
This is a repository copy of Process Modules for GeSn Nanoelectronics with high 
Sn-contents.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/106289/

Version: Accepted Version

Article:

Schulte-Braucks, C, Glass, S, Hofmann, E et al. (7 more authors) (2017) Process Modules
for GeSn Nanoelectronics with high Sn-contents. Solid-State Electronics, 128. pp. 54-59. 
ISSN 0038-1101 

https://doi.org/10.1016/j.sse.2016.10.024

© 2016, Elsevier. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Accepted Manuscript

Process Modules for GeSn Nanoelectronics with high Sn-contents

C. Schulte-Braucks, S. Glass, E. Hofmann, D. Stange, N. von den Driesch, J.M.

Hartmann, Z. Ikonic, Q.T. Zhao, D. Buca, S. Mantl

PII: S0038-1101(16)30189-7

DOI: http://dx.doi.org/10.1016/j.sse.2016.10.024

Reference: SSE 7121

To appear in: Solid-State Electronics

Please cite this article as: Schulte-Braucks, C., Glass, S., Hofmann, E., Stange, D., von den Driesch, N., Hartmann,

J.M., Ikonic, Z., Zhao, Q.T., Buca, D., Mantl, S., Process Modules for GeSn Nanoelectronics with high Sn-contents,

Solid-State Electronics (2016), doi: http://dx.doi.org/10.1016/j.sse.2016.10.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.sse.2016.10.024
http://dx.doi.org/10.1016/j.sse.2016.10.024


  

Process Modules for GeSn Nanoelectronics with high Sn-contents 

C.Schulte-Braucks1, S. Glass1, E. Hofmann1, D. Stange1, N. von den Driesch1, J.M. Hartmann2, 

Z. Ikonic3, Q.T. Zhao1, D. Buca1, S. Mantl1 

1Peter-Gruenberg-Institute 9 (PGI-9) and JARA-FIT, Forschungszentrum Juelich GmbH, 52428 

Juelich, Germany 

2University of Grenobles Alpes, F38000 and CEA, LETI, MINATEC Campus, F-38054, 

Grenoble, France 

3Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, 

University of Leeds, LS2 9JT, Leeds, United Kingdom 

 

 

Abstract - This paper systematically studies GeSn n-FETs, from individual process modules to a 

complete device. High-k gate stacks and NiGeSn metallic contacts for source and drain are characterized in 

independent experiments. To study both direct and indirect bandgap semiconductors, a range of 0 at.% to 

14.5 at.% Sn-content GeSn alloys are investigated. Special emphasis is placed on capacitance-voltage (C-V) 

characteristics and Schottky-barrier optimization. GeSn n-FET devices are presented including temperature 

dependent I-V characteristics. Finally, as an important step towards implementing GeSn in tunnel-FETs, 

negative differential resistance in Ge0.87Sn0.13 tunnel-diodes is demonstrated at cryogenic temperatures. The 

present work provides a base for further optimization of GeSn FETs and novel tunnel FET devices.   
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I.  INTRODUCTION 

Recently, GeSn alloys have emerged as promising group IV semiconductors for electronic [1] as well as 

photonic [2], [3] applications. The breakthrough in epitaxial growth of high-Sn content and strain relaxed 

layers, enabled fundamental direct bandgap group IV alloys grown on Si [4,5]. The direct bandgap property 

is a requirement for efficient Si based light emitters. However, such alloys may also serve as performance 

boosters in nanoelectronics. The small effective mass and associated reduction of intra-valley scattering 

yields high mobility ī-electrons. Performance of GeSn based n-type Metal Oxide Semiconductor Field Effect 

Transistors (MOSFETs) should then be superior to those of their pure Ge counterparts. In addition, the 

possibility of combining direct band-to-band tunneling and low bandgap should yield efficient tunnel field 

effect transistors (TFETs).  

