4
tr
[

∂y(ρGm(x− y)γσ)∂
x
(µGm(y − x)γν)

]

(3.57)

= 2ηµ(ρησ)νG
′

m2((x− y)2)
[

−nG′

m2((x− y)2) +m2Gm2((x− y)2)
]

tr✶

+ 2ηµνηρσG
′

m2((x− y)2)G′

m2((x− y)2) tr✶

− 16x(µην)(ρxσ)G
′

m2((x− y)2)G′′

m2((x− y)2) tr✶

+ 16xµxνxρxσ
[

G′′

m2((x−y)2)G′′

m2((x−y)2)−G′

m2((x−y)2)G′′′

m2((x−y)2)
]

tr✶
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where we have used the usual (n-dimensional) γ matrix algebra to evaluate the matrix

trace tr, and tr✶ is the dimension of the representation, equal to 4 in n = 4 dimensions.

To put this into the general form (2.16) and perform renormalisation, we use the following

Mellin-Barnes integral representation from [57] (note that there a factor of i was removed

from the definition of G, which leads to an additional minus sign in comparison)

G
(k)
m2(x2)G

(l)
m2(x2) = −

∫

C

(m2)z(x2)z+2−k−l−n (−1)k+l

42+zπn
K(k, l, z)

dz

2πi
(3.58)

with

K(k, l, z) =
Γ(n− 2 + k + l − z)Γ

(

n
2 − 1 + k − z

)

Γ
(

n
2 − 1 + l − z

)

Γ(−z)

Γ(n− 2 + k + l − 2z)
, (3.59)

where the contour C runs from ℑm z = −i∞ to ℑm z = +i∞ left of all poles of K(k, l, z).

By translation invariance, we can set y = 0, and the stress tensor two-point function (3.57)

can then be written in Mellin-Barnes form

Tµνρσ(x, 0) =

∫

C

(m2)z(x2)z−n 1

41+zπn

[

2ηµ(ρησ)ν (nK(1, 1, z) + 4K(1, 0, z − 1)) (3.60)

− 2ηµνηρσK(1, 1, z)−16
x(µην)(ρxσ)

x2
K(1, 2, z)−16

xµxνxρxσ
(x2)2

(K(2, 2, z)−K(1, 3, z))

]

dz

2πi
.

To bring this into the general form (2.16), we make an ansatz using the Sµν opera-

tors (2.17) of the form

Tµνρσ(x, 0) =

∫

C

(m2)z
[

f(z)SµνSρσ + g(z)Sµ(ρSσ)ν

]

(x2)z+2−n
Γ(n− z)Γ2

(

n
2 − z

)

Γ(−z)
41+zπnΓ(n+ 2 − 2z)

dz

2πi
,

(3.61)

and performing the derivatives and comparing with (3.60) it follows that

f(z) = − (n− 2z)

2(z + 2 − n)(z + 1 − n)(n− 2 − 2z)
, (3.62a)

g(z) = −(n− 1 − 2z)f(z) . (3.62b)

The left-most pole of the integrand is located at z = 0, and we can thus take the contour C
to be at −1 < ℜe z < 0, just as for the scalar case. However, (x2)z+2−n is not a well-defined

distribution in n = 4 dimensions for ℜe z < 0, and we thus have to shift the contour to

ℜe z > 0. This can be done using equation (3.38), and we pick up an additional term given

by the residue of the integrand at z = 0. This term is now proportional to (x2)2−n, which

can be renormalised in the same way as for the gauge field [compare equation (3.26) and

the following discussion]. The remaining Mellin-Barnes integral over the new contour C∗

is now a well-defined distribution, and we can take the limit n → 4 there. Similar to the

scalar case, we can finally extract a d’Alembertian operator from this integral, and shift

the contour back to −1 < ℜe z < 0 to obtain a simple renormalised expression, possible

performing an additional finite renormalisation [compare equation (3.36) and the following

discussion]. Since we are not interested in the details of the renormalisation, and just need

the final renormalised expression, we can simply extract a d’Alembertian operator from
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the integral (3.61) using equation (3.20) with p = n − 2 − z and take the limit n → 4 of

the resulting expression. Using some Γ function identities [96], this gives

Tµνρσ(x, 0) = ∂2
∫

C

(m2)z
[

−SµνSρσ + (3 − 2z)Sµ(ρSσ)ν
]

(x2)z−1 Γ(1 − z)Γ2(−z)

1024π
7

2 Γ
(

7
2 − z

)

dz

2πi
,

(3.63)

and the renormalised kernels KC2/R2 (2.26) can be calculated by comparing this result

with equations (2.16) and (2.22) and read

KC2(x) = i∂2
∫

C

(m2)z(x2)z−1Γ(1 − z)Γ2(−z)(3 − 2z)

4096π
7

2 Γ
(

7
2 − z

)

dz

2πi
, (3.64a)

KR2(x) = i∂2
∫

C

(m2)z(x2)z−1 Γ2(1 − z)Γ(−z)

12288π
7

2 Γ
(

7
2 − z

)

dz

2πi
. (3.64b)

The calculation of the integrals (2.64) for the combinations LC2/R2 (2.31) is now done

in the same way as for the scalar case, using the integral (B.5) calculated in appendix B,

and we obtain (with r ≡ |x|, and using some Γ function identities [96])
∫

LC2(s,x) ds = △
∫

C

(m2)zr2z−1 Γ2(−z)

512π3(1 − 2z)(5 − 2z)

dz

2πi
+ αδ3(x) ,

∫

LR2(s,x) ds = △
∫

C

(m2)zr2z−1 Γ(1 − z)Γ(−z)

1536π3(1 − 2z)(3 − 2z)(5 − 2z)

dz

2πi
+ βδ3(x) .

