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Abstract5

We present a model combining the two regulatory stages relevant to the approval of a6

new health technology: the authorisation of its commercialisation and the insurer’s decision7

about whether to reimburse its cost. We show that the degree of uncertainty concerning the8

true value of the insurer’s maximum willingness to pay for a unit increase in effectiveness9

has a non-monotonic impact on the optimal price of the innovation, the firm’s expected profit10

and the optimal sample size of the clinical trial. A key result is that there exists a range of11

values of the uncertainty parameter over which a reduction in uncertainty benefits the firm,12

the insurer and patients. We consider how different policy parameters may be used as in-13

centive mechanisms, and the incentives to invest in R&D for marginal projects such as those14

targeting rare diseases. The model is calibrated using data on a new treatment for cystic15

fibrosis.16
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1 Introduction21

The fast pace of growth of health care expenditure relative to GDP growth that has been ex-22

perienced by most developed countries, especially prior to the global economic crisis (OECD,23

2013), has led regulators to look for innovative solutions to deal with the increasing demands24

on health care budgets. With a general consensus that technological innovation plays a central25

role in driving increased costs (Weisbrod, 1991), much effort has been targeted towards the pro-26

cess by which new health technologies are adopted and priced. The aim has been to reduce two27

types of risk faced by regulators: paying for technologies that are not ‘good value for money’28

and adopting technologies whose effectiveness, once deployed, is lower than the efficacy that29

was demonstrated in the clinical trials upon whose results the adoption decisions were made30

(Eichler et al., 2011).31

Including an assessment of a new health technology’s cost-effectiveness has been a com-32

mon response to the first risk. However, the precise role played by cost-effectiveness results in33

determining adoption decisions is less than transparent. Even the National Institute for Health34

and Care Excellence (NICE) in the UK, probably one of the most open institutions in this re-35

spect, does not refer to a single value for the cost-effectiveness threshold, but to a range of36

between £20,000 and £30,000 per Quality Adjusted Life Year gained (NICE, 2008). Running37

a high quality, large, Phase III trial is instrumental in mitigating the second risk. However, in38

recent years, there has been a growing interest in risk-sharing agreements (Pita Barros, 2011;39

Towse and Garrison, 2010; Cook et al., 2008).40

Somewhat surprisingly, as health care insurers have grown more concerned about technology-41

induced expenditure growth, suppliers of innovations have witnessed a substantial reduction in42

the number of new drugs approved per billion of US dollars spent on R&D (Scannell et al.,43

2012; Pammolli et al., 2011) and an increase in the average cost of development of a new drug44

(DiMasi et al., 2003, 2016). This has inspired investigation into the impact of specific regu-45

latory decisions on the incentives to invest in R&D by the industry, including price regula-46

tion (Filson, 2012), cost-effectiveness thresholds (Jena and Philipson, 2008), value-based pricing47

(Danzon et al., 2015) and risk-sharing agreements (Levaggi et al., 2015). Empirical evidence48

suggests that tighter regulation presents weaker incentives for the industry to invest in R&D, and49

delays in the adoption of innovations (Danzon and Epstein, 2008; Golec et al., 2010; Vernon,50

2005; Danzon et al., 2005; Kyle, 2007).51

The tension between the objective of curbing expenditure on health technologies that are al-52

ready available in the market and the need to incentivise investment in R&D that will lead to53

future innovations is known as the trade-off between static and dynamic efficiency. However,54

equity concerns may also be relevant. For a regulatory framework which does not explicitly55

account for the size of the population to be treated, incentives to invest in R&D are weaker for56

technologies targeting comparatively rare diseases (‘orphan diseases’). One reason why these57

are comparatively unattractive areas for R&D investment is that predicted sales revenue is pro-58

portional to the size of the population to treat, while R&D expenses are largely independent of59

it (Acemoglu and Linn, 2004; Dimitri, 2012). Moreover, for rare diseases, meeting the require-60

ments set by authorities regulating market access may be more costly, and require a longer period61

for experimentation, due to the availability of a smaller population from which to obtain a sam-62
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ple. Hence, disincentives for research into rare diseases may be found at both commercialisation,63

and development, stages.64

A new drug needs to pass two key regulatory stages if it is to be approved for use by a health65

care insurer. Firstly, it must be deemed to be safe and efficacious. If these conditions are met, the66

drug can be used, but it must be fully paid for by the patient. If, as is often the case, the majority67

of the cost is paid by an (often public) health insurer, that insurer must then decide whether the68

drug can be reimbursed at a particular price. This price is determined according to rules which69

vary considerably from country to country. The importance of the cost-effectiveness dimension70

has been growing in recent years. As a result, Phase III clinical trials, which previously aimed71

only to assess effectiveness, are often accompanied by an economic evaluation.72

This paper presents a unified, Bayesian decision-theoretic framework to investigate late-stage73