Mobility calculations, using the 8-band k.p method for the -valley band structure and effective mass 

(including nonparabolicity) for the L-valley band structure, predict a significant mobility enhancement as 

soon as the population of ī-valley is sufficiently large. The calculations take acoustic phonon, deformation 

potential, alloy disorder, ionized impurity, and inter-valley scattering into account. Modulation of the Ƚ-

valley population can be achieved either by changing Sn-content or layer strain. For Sn contents below 

~9 at.% GeSn alloys are indirect bandgap semiconductors. Hence, the electron mobility is dominated by 

electrons occupying the L-valley. For larger Sn contents, above the indirect to direct bandgap transition, the 

ī-valley becomes increasingly populated and the electron mobility is boosted significantly. The calculated 

Sn-dependent ī-valley population and effective (weighted-average) mobility is shown in Fig.1(a). GeSn 

pseudomorphically grown on Ge is Sn-content dependently biaxially compressively strained. However, 

growing thicker GeSn layers leads to strain relaxation or even tensilely strained GeSn when combining 

different Sn-contents [6,7]. Decreasing compressive strain has the same effect as increasing Sn content, 

leading to an increase of Ƚ-valley population and of Ƚ-electron mobility according to Fig.1 (b). In contrast, L-

electron mobility is of the order of 4x103 cm2/Vs for all Sn-contents and strain values presented here. The 



  

large difference between Ƚ- and L-electron mobility comes from a much larger effective mass of the L-

electrons. However, just above the indirect to direct transition, the Ƚ-electron mobility is still limited by 

strong inter-valley Ƚ-L scattering, which gives a large relative contribution to total scattering due to a large L-

valley density of states (while the L-electrons are less affected, because of a smaller density of states of ). 

Together with a small fraction of -electrons, this implies that in alloys with 8.5 at.% Sn, at the direct to 

indirect transition, the mobility is always dominated by the L-electrons. However, when Ƚ-L spacing 

increases, by decreasing strain or increasing Sn-content, inter-valley scattering is reduced, and -population 

becomes significant. Consequently, not only the Ƚ-electron mobility but also the effective electron mobility, 

displayed in Fig.1(c), strongly increases. It is also worth noting that biaxial strain induces a non-negligible 

anisotropy of the -valley, and in case of compressive strain the in-plane mobility, relevant for MOSFETs, is 

larger (by up to ~20%) than perpendicular mobility.  

 

Fig. 1: (a) Calculated ī-valley population (top) and effective electron mobility, at 300K and 1014 cm-3 electron 
density, vs Sn-content (bottom) at zero strain. (b) Ƚ and (c) effective electron mobilities for various GeSn alloys, 
dependent on biaxial strain. 

Preliminary works on p- and n- MOSFETs [8], [9] and even TFETs [10] based on GeSn alloys have been 

reported, however, the Sn-contents and strain values were far below the indirect to direct transition. The low 

solid solubility of Sn in Ge < 1 at.% and the non-equilibrium growth restricts the thermal budget to 

temperatures < 350°C for Sn-contents above 10 at.% making process integration challenging. 



  

In this work we discuss advances on low temperature process modules for GeSn-FET devices with Sn-

contents up to 13 at.%, including high-k/metal gate stack deposition and low resistivity metallic NiGeSn 

contact formation. Emphasis is placed on the fabrication and characterization of metal-semiconductor-metal 

(MSM) diodes for Schottky-barrier height (SBH) extraction and Schottky-barrier tuning by dopant 

segregation (DS). GeSn n-FETs are fabricated using these modules and, as a step towards novel devices, p-i-

n tunneling diode characterization is presented. 

II. EXPERIMENTAL 

Due to the low solid solubility of Sn in Ge (< 1 at.%) growth conditions for GeSn with up to 13 at.% Sn 

are far from equilibrium. An industry compatible AIXTRON TRICENT RP-CVD epitaxial reactor was 

employed to grow these layers on 200 mm Ge buffered Si(100) wafers [11]. All process temperatures were 

kept below 350°C in order to avoid Sn-diffusion and segregation. As a first key module, MOS-capacitors 

(MOScaps) with high-k/metal gate stacks on GeSn were investigated. After a wet HF-HCl surface 

preparation, 6 nm HfO2 high-k dielectric was deposited at low temperature by atomic layer deposition (ALD) 

followed by 40 nm sputter deposited TiN metallization both using 200 mm, industry compatible reactors. 