(3.65)

4 Results

Since for very small distances r from the particle, the test particle approximation that

we use breaks down (since there the particle’s own gravitational field is strong and we

cannot neglect the backreaction anymore), we can restrict to r > 0 when presenting the

results. We can then evaluate the Laplacians acting on the expressions (3.32), (3.44), (3.53)

and (3.65), and the local terms appearing in these results do not contribute.

Combining the classical (2.59) and quantum contributions (2.64) to the gravitational

potentials according to equation (2.39), we have

ΦA =
κ2M

16πr

[

1 +
8πκ2r

3

∫

[4LC2(s,x) + 3LR2(s,x)] ds

]

, (4.1a)

ΦH =
κ2M

16πr

[

1 +
8πκ2r

3

∫

[2LC2(s,x) − 3LR2(s,x)] ds

]

, (4.1b)

Vi = −κ
2(S × r)i

4πr3

[

1 − 8πκ2r2∂r

∫

LC2(s,x) ds

]

. (4.1c)

For the gauge field (3.32), this gives

ΦA =
κ2M

16πr

[

1 +
κ2

60π2r2

]

, (4.2a)

ΦH =
κ2M

16πr

[

1 +
κ2

120π2r2

]

, (4.2b)

Vi = −κ
2(S × r)i

4πr3

[

1 +
3κ2

80π2r2

]

, (4.2c)
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for the massive scalar with general curvature coupling (3.44), (3.53) we obtain

ΦA =
κ2M

16πr

[

1 +
κ2[1 + 5

4(1 − 6ξ)2]

720π2r2

∫

C

(mr)2zfA(z)
dz

2πi

]

, (4.3a)

ΦH =
κ2M

16πr

[

1 +
κ2[1 − 5

2(1 − 6ξ)2]

1440π2r2

∫

C

(mr)2zfH(z)
dz

2πi

]

, (4.3b)

Vi = −κ
2(S × r)i

4πr3

[

1 +
κ2

320π2r2

∫

C

(mr)2z
5Γ(1 − z)Γ(−z)

(5 − 2z)

dz

2πi

]

, (4.3c)

with

fA(z) ≡ 5Γ(1 − z)Γ(−z)

5(1 − 6ξ)2 + 4

[

(1 − 6ξ)2 − 2(1 − 6ξ)z

(3 − 2z)
+

z(z − 1) + 12

(3 − 2z)(5 − 2z)

]

, (4.4a)

fH(z) ≡ 5Γ(1 − z)Γ(−z)

5(1 − 6ξ)2 − 2

[

(1 − 6ξ)2 − 2(1 − 6ξ)z

(3 − 2z)
+

z(z − 1) − 6

(3 − 2z)(5 − 2z)

]

, (4.4b)

and for a massive fermion (3.65) we get

ΦA =
κ2M

16πr

[

1 +
κ2

120π2r2

∫

C

(mr)2z
15Γ(1 − z)Γ(−z)(4 − 3z)

4(3 − 2z)(5 − 2z)

dz

2πi

]

, (4.5a)

ΦH =
κ2M

16πr

[

1 +
κ2

240π2r2

∫

C

(mr)2z
15Γ(1 − z)Γ(−z)(2 − z)

2(3 − 2z)(5 − 2z)

dz

2πi

]

, (4.5b)

Vi = −κ
2(S × r)i

4πr3

[

1 +
3κ2

160π2r2

∫

C

(mr)2z
5Γ(1 − z)Γ(−z)(3 − 2z)

3(5 − 2z)

dz

2πi

]

. (4.5c)

These are the main results of this article, which we now discuss in more detail.

4.1 Small and zero masses

Note first that the Mellin-Barnes integrals are normalised such that they equal 1 for m = 0.