R&D incentives for the pharmaceutical industry in the presence of these two, exogenous, reg-74

ulatory stages. We model a health technology provider operating within a defined jurisdiction75

(such as at the country level) and define its optimal sampling and pricing policies in a two stage76

problem. In the first stage, the provider decides whether to run a Phase III trial and, if it does so,77

the trial’s sample size. In making its decision, the provider knows that, should the regulatory au-78

thority which reviews the trial evidence deem the treatment to be effective at a predefined level of79

statistical significance, the provider may apply for reimbursement by a health care insurer in the80

second stage. This involves proposing a price for the new product which, when combined with81

the evidence on effectiveness provided by the trial, determines the incremental cost-effectiveness82

ratio upon which the health care insurer bases its reimbursement decision.83

To the best of our knowledge, our model is the first to present a full analysis of how the ‘dou-84

ble hurdle’, in the form of the regulatory authority and the health care insurer, affects optimal85

price, expected profit, the ‘go/no go’ decision for a Phase III clinical trial, and the trial’s sample86

size. A key result is that the degree of uncertainty surrounding the true value of the insurer’s87

maximum willingness to pay for a unit increase in effectiveness has a non-monotonic impact on88

the optimal price of the innovation, the firm’s optimal expected profit and the optimal sample89

size chosen for the Phase III clinical trial. We identify three ranges for the uncertainty parameter,90

in which increases in uncertainty have different effects. In the ‘low uncertainty’ range, increases91

in uncertainty result in lower prices, lower expected profits and a smaller trial sample size. In92

the ‘high uncertainty’ range, the situation is reversed: greater uncertainty leads to higher prices,93

higher expected profits and a larger trial sample size. Intuitively, when there exists low uncer-94

tainty, the mass of the probability distribution for willingness to pay is concentrated around its95

expected value. Price and profits fall following a small increase in uncertainty because a price96

reduction maintains the probability of adoption at a comparatively high level, while causing a97

relatively small reduction in the value of revenues conditional upon adoption. In contrast, when98

there exists high uncertainty, price and profits rise following an increase in uncertainty because99

a price rise has little impact on the probability of adoption but increases the reward in the event100

that adoption takes place.101

For ‘intermediate uncertainty’, prices are increasing, expected profits decreasing and sample102

size decreasing in the degree of uncertainty. This implies that there exists a range of values103

of the uncertainty parameter – the ‘intermediate uncertainty’ range – over which a reduction104

in uncertainty benefits the firm, the insurer and patients. Subsequent analysis considers how the105
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regulatory framework may influence a health technology provider’s incentive to invest in projects106

which are deemed by the provider to be ‘marginal’, that is, ones for which the expected profit is107

close to zero, by looking at the incentive to research treatments for rare diseases. In particular, we108

characterise the minimum size of a population to treat such that the firm is incentivised to invest109

in the development of a new drug. In an application using published data from trials of a new110

treatment for cystic fibrosis, defined as a rare disease by the Orphanet register of rare diseases111

(Orphanet, 2014), we show how parameters and regulatory policies in both periods, such as the112

level of the Type I error that characterises the regulatory authority’s decision and the uncertainty113

surrounding the level of the payer’s maximum willingness to pay for one effectiveness unit, can114

affect the incentives to invest.115

Section 2 presents a brief summary of the literature. Section 3 presents the model. Sections116

3.1 to 3.3 provide a non-technical introduction to the model, and additional technical elements117

that are required to obtain the main propositions are introduced in Section 3.4. Theoretical results118

for optimal policies at the regulatory and pricing stages are presented in Section 4. Those wishing119

to skip the technical material and the formal solution of the optimisation problem may omit120