MOScaps with Sn-contents between 0 at.% (Ge-substrate) and 12.5 at.% were fabricated. Standard CMOS 

technology, such as photo lithography and reactive ion etching, was used to define the structures. The 

fabrication ended with a lift-off process after the deposition of 150 nm Al for contacts followed by forming 

gas annealing at 300°C. A set of Capacitance-Voltage (C-V) characteristics at different frequencies measured 

on TiN/HfO2/Ge0.915Sn0.085 capacitors is shown in Fig. 2(a). The good GeSn/HfO2 interface quality is 

evidenced by the small frequency dependent flat-band voltage shift and the small frequency dispersion in 

accumulation. Typical for low bandgap semiconductors, the C-V curves feature a strong minority carrier 

inversion response even at high frequencies > 100 kHz. As a consequence, a reliable extraction of the 

interface state density (Dit) using the conduction method at room temperature becomes difficult [12]. 

However, the minority carrier inversion response is reduced at lower temperatures. We have thus used the 



  

low temperature conductance method as described in work by Nicollian and Brews[13] at T<120 K to extract 

Dit values of 2x1012 cm-2eV-1 at midgap for GeSn capacitors with different Sn contents (Fig. 2(b)). A study 

focusing on the process development and characterization of ternary SiGeSn MOScaps has been published 

recently [14]. 

 

Fig. 1: (a) CV-characteristics of TiN/6 nm HfO2/Ge0.915Sn0.085 MOScap for a set of frequencies. (b) Dit at 
midgap for several Sn-contents extracted at temperatures below 120 K. 

A second fundamental module is contact formation. Metal-semiconductor-metal (MSM) diodes based on 

NiGeSn/GeSn Schottky contacts were fabricated using an oxide mask. After native oxide removal, 10 nm of 

Ni were deposited by sputter deposition and ~ 23 nm NiGeSn was formed by rapid thermal annealing for 10 s 

in N2/H2 forming gas atmosphere. Unreacted Ni was removed by sulfuric acid (96 % aq.). The van-der-Pauw 

method[15] has been used to measure the sheet resistance of the so formed NiGeSn films. The lowest sheet 

resistance was obtained by stano-germanidation at 325°C [16]. The low-resistive NiGeSn-phase could be 

maintained over the complete available Sn-content range from 0 to 12.5 at.%. The sheet resistance of NiGeSn 

for several Sn-contents is shown in Fig.3(d). Furthermore, a smooth NiGeSn/GeSn interface was obtained as 

shown by the cross-sectional Transmission-Electron-Microscopy (TEM) image in the inset of Fig.3(d). 



  

Current transport properties across a metal-semiconductor contact are determined by the Schottky-barrier. 

Previous studies have investigated the electron Schottky-barrier on NiGeSn/Ge0.958Sn0.042 [17] and hole 

Schottky-barrier on NiGeSiSn/Ge0.86Si0.07Sn0.07 [18]. Here, we determine the NiGeSn/GeSn hole Schottky-

barrier from MSM diodes with different contact areas and for several Sn-concentrations using the activation-

energy method. The advantage of this method is that the electrically active contact area does not need to be 

known, e.g. current crowding does not affect the Schottky-barrier extraction. The temperature dependent I-V 

characteristics were measured in a liquid nitrogen cooled cryostat under high vacuum where the temperature 

range from 400 K to 100 K is covered in 10 K incremental steps. From Arrhenius plots of the current 

characteristics for different voltages (Fig. 3(a)) the Schottky-barrier height (SBH) was extracted. According 

to thermionic-emission-diffusion theory, the voltage dependent SBH can be extracted from the slope s of the 

linear region in the ln|I/T²| plot via 

   ൌ െݏ ή  ,  

where k is Bolzmann’s constant and e the electron charge. Outside this linear region, the current is 

determined by the series resistance (high temperatures) or the shunt resistance (low temperatures). The 

primary source of the former is the GeSn resistivity while the latter is impacted by parasitic currents. As the 

MSM diode consists of two back-to-back Schottky diodes, the current corresponds to the reverse bias I-V 

characteristic at all times. The magnitude of the current is given by the lower Schottky-barrier – hole or 

electron barrier – in undoped semiconductors. In our case the hole Schottky-barrier is observed, as the 

nominally intrinsic GeSn layers are actually p-type. The main reasons for the voltage dependence of the SBH 

observed in Fig. 3(b) are image force and static lowering due to the applied voltage. By linearly extrapolating 

to 0 V these effects are suppressed and the hole Schottky-barrier is obtained. Fig. 3(c) shows the results for 

NiGeSn/GeSn Schottky contacts with Sn contents of 0 at.%, 7 at.% and 12.5 at.%. Throughout the entire Sn 

content range, the hole Schottky-barrier remains below 0.10 eV, making NiGeSn an ideal contact for p-type 



  

devices. However, this might imply very high Schottky-barriers for electrons leading to high S/D resistances 

for n-type GeSn and demanding further investigation on n-type GeSn-contacts over a wide Sn-content range. 