In the massless case, we thus have

ΦA =
κ2M

16πr

[

1 +

[

N0

(

1 +
5

4
(1 − 6ξ)2

)

+ 6N1/2 + 12N1

]

κ2

720π2r2

]

, (4.6a)

ΦH =
κ2M

16πr

[

1 +

[

N0

(

1 − 5

2
(1 − 6ξ)2

)

+ 6N1/2 + 12N1

]

κ2

1440π2r2

]

, (4.6b)

Vi = −κ
2(S × r)i

4πr3

[

1 +
(

N0 + 6N1/2 + 12N1

) κ2

320π2r2

]

, (4.6c)

where Ns is the number of spin-s fields. Since in the nonrelativistic limit, ΦA gives minus

the Newtonian potential V (r), and κ2 = 16πGN, we have full agreement with the well-

known existing result (1.1). The interesting changes due to massive particles then reside

in the integrals, i.e., in
Φqu
A (m, r)

Φqu
A (0, r)

=

∫

C

(mr)2zfA(z)
dz

2πi
(4.7)

(for the scalar case), and the corresponding other ratios of quantum corrections. Since

the Γ functions in the integrand fall off exponentially, they integrals are easily evaluated
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numerically, and the graphs are shown in figures 1 and 2. As one can see from the figures,

the corrections die off fast, and since the quantum corrections to the gravitational potentials

are already tiny in the case of massless particles, these corrections are not accessible to

experiment in any foreseeable future. Nevertheless, the quantum correction to the second

Bardeen potential Φqu
H shows, for distances of the order of the Compton wavelength of the

virtual particle, enhancement over the massless case for certain values of the non-minimal

coupling parameter ξ (e.g., for the minimally-coupled case ξ = 0, see figure 2b), and in fact

grows without bound for ξ → (1±
√

2/5)/6. One might thus think that this enhancement

could have observable consequences, but it is just the value of ξ for which the massless

correction vanishes, and the full quantum correction Φqu
H stays tiny for all values of ξ.

For small masses in general, we can shift the contour C of the Mellin-Barnes integrals to

the right, picking up residues from the poles that lie between the old and new contour. The

integrals have a series of poles at integer z, coming from the Γ functions in the numerator,

and two isolated ones at z = 3/2 and z = 5/2. For example, taking the new contour C′ to

have 3/2 < ℜe z < 2, we have [analogously to equation (3.38)]

∫

C

f(z)
dz

2πi
=

∫

C′

f(z)
dz

2πi
−

∑

zi∈{0,1, 32}
Resz=zi f(z) . (4.8)

The integral over the contour C′ is still absolutely convergent and we can bound it by a

constant times (mr)2ℜe z, and since we can shift the contour to have ℜe z as close to 2 as

we like and the pole at z = 2 is of order 2, this is a term of order O
(

m4 lnm
)

. For the

scalar with general curvature coupling, we obtain in this way

Φqu
A (m, r)

Φqu
A (0, r)

= 1 +
10[1 + 18ξ − 18ξ2 + 3(1 + 12ξ2)(ln(mr) + γ)]

3(3 − 20ξ + 60ξ2)
m2r2

− 5π(3 + 16ξ)

2(3 − 20ξ + 60ξ2)
m3r3 + O

(

m4 lnm
)

,

(4.9a)

Φqu
H (m, r)

Φqu
H (0, r)

= 1 +
10[−4 + 18ξ − 18ξ2 + 3(−1 + 12ξ2)(ln(mr) + γ)]

3(1 − 20ξ + 60ξ2)
m2r2

− 5π(−5 + 16ξ)

2(1 − 20ξ + 60ξ2)
m3r3 + O

(

m4 lnm
)

,

(4.9b)

V qu
i (m, r)

V qu
i (0, r)

= 1 +
5[−1 + 6(ln(mr) + γ)]

9
m2r2 + O

(

m4 lnm
)

, (4.9c)

and for fermions, we get

Φqu
A (m, r)

Φqu
A (0, r)

= 1 +
5[−2 + 3(ln(mr) + γ)]

6
m2r2 +

5π

4
m3r3 + O

(

m4 lnm
)

, (4.10a)

Φqu
H (m, r)

Φqu
H (0, r)

= 1 +
5[1 + 3(ln(mr) + γ)]

3
m2r2 − 5π

2
m3r3 + O

(

m4 lnm
)

, (4.10b)

V qu
i (m, r)

V qu
i (0, r)

= 1 +
5[−7 + 6(ln(mr) + γ)]

27
m2r2 + O

(

m4 lnm
)

. (4.10c)
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Figure 1. Quantum corrections to the gravitational potentials due to scalars and fermions of mass

m in comparison to the massless case.
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(c) Asymptotic form of the quantum correc-

tions to the scalar-type potential ΦA due

to minimally coupled scalars with ξ = 0.