Sections 3.4 and 4 and move directly to the application, which is presented in a self-contained121

manner in Section 5. Section 6 discusses the main results, avenues for future research, and122

concludes.123

2 Background124

The work builds on a number of statistical and economic approaches to Phase III trial design,125

drug approval decisions and research on rare diseases. Kikuchi and Gittins (2009) and Kikuchi et126

al. (2008) propose a ‘Behavioural Bayes’ model of sample size determination in a Phase III trial127

which accounts for the costs and benefits of the trial as well as the deployment of the new treat-128

ment. The model is ‘behavioural’ because, following the ideas of Gittins and Pezeshk (2000),129

although it maximises total expected net benefit from the perspective of the firm developing the130

drug, the behaviours of the regulator and users of the drug are not assumed to be optimal. The131

authors model the level of demand for the new treatment as an increasing function of the point132

estimate of effectiveness from the trial. Willan (2008) and Willan and Eckermann (2010) present133

Bayesian models of drug development in which the optimal sample size is chosen to maximise134

the expected value of sample information, minus the costs of the trial.135

Acemoglu and Linn (2004) consider the effect of the potential size of markets on pharma-136

ceutical innovation and entry of new drugs. The authors derive an equilibrium condition for the137

levels of R&D effort and show that, the greater is the market size, the more profitable it is to sup-138

ply the drug and so the greater will be the research effort required to gain market-leader position.139

Magazzini et al. (2013) consider the effects of R&D sunk cost and market size on a pharmaceu-140

tical company’s decision to enter a clinical trial. They present a two-stage model with a number141

of firms which can enter one or more therapeutic submarkets and compete for customers. In142

line with Acemoglu and Linn, the authors predict that, the greater is the market size, the higher143

is the total R&D investment. With lower success rates and a higher cost per trial, fewer firms144

enter clinical testing. Further, an increase in sunk R&D expenditures lowers the number of trials145
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and firms. Pennings and Sereno (2011) present a real options model evaluating pharmaceutical146

R&D under what they term ‘technical’ and ‘economic’ uncertainty. They recognise the risk of147

failure (for example, due to safety issues) during drug development, but do not model clinical148

trial design or pricing. Dranove and Meltzer (1994) are concerned with the time for new medical149

entities to be approved in the US and conclude that, since the 1950s, more important drugs reach150

the market sooner than less important ones.151

These models are important precursors to ours, but none of them explicitly combines the152

optimal choice of a trial’s sample size with a price-setting rule, in the presence of uncertainty153

surrounding the health care insurer’s maximum willingness to pay for a unit increase in effec-154

tiveness.155

3 The model156

We take the perspective of a Health Technology Provider (HTP) considering whether to com-157

mission a Phase III clinical trial to evaluate the efficacy of a new drug. Let µ be the expected158

value of the incremental effectiveness of the new treatment versus standard in the population159

(assumed unknown to all agents). For simplicity we assume that the trial is placebo-controlled,160

an assumption which may be justified when there exists no approved treatment, or when the new161

treatment is given as an add-on to existing standard treatment. The HTP has a prior distribution162

on µ, defined by a normal random variable with mean µ0 and variance σ2
0 .163

It is assumed that the n responses observed in the trial are used to calculate the sample mean164

X , an unbiased and consistent estimator of µ:165

X | µ ∼ N
(

µ,
σ2

n

)

, (1)

where σ is assumed known to all agents. We use the convention that upper case denotes a random166

variable (e.g., at the start of the planning horizon,X is a random variable) and lower case denotes167

its realisation (e.g., once the trial has concluded, x denotes the realisation of X).168

The HTP knows that, if a clinical trial is commissioned, upon its completion, a Regulatory169

Authority (RA) in charge of granting access to a market with N patients considers the trial’s ev-170

idence concerning the drug’s incremental effectiveness, together with its standard error. There is171

no threat of entry which challenges the market size N , and so it is assumed that N is known with172

certainty by the HTP. We call this stage – establishment of prior, trial commissioning, conduct,173

reporting and RA assessment – ‘Stage 0’.174

If RA approval is granted, the HTP tries to have the new drug reimbursed by a Health Care175