 

Fig. 3: Investigation of NiGeSn Schottky-contacts. (a) Arrhenius plot of current characteristics for a 12.5 at.% 
Sn sample. The linear region is fitted and SBH is extracted from the slope. (b) SBH vs. applied bias from (a). 
The SBH for 0 V is extracted by linear extrapolation. (c) Extracted 0 V SBH for various Sn contents. (d) Sheet 
resistance of NiGeSn fabricated on several GeSn layers. The inset depicts a TEM micrograph of a 
NiGeSn/GeSn contact. 

For a metal-semiconductor interface with high carrier concentrations, the tunneling current component 

through the barrier is increased, which reduces the experimentally observed SBH. A well-known method to 

modify the SBH using this effect is dopant segregation [19]. Dopants are implanted shallowly into the 

contact windows before metallization. During the following stano-germanidation step the entire implanted 

region is consumed. Therefore, semiconductor quality is conserved as the damaged area is fully converted to 

stano-germanide. The high-crystalline quality can be seen in the high-resolution TEM-image in Fig.4. 



   

Fig. 4: High-resolution TEM image of the NiGeSn/GeSn interface after BF2 implantation with 10 kV and 
1x1015cm-2 proving the good crystalline quality of the GeSn after NiGeSn-formation 

Due to the different solubility of dopants in metal and semiconductor the snow plough effect leads to 

dopant diffusion through the metallic region into the semiconductor at the interface. This results in a sharp 

doping profile with a high dopant concentration at the metal-semiconductor interface. The dopant segregation 

effect in GeSn for both n- and p-type dopants is presented below. Phosphorous (P), arsenic (As) and boron 

(BF2) were implanted into GeSn test-structures with a dose of 1x1015 cm-² at energies of 7, 13 and 10 keV, 

respectively. In GeSn, P and As act as n-type dopants, while B is a p-type dopant. The implanted region was 

then converted into NiGeSn as described above. Subsequently, doping profiles were measured by means of 

Time of Flight Secondary-Ion-Mass-Spectrometry (ToF-SIMS). Whereas there is no peak visible in the 

doping profile for P, a snow plough effect is observed for both As and B leading to a peak in the As/B-

concentration at the NiGeSn/GeSn interface (Fig. 5). The differences in DS for the n-type dopants As and P 

might be attributed to differences in solubility and diffusion. Nonetheless, as DS is possible both for n- and p-

type dopants, this effect can be used to modify the SBH. 



  

 

Fig. 5: SIMS-profiles of NiGeSn/GeSn contacts with 10 at.% Sn: For Phosphorous impantation no segregation 
was observed (a), whereas there is a clear peak in the Arsenic (b) and Boron (c) profiles. For higher sensitivity 
As and B are measured as GeAs and GeB. 

In order to investigate the impact of DS, NiGeSn contacts were fabricated on in-situ phosphorus doped 

Ge0.875Sn0.125 (GeSn:P) with a 2.7x1018 cm-3 n-type carrier concentration. DS was then performed with As or 

B using the process described above. Since activated As provides electrons in GeSn, DS increases the 

majority carrier concentration at the NiGeSn/GeSn:P interface. For p-type B, DS yields the opposite. An 

increase in majority carrier concentration at the interface allows for a higher tunneling component through 

the barrier. Consequently, the effective SBH observed by the charge carriers is reduced. Fig. 6 shows I-V 

characteristics measured from one NiGeSn contact to the next, for samples without DS or with As or B DS. 

As expected, the I-V curves become more and more Ohmic when increasing the electron concentration at the 

NiGeSn/GeSn:P interface (e.g. by switching from B DS to no DS to As DS samples). 