The solid violet line is the numerical data,

the dashed green one is the first-order

asymptotic expansion and the dotted

blue one is the second-order asymptotic

expansion.
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Figure 2. Quantum corrections to the gravitational potentials due to scalars and fermions of mass

m in comparison to the massless case (continued).
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4.2 Large masses and distances

On the other hand, for large distances (and masses), we can shift the contour arbitrarily

far to the left without changing the value of the integral, since there are no poles for

ℜe z < 0. Thus, the quantum corrections fall of faster than any power of m, and from

the graphs one might suspect exponential decay. That this is in fact the case is shown

in appendix C, where also the explicit form of the asymptotic expansion is derived for a

general Mellin-Barnes integral of the type we are considering. Using the integral Ia(mr)

defined in equation (C.1) we have

Φqu
A (m, r)

Φqu
A (0, r)

=
45

4[5(1−6ξ)2+4]

[

(1+12ξ2)I1(mr)−4ξ(1−4ξ)I2(mr)+(1−4ξ)2I3(mr)
]

, (4.11a)

Φqu
H (m, r)

Φqu
H (0, r)

=
45

4[5(1−6ξ)2−2]

[

−(1−12ξ2)I1(mr)−4ξ(1−4ξ)I2(mr)+(1−4ξ)2I3(mr)
]

, (4.11b)

V qu
i (m, r)

V qu
i (0, r)

=
5

4
I1(mr) +

5

2
I2(mr) (4.11c)

for a massive scalar with general curvature coupling, and

Φqu
A (m, r)

Φqu
A (0, r)

=
15

16
I1(mr) +

45

16
I2(mr) , (4.12a)

Φqu
H (m, r)

Φqu
H (0, r)

=
15

8
I1(mr) +

15

8
I2(mr) , (4.12b)

V qu
i (m, r)

V qu
i (0, r)

=
5

12
I1(mr) +

5

3
I3(mr) (4.12c)

for a massive fermion. The asymptotic expansion of Ia(mr) to next-to-leading order is

given by equation (C.7), and we obtain

Φqu
A (m, r)

Φqu
A (0, r)

=
45(1 − 4ξ)2

4[5(1 − 6ξ)2 + 4]

√
π e−2mr(mr)

1

2

[

1 − 13 + 12ξ

16(1 − 4ξ)mr
+ O

(

1

m2r2

)]

, (4.13a)

Φqu
H (m, r)

Φqu
H (0, r)

=
45(1 − 4ξ)2

4[5(1 − 6ξ)2 − 2]

√
π e−2mr(mr)

1

2

[

1 − 13 + 12ξ

16(1 − 4ξ)mr
+ O

(

1

m2r2

)]

, (4.13b)

V qu
i (m, r)

V qu
i (0, r)

=
5

2

√
π e−2mr(mr)−

1

2

[

1 − 41

16mr
+ O

(

1

m2r2

)]

(4.13c)

for a massive scalar with general curvature coupling, and

Φqu
A (m, r)

Φqu
A (0, r)

=
45

16

√
π e−2mr(mr)−

1

2

[

1 − 131

48mr
+ O

(

1

m2r2

)]

, (4.14a)

Φqu
H (m, r)

Φqu
H (0, r)

=
15

8

√
π e−2mr(mr)−

1

2

[

1 − 33

16mr
+ O

(

1

m2r2

)]

, (4.14b)

V qu
i (m, r)

V qu
i (0, r)

=
5

3

√
π e−2mr(mr)

1

2

[

1 − 13

16mr
+ O

(

1

m2r2

)]

(4.14c)

for a massive fermion.

The asymptotic expansions to first and second order are plotted together with the

numerical result for the Bardeen potentials for the minimally-coupled scalar in figures 2c

and 2d. One can see that the approximations are extremely good already for small distances

r from the particle, and become virtually indistinguishable for large distances.
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4.3 Comparison with previous results

Apart from few exceptions, existing calculations of quantum corrections only consider cor-

rections to the Newtonian potential V (r), to which the first Bardeen potential ΦA reduces

in the non-relativistic limit. Moreover, most of these calculations focus on the case of mass-

less virtual particles, either matter fields (which we also treat in this work) or gravitons. As

already stated in subsection 4.1, our results in the massless case are in full agreement with

the known ones for the Newtonian potential [1, 7–25]. Refs. [22–25] are also considering

general quantum corrections to the metric due to loops of massless scalars, and their result

reads (simplified and converted to our notation)

h00 =
κ4M

7680π3r3
(

3 − 20ξ + 60ξ2
)

, (4.15a)

h0i = 0 , (4.15b)

hij =
κ4M

7680π3r3
(

−1 + 20ξ − 60ξ2
)

δij . (4.15c)

Since these results were derived in an unknown gauge, we cannot directly compare them

with our results for the gauge-invariant gravitational potentials. However, looking at the

decompositions (2.33) and (2.34), we see that

ΦA =
1

2
h00 , (4.16a)

ΦH =
1

4

(

δijhij −
∂i∂j

△ hij

)

(4.16b)

in any gauge where the metric perturbation does not explicitly depend on time, as for the

results above. Thus, the result (4.15) gives

ΦA =
κ4M

15360π3r3
(

3 − 20ξ + 60ξ2
)

, (4.17a)

ΦH =
κ4M

15360π3r3
(

−1 + 20ξ − 60ξ2
)

, (4.17b)

which coincides exactly with our result in the massless case for non-spinning particles (4.6).