Insurer (HCI) by proposing a price, p > 0, for the treatment of a single patient in the market.176

This stage is called ‘Stage 1’. In proposing the price, the HTP does not know the value of the177

HCI’s maximum willingness to pay (WTP) for an additional unit of effectiveness, i.e. the cost-178

effectiveness threshold. Rather, the uncertainty concerning the HCI’s maximum WTP, from the179

perspective of the HTP, is modelled as a random variable so that, in seeking a higher price for the180

drug, the HTP faces a trade-off: a higher proposed price offers the potential for higher profits,181

but it reduces the probability that the drug is reimbursed by the HCI.182
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The HTP’s choice variables may be summarised as follows: 1. the Stage 0 decision concern-183

ing whether or not to commission a trial and, if a trial is commissioned, what its sample size, n,184

should be; 2. in the event that RA approval is granted, the Stage 1 decision of proposing a price185

to the HCI. The HTP’s ‘planning horizon’, over which optimisation takes place, comprises both186

Stages 0 and 1.187

The optimal Stage 1 pricing policy depends on the estimate of incremental effectiveness that188

results from the clinical trial, which is a random variable from the perspective of Stage 0. Hence189

the problem must be solved recursively. The Stage 1 problem is solved first to yield an optimal190

pricing policy conditional upon x. Then the Stage 0 problem is solved, using the HTP’s beliefs191

about the realisation of X that will result from the clinical trial, to determine whether or not192

to commission the trial, as well as its optimal sample size, accounting for the optimal Stage 1193

pricing policy.194

3.1 The Regulatory Authority195

Conditional upon meeting a requirement for a minimum sample size, nmin, for the trial, the RA’s196

decision is based upon classical frequentist statistical criteria, so that the new treatment is re-197

quired to show superiority to placebo at a given one-sided level of statistical significance, α,198

where α is conventionally taken to be 2.5% (Food and Drug Administration, 1998). Hence ap-199

proval for the new treatment will be granted if and only if n ≥ nmin and the observed value of200

incremental effectiveness, x, exceeds a critical value, xcrit(n) > 0, defined as:201

xcrit(n) ≡ zασ√
n
, (2)

where zα is the standard normal Z-value corresponding to the one-sided significance level, α.202

If this condition is not satisfied, the treatment is rejected by the RA and is not taken forward to203

Stage 1. If the condition is satisfied, the HTP proceeds to Stage 1 and proposes a price to the204

HCI.205

3.2 The Health Care Insurer206

The HCI aims to ensure that only innovations that are deemed to be ‘good value for money’ are207

reimbursed. It compares x with the price, p, proposed by the HTP, using the incremental cost208

effectiveness ratio (ICER). We ignore differences in costs which are not directly related to the209

cost of the drug, implying that the ICER considered by the HCI is p / x. The drug is approved if210

this proposed ICER is less than, or equal to, the HCI’s maximum WTP for an additional unit of211

effectiveness.212

From the perspective of the HTP, the value of the HCI’s maximum WTP is uncertain and213

is modelled using a continuous random variable, W , with cumulative distribution function FW .214

We assume that FW belongs to a location-scale family of random variables, meaning that we can215

characterise any member in terms of the pair (m, s), where m is the expected value (location) of216

W and the scale, s, can be considered a measure of its uncertainty, or spread. This assumption217

is commonly applied in economic models of decision making under risk (Meyer, 1987) and218
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covers a wide class of distributions, including the uniform, normal and logistic. It is sufficiently219

general to contain members that can be used to approximate uncertainty concerning WTP; it is220

sufficiently simple to allow for a convenient and easily understandable parameterisation.221

3.3 The Health Technology Provider’s problem222

At the beginning of Stage 0, the HTP must decide whether or not it should enter Phase III clinical223

testing and, if it does, the optimal sample size for the trial. The cost of performing the trial is224

assumed to be I0 + dn, where I0 > 0 is the fixed cost of setting up the trial and d > 0 is the cost225

of increasing the sample size by one unit.226

Once the trial has taken place and x is known, if RA approval is granted, the HTP’s Stage 1227

problem is to propose a price, p, to the HCI. For the purposes of subsequent analysis we note that,228

since x is known in Stage 1, an increase (decrease) in p always implies an increase (decrease) in229

the ICER. We assume that the fixed cost of commercialising the drug, together with the marginal230

production cost, equal zero. This is plausible if production costs are negligible relative to R&D231

costs, which is true for most pharmaceuticals (Newhouse, 2004; Barton and Emanuel, 2005). In232