  

 

Fig. 6: Impact of DS on n-type Ge0.875Sn0.125:P. As the n-type carrier concentration at the NiGeSn/GeSn:P 
interface increases, the I-V characteristic becomes more Ohmic. 

Combining the above described process modules, GeSn n-MOSFETs were fabricated with Sn-contents of 

0 at.%, 7 at.% and 12.5 at.% using ion implanted source/drain (S/D) contacts after forming a gate stack with 

TiN/HfO2. Transfer curves of Ge0.93Sn0.07 n-FETs for a series of temperatures are shown in Fig. 7. 

 

 

Fig. 7: Transfer characteristics of Ge0.93Sn0.07 n-FETs at different temperatures. 



  

At room temperature, the device shows a low Ion/Ioff ratio while a reduced on current at lower temperatures 

is due to the poor n+/p junctions in the S/D regions. The limited process temperatures used here in order to 

avoid Sn diffusion (max. 300°C), was not enough to recrystallize the amorphized regions created by ion 

implantation, leading to very poor junctions with low activation and high access resistances. This is even 

more critical for high Sn-content devices, as shown in Fig. 8 at 80 K. Apart from the un-healed implantation 

damage, the unintentional background doping of GeSn increases with the Sn-content. Furthermore, the 

bandgap is decreased. Both factors lead to increased S/D-leakage and gate induced drain-leakage (GIDL) 

which is caused by band-to-band tunneling and increases exponentially with the reduced bandgap. This is 

also visible in the temperature dependence of the transfer characteristics in Fig. 7. The S/D leakage strongly 

decreases for temperatures below 200 K. The solution for maintaining crystalline GeSn is the use of in-situ 

doping and selective growth in the S/D region. The in-situ doping is discussed below in terms of tunneling 

diodes. 

 

Fig. 8: Id/Ion ratio of GeSn n-FETs at 80 K for several Sn-contents. 

As a demonstration of the potential of direct bandgap GeSn for band to band tunneling and the advantage 

of in-situ doping over ion implantation, we have fabricated GeSn tunneling diodes as an important step 



  

towards advanced GeSn based TFETs. We could push the Sn-content up to 13 at.% as a follow up to 

previous results with a stack of 9 at.% and 11 at.% [1] enabling an even lower bandgap and higher directness 

of the GeSn. As a proof of band-to-band tunneling, negative differential resistance (NDR) is observed at 

cryogenic temperatures (Fig. 9), demonstrating a high doping level of both p- and n-type dopants, which is 

essential for MOSFETs and TFETs. However, due to enhanced diffusion and trap assisted tunneling (TAT) 

in this low-bandgap semiconductor, the NDR vanishes for temperatures above 100 K. For forward bias > 

0.1 V two distinct regions, separated by a kink in the slope of the I-V curve, are visible. While the middle 

part of the curve 0.1 V < Vd < 0.3 V can be attributed to TAT, the diffusion current dominates for strong 

forward bias > 0.3 V. We expect further improvements in the peak to valley current ratio and a move towards 

room temperature NDR with optimized doping profiles. 

 

Fig. 9: Temperature dependent I-V measurements of a Ge0.87Sn0.13 p-i-n diode showing clear NDR at 
cryogenic temperatures. 

III. CONCLUSION 

In this work, process module developments for GeSn FETs were presented and assembled to for the 

fabrication of GeSn n-FETs. A wide range of Sn-contents was covered, allowing the study of both indirect 



  

and direct bandgap GeSn alloys. TiN/HfO2/GeSn MOScaps, showing good C-V characteristics with Dit 

levels of 1012 eV-1cm-2, have been studied for use as gate stacks. NiGeSn is shown to have low sheet 

resistances over the entire Sn-content range and very small Schottky barrier heights on p-GeSn. To further 

optimize the Schottky contacts, dopant segregation with both As and B, was demonstrated for NiGeSn 

contacts. In the case of n-GeSn, it is shown that As dopant segregation leads to increasingly Ohmic contact 

behavior. Due to the metastability of GeSn, junctions made by ion implantation have proven to be 

challenging. A possible solution is in-situ doping which reveals its potential in GeSn-tunnel diodes with 13 

at.% Sn where characteristic negative differential resistance is observed at cryogenic temperatures.  
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