The only reference that presents explicit results for the Newtonian potential as a func-

tion of distance r in the massive case seems to be the recent work of Burns and Pilaftsis [99],

treating massive minimally coupled scalars, massive fermions and massive (Proca-type) vec-

tor bosons. Their general result for the quantum corrections to the Newtonian potential is

given by the integrals

∆V (r) =
GN

60π

∫

∞

2m
e−qr

(

3 − 4m2

q2
+

28m4

q4

)

√

q2 − 4m2 dq (4.18)

for minimally coupled scalars [99], and

∆V (r) =
GN

15π

∫

∞

2m
e−qr

(

2 − m2

q2
− 28m4

q4

)

√

q2 − 4m2 dq (4.19)
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for fermions [100]. While it hasn’t been possible to bring our general result for ΦA (4.3a)

and (4.5a) in this form, we can compare the small- and large-mass expansions. If those

coincide, the simplicity of both our and their result then makes it highly probable that the

full results coincide as well.

For small masses, ref. [99] obtains for the quantum corrections

∆V (r) =
GN

20πr2

[

1 +
10

3
m2r2

[

ln(mr) + γ +
1

3

]

+ O
(

m3r3
)

]

(4.20)

for minimally coupled scalars and

∆V (r) =
2GN

15πr2

[

1 +
5

2
m2r2

[

ln(mr) + γ − 2

3

]

+ O
(

m3r3
)

]

(4.21)

for fermions (correcting a missing factor of 2 for the massless case [100]). Since the massless

case already agrees with the known results (1.1), we can simply compare the terms in

brackets with the quotients (4.9a) for the scalar case, setting ξ = 0 to obtain the minimally-

coupled result, and (4.10a) for fermions, and using that κ2 = 16πGN we find full agreement.

For large masses, however, their expansion does not match with ours — which might be

due to the neglect of some subleading terms in the expansion of special functions [100],

and can be rectified. Setting x ≡ 2mr and making the change of variables q = 2m(t+ 1),

their result reads

∆V (r) =
GNm

2

15π
e−x

∫

∞

0
e−xt

(

3 − 1

(t+ 1)2
+

7

4(t+ 1)4

)

√

t2 + 2t dt , (4.22a)

∆V (r) =
4GNm

2

15π
e−x

∫

∞

0
e−xt

(

2 − 1

4(t+ 1)2
− 7

4(t+ 1)4

)

√

t2 + 2t dt (4.22b)

for scalars and fermions, respectively. Both of the integrals are of the form
∫

∞

0
e−xtf(t) dt (4.23)

with f(t) having an asymptotic expansion of the type

f(t) ∼
∞
∑

s=0

ast
s+λ−1 (4.24)

as t→ 0. In the scalar case, we have λ = 3/2 and

a0 =
15

4

√
2 , a1 = −65

16

√
2 , (4.25)

while for fermions it results λ = 5/2 and

a0 =
15

2

√
2 , a1 = −131

8

√
2 . (4.26)

By Watson’s Lemma [101], the asymptotic expansion of the integral as x → ∞ is then

given by
∫

∞

0
e−xtf(t) dt ∼

∞
∑

s=0

Γ(s+ λ)
as
xs+λ

, (4.27)
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and we obtain

∆V (r) ∼ Gm2

16
√
π

e−2mr(mr)−3/2

[

1 − 13

16mr
+ O

(

1

(mr)2

)]

, (4.28a)

∆V (r) ∼ 3Gm2

8
√
π

e−2mr(mr)−5/2

[

1 − 131

48mr
+ O

(

1

(mr)2

)]

(4.28b)

for scalars and fermions, respectively. Combining the massless result (4.6a) with the large-

mass expansions (4.13a) for scalars (setting ξ = 0 to obtain the minimally-coupled case)

and (4.14a) for fermions, we again have full agreement between this expansion and our

results. Thus, since both our and their result are given by quite simple integrals, it is

highly probably that they fully coincide, even if it has not been possible to prove this

directly.

All these comparisons have been for spinless particles, since as explained in the intro-

duction our calculation is different from one the undertaken in ref. [28]. Ref. [20] calculates

quantum corrections to the metric perturbation for a spin-1/2 particle, but these correc-

tions are due to virtual gravitons and not due to matter. Nevertheless, their results have

the same form as ours in the massless case (4.6), but with different numerical prefactors.

5 Discussion

We have derived the corrections to the gauge-invariant gravitational potentials for spinning

particles due to loops of massive and massless quantum fields. This includes the Newtonian

potential, for which these corrections have been studied previously, and we have found

full agreement with existing results. However, there is one more scalar-type potential for

which only corrections due to massless fields have been studied, and a vector-type (gravit-

omagnetic) potential where those corrections were unexplored. Unfortunately, the results

are too tiny to be measured experimentally in the foreseeable future, but they are im-

portant in principle, especially for providing unambiguous results for low-energy quantum

gravitational predictions which must be reproduced in any full theory of quantum gravity.

The method by which we arrived at the results was quite different from the usual

one, which is based on inferring a Newtonian potential from scattering data (the inverse

scattering method). Instead, similar to how the classical Newtonian potential is obtained

by solving the gravitational field equations for a point source, we have solved the field

equations coming from an effective gravitational action, which includes loop corrections of

massive particles. The main advantage of this method over the inverse scattering method

is its applicability in curved spacetimes, where a scattering matrix may not be present.

In fact, in these cases it seems to be the only method available. Although this paper did

not deal with a curved background, but Minkowski spacetime, the calculation is still some-

what simpler than the corresponding one using the inverse scattering method [1, 7–25],

and seems comparable in complexity to a recent calculation using modern techniques for

scattering amplitudes [102]. In particular, the calculation of the effective action essentially

boils down to the calculation of the graviton self-energy (including renormalisation), and

we could simply have used the well-known results of Capper et al. [10, 11, 54]. To obtain
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the Newtonian potential, and expansions both for small and large distances from the par-

ticle in coordinate space, we would then only have had to perform a Fourier transform of

their momentum-space expression. However, the Mellin-Barnes integral representation we

employed has several advantages: the results are well suited for numerical evaluation, and

they allow a straightforward derivation of asymptotic expansions, both for small and large

distances from the particle. Moreover, since Mellin-Barnes integrals have already been used

successfully in (Anti-)de Sitter space [77–83], our calculation should be quite immediately

generalisable to those backgrounds.

Since the effective action is gauge invariant, and thus must be expressible using gauge-

invariant variables only, our method provides a further non-trivial check on the correctness

of the calculation. This has a further advantage in the case at hand: since the equations

determining the Newtonian potential (and the other gravitational potentials) are constraint

equations for the gauge-invariant variables, only a spatial Laplacian needs to be inverted,

which gives an unambigously determined result for the quantum corrections (2.64), and

no dynamical differential equation needs to be solved. Note, however, that at higher

orders the definition of the Newtonian potential becomes ambiguous (see, e.g., [20, 21]

and references therein), and this ambiguity will also show up using our method. Since

the scattering matrix is gauge, and generally reparametrisation invariant [26, 27], the full

scattering amplitude does not suffer from such ambiguities. Thus, the scattering amplitude

seems to be preferable to characterise quantum gravitational corrections at higher orders

— even if one might argue that because of the extreme smallness of the corrections, it is

unnecessary to go to higher orders at all.

The results for massive fields are exponentially suppressed compared to the case of

massless fields (as one might have assumed), with the exception of the second Bardeen

potential ΦH for a certain range of the non-minimal coupling parameter ξ, which shows an

enhancement over the massless case. However, this is due to the fact that the correction

in the massless case is extremely small for this range of ξ, and even vanishes for ξ =

(1 ±
√

2/5)/6. The full quantum correction Φqu
H is always small, no matter the value of

ξ. For massless fields, our results can be written in the form of an effective metric for the

spinning point particle

ds2 = gtt dt2 + grr
(

dr2 + r2 dθ2 + r2 sin2 θ dφ2
)

+ 2gtφ dt dφ , (5.1)

where (reinstating ~)

gtt = −1 +
2GNM

r

[

1 +

[

N0

(

1 +
5

4
(1 − 6ξ)2

)

+ 6N1/2 + 12N1

]

~GN

45πr2

]

, (5.2a)

grr = 1 +
2GNM

r

[

1 +

[

N0

(

1 − 5

2
(1 − 6ξ)2

)

+ 6N1/2 + 12N1

]

~GN

90πr2

]

, (5.2b)

gtφ = −2GNMa

r
sin2 θ

[

1 +
(

N0 + 6N1/2 + 12N1

) ~GN

20πr2

]

. (5.2c)

The rotation parameter a is related to the spin |S| of the particle by (2.62)

a =
2|S|
GNM

, (5.3)
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and Ns is the number of massless spin-s fields, with the curvature coupling for scalar fields

given by the parameter ξ. This could be interpreted as a quantum-corrected linearised

Kerr metric, but note that one should not confuse this result with quantum corrections to

the exact Kerr metric: first, in our calculation (just as the one of ref. [20]) the spinning

particle is treated as a test particle in flat spacetime, and the dynamics of quantum fields

in spacetimes with horizons, such as the Kerr spacetime, is very different from the flat-

space dynamics. Second, even in classical general relativity distributional sources are not

acceptable in general [103], in the sense that the metric that is obtained by solving Einstein’s

equations with a smeared source and taking the limit where the source becomes point- or

line-like depends on the way the limit is taken, if it exists at all. Only in situations where one

assumes special symmetry from the outset is such a limit unique and determines a metric

fulfilling Einstein’s equations with a distributional stress tensor, as has been calculated

explicitly for the Schwarzschild, Reissner-Nordström and Kerr(-Newman) metrics [104–

107]. Thus, while one could obtain higher-order corrections to our result by taking into

account graviton loops, or terms which are of quadratic or higher order in the mass M

or the rotation parameter a of the spinning particle (and which are needed in any case to

have the proper expansion in M and a of the classical Kerr metric), it is not guaranteed

that the result will converge at all, or have the right classical Kerr metric limit.

It seems thus more prudent to stick to a literal interpretation of the calculation, namely

quantum corrections to the particle’s own gravitational potentials. Note that the particle

does not need to be pointlike in reality, but can be an approximation of an extended body,

keeping only the first two multipole moments — mass and spin. In fact, one expects that

higher multipole moments, in particular the quadrupole moment, also source a tensor-type

potential, which gives quantum corrections to (classical) gravitational radiation. One could

then see how these corrections affect the motion of other particles by studying geodesics in

the metric (5.1), which, e.g., will give quantum corrections to the motion of heavenly bodies.

By studying the motion of particles with spin, it would also be possible to compare with the

scattering-type calculations of ref. [28], and the classical results of ref. [42]. Finally, these

calculations should be repeated for other backgrounds, most notably de Sitter and general

Friedmann-Lemâıtre-Robertson-Walker backgrounds which are relevant for the inflationary

period of the early universe. For non-spinning particles and certain types of matter fields,

results are already available [34–36, 108], and present highly interesting new features, such

as quantum corrections which grow logarithmically with either time or distance from the

particle, and can thus overcome the small factor ~GN which suppresses quantum corrections

with respect to the classical result.
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A Metric expansions

Writing a general metric g̃µν as background gµν plus perturbation hµν , we obtain to first

order in the perturbation

g̃µν = gµν + hµν , (A.1a)

g̃µν = gµν − hµν , (A.1b)

√

−g̃ =
√−g

(

1 +
1

2
h

)

, (A.1c)

Γ̃α
βγ = Γα

βγ +
1

2

(

∇βh
α
γ + ∇γh

α
β −∇αhβγ

)

, (A.1d)

R̃αβγδ = Rαβγδ +
1

2

(

∇γ∇[βhα]δ −∇δ∇[βhα]γ + ∇α∇[δhγ]β −∇β∇[δhγ]α
)

− 1

2

(

Rαβµ[γh
µ
δ] +Rγδµ[αh

µ
β]

)

,

(A.1e)

R̃αβ = Rαβ + ∇δ∇(αhβ)δ −
1

2
∇2hαβ − 1

2
∇α∇βh , (A.1f)

R̃ = R− hαβRαβ + ∇α∇βhαβ −∇2h . (A.1g)

Using the definition of the n-dimensional Weyl tensor (2.9), we also obtain

C̃αβγδ = Cαβγδ +
1

2

(

∇γ∇[βhα]δ −∇δ∇[βhα]γ + ∇α∇[δhγ]β −∇β∇[δhγ]α
)

− 1

n− 2

(

∇µ∇αhµ[γ + ∇µ∇[γhαµ −∇2hα[γ −∇α∇[γh
)

gδ]β

+
1

n− 2

(

∇µ∇βhµ[γ + ∇µ∇[γhβµ −∇2hβ[γ −∇β∇[γh
)

gδ]α

+
2

(n− 1)(n− 2)

(

∇µ∇νhµν −∇2h
)

gα[γgδ]β − 1

2

(

Rαβµ[γh
µ
δ] +Rγδµ[αh

µ
β]

)

− 2

(n− 1)(n− 2)

[

(n− 1)Rα[γ −Rgα[γ
]

hδ]β

+
2

(n−1)(n−2)

[

(n−1)Rβ[γ−Rgβ[γ
]

hδ]α−
2

(n−1)(n−2)
hµνRµνgα[γgδ]β .

(A.2)

B The master integral

We want to calculate the integral

Iz(x) ≡
∫

[

(x2++)z−1 − (x2+−)z−1
]

dt (B.1)

for −1 < ℜe z < 0, where the different prescriptions are defined by equation (2.27). As

explained after equation (2.38), the integrand vanishes unless (t,x) is in the backward
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lightcone emanating from the origin (0,0). Especially, it vanishes for t > 0, and inserting

the explicit form of the prescriptions (2.27) we thus obtain

Iz(x) = lim
ǫ→0

∫ 0

−∞

[

[

r2 − (t+ iǫ)2
]z−1 −

[

r2 − (t− iǫ)2
]z−1

]

dt . (B.2)

with r ≡ |x|. An indefinite integral is given by

∫

[

r2 − (t± iǫ)2
]z−1

dt = r2z−2(t± iǫ) 2F1

(

1

2
, 1 − z :

3

2
;
(t± iǫ)2

r2

)

(B.3)

with the Gauß hypergeometric function 2F1, as can be checked directly from its series

definition. By a standard hypergeometric transformation [96], we bring it into the form

r2z−2(t± iǫ)

√
πΓ
(

1
2 − z

)

2Γ(1 − z)

(

−(t± iǫ)2

r2

)−
1

2

+ r2z−2(t± iǫ)
1

2z − 1

(

−(t± iǫ)2

r2

)−1+z

2F1

(

1 − z,
1

2
− z;

3

2
− z;

r2

(t± iǫ)2

)

,

(B.4)

which is suitable for taking the lower limit t→ −∞. Since ℜe z < 0, the second term does

not contribute in this limit, and carefully evaluating the inverse square root in the first

term for the different prescriptions we obtain

Iz(x) = lim
ǫ→0

[

2r2z−2iǫ 2F1

(

1

2
, 1 − z :

3

2
;− ǫ

r2

)

− ir2z−1

√
πΓ
(

1
2 − z

)

Γ(1 − z)

]

= −ir2z−1

√
πΓ
(

1
2 − z

)

Γ(1 − z)
.

(B.5)

For the massless case, we also need the integral with ln(µ2x2)/x2, which can be obtained

as
ln(µ2x2)

x2
= lim

δ→0

1

δ

[

µ−2δ(x2)−1−δ − µ−4δ(x2)−1−2δ
]

(B.6)

in such a way to ensure ℜe z < 0. Thus it follows that

∫
[

ln(x2++)

x2++

− ln(x2+−)

x2+−

]

dt = lim
δ→0

µ−2δI−δ(x) − µ−4δI−2δ(x)

δ
= −2πi

ln(2µr)

r
. (B.7)

C Asymptotic expansion

We want to obtain an asymptotic expansion as mr → ∞ of an integral of the form

Ia(mr) ≡
∫

C

(mr)2z
Γ(−z)Γ(a− z)Γ

(

3
2 − z

)

Γ
(

7
2 − z

)

dz

2πi
, (C.1)

where a ≥ 0, and the contour C runs from −i∞ to +i∞ with ℜe z < 0. If the integrand

would contain Γ functions with poles in the left half-plane, of the form Γ(b+ z), we could

shift the contour over the poles at z = −b − k, and obtain an asymptotic expansion of

the integral in the form of the corresponding residues ∼ (m2r2)−b−k. However, in our case

we can shift the contour to arbitrary ℜe z < 0, and thus Ia(mr) decays faster than any

polynomial in mr as mr → ∞, which is a signal of an exponentially small asymptotic
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expansion. As explained below, the order of this expansion is essentially controlled by the

multiplicity and the shift of the Γ functions appearing in the integrand. In our case, this is

equal to 2 and a− 5/2, respectively, and we thus expect the leading term of the expansion

to be given by e−2mr(2mr)a−5/2.

To obtain the corresponding asymptotic expansion, we want to bring the integrand

into a form where we can use the integral

∫

C

u−zΓ(z − b)
dz

2πi
= u−be−u , (C.2)

where the contour C runs from −i∞ to +i∞ with ℜe z > ℜe b. This can be done using

so-called inverse factorial expansions [101], for which we need the well-known asymptotic

expansion of the Γ function

ln Γ(z) =

(

z − 1

2

)

ln z − z +
1

2
ln(2π) +

n
∑

k=1

B2k

2k(2k − 1)z2k−1
+ O

(

|z|−2n−1
)

(C.3)

with the Bernoulli numbers B2k. Since this expansion is not valid near the negative real

axis, we first have to change our integration variable z → −z, obtaining

Ia(mr) =

∫

C

(mr)−2z Γ(z)Γ(a+ z)Γ
(

3
2 + z

)

Γ
(

7
2 + z

)

dz

2πi
. (C.4)

The contour C now has ℜe z > 0, and since there are no poles in the right half-plane

we can shift the contour to have ℜe z ≫ 1. We then have to choose parameters µ (the

multiplicity) and ν (the shift) such that the sum of the expansions of − ln Γ(µz + ν) and

the Γ functions in the integrand does not contain any term ∼ ln z. In the case at hand,

these are given by µ = 2 and ν = a− 5/2, and we content ourselves with an expansion up

to next-to-leading order. Therefore, we get

ln Γ(z) + ln Γ(a+ z) + ln Γ

(

3

2
+ z

)

− ln Γ

(

7

2
+ z

)

− ln Γ

(

2z + a− 5

2

)

= −2z ln 2 + (3 − a) ln 2 +
1

2
ln(2π) +

4a2 + 16a− 97

16z
+ O

(

z−2
)

,

(C.5)

and exponentiating it follows that

Γ(z)Γ(a+ z)Γ
(

3
2 + z

)

Γ
(

7
2 + z

) = Γ

(

2z + a− 5

2

)√
2π 23−a−2z

[

1 +
4a2 + 16a− 97

16z
+ O

(

z−2
)

]

=
√

2π 23−a−2z

[

Γ

(

2z+a− 5

2

)

+
4a2+16a−97

8
Γ

(

2z+a− 7

2

)

+ O(1) Γ

(

2z + a− 9

2

)

]

. (C.6)

We can now insert this expansion into the integral (C.4) and use equation (C.2) to

integrate each term. Since the multiplicity µ 6= 1, we have to rescale the integration
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variable z first, and this together with the explicit factor of 2−2z in equation (C.6) gives

the exponential falloff ∼ e−2mr. Moreover, equation (C.2) shows that the leading power of

mr is directly given by the shift ν.

Taking everything together, it follows that

Ia(mr) =
√
π e−2mr(mr)a−

5

2

[

1 +
4a2 + 16a− 97

16mr
+ O

(

1

m2r2

)]

, (C.7)

which is the desired asymptotic expansion.
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