Section 5 we relax this assumption using a calibrated application.233

The HCI will adopt the new drug with probability 1−FW ( p / x ;m, s ), which may be inter-234

preted as the individual expected demand function, DW ( · ) = 1 − FW ( p / x ;m, s ). If the drug235

is not approved for reimbursement, the HTP makes zero profits. Define θ ≡ (N, x, m, s ). If236

the HCI approves the drug for reimbursement, profits are N p, implying that the Stage 1 expected237

profit function is:238

Γ1( p; θ ) = N p [ 1 − FW ( p / x ;m, s ) ] . (3)

As already noted, the HTP’s problem is solved recursively. Firstly, it establishes an optimal239

Stage 1 pricing policy as a function of x, taking into account uncertainty concerning maximum240

WTP. It then uses this policy and its prior on µ to solve the Stage 0 problem, make the ‘go/no go’241

decision for the clinical trial, and decide the trial’s optimal sample size. At Stage 0, uncertainty242

on µ is encoded using a normal prior density with mean µ0 and standard deviation σ0, so that the243

prior predictive distribution for X that is used to compute the expected profit over the two stages244

is normal with mean µ0 and standard deviation
√

σ2
0 + σ2/n (Pratt et al., 1995).245

In order to derive the main theoretical results of Section 4, it is necessary to state a number246

of assumptions concerning the probability distribution FW . These are dealt with in Section 3.4.247

The reader wishing to skip these more technical aspects and the formal solution to the model248

may move directly to the application in Section 5.249

3.4 Characterisation of the distribution for WTP250

Following the ideas in Meyer (1987), Van den Berg (2007) and Johnson and Myatt (2006), we251

introduce the following assumptions on the probability distribution for W .252

A1 (Location-scale family)253

Let T be a random variable with zero mean and finite variance. Assume that the cumulative254
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w

FW

m0

Figure 1: An increase in the uncertainty concerning maximum WTP, s, rotates its cumulative

distribution function, FW , around its location parameter, m.

distribution function of T , FT , is twice continuously differentiable with probability density255

function fT . The cumulative distribution function of the HCI’s maximum willingness to256

pay, FW , is assumed to belong to a location-scale family of random variables defined by257

FW (w) = FT ( (w − m) / s), wherem is the location parameter and s the scale parameter.258

A2 (Increasing hazard function).259

The hazard function of T , rT (t) = fT (t)/(1 − FT (t)), is an increasing function for t ∈ R.260

Assumption A1 permits us uniquely to define any member of the family describing maximum261

WTP in terms of the pair (m, s), separating the location and scale properties from the shape of the262

distribution, which is determined by FT . It is required to define the existence of an optimal price,263

as well as to obtain comparative statics results. As shown in Figure 1, the assumption implies that264

an increase in s rotates FW around the location parameter m such that FW increases/decreases265

according to whether w is less than/greater than m. That is:266

w R m ⇐⇒ ∂FW
∂s

⋚ 0. (4)

Intuitively, an increase in s implies that the density is moved from the centre of the distribution267

to the tails, while ensuring that the distribution functions cross only once, at m. The economic268

interpretation is that, following an increase in s, the expected demand function, DW ( · ) = 1 −269
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FW ( v ;m, s ), decreases for values of the ICER that are below m and increases for values that270

are above m.271

Assumption A2 is required to show that the optimal price is unique for every combination272

of the location and scale parameters and may therefore be considered to be a function of m273

and s. It may best be interpreted by referring to the concept of increasing duration dependence274

borrowed from the survival analysis literature. Let us define the ICER as v = p / x, so that275

DW = 1 − FW (v;m, s ) is the probability that the HCI accepts a proposed ICER equal to v. If276

the HTP increases the ICER by a small amount, ∆, the probability of acceptance, DW , decreases277

by approximatelyD′
W (v) ∆. Given acceptance of the technology at v, the conditional probability278

that the technology is rejected due to this price increase is therefore ∆(−D′

W (v)/DW (v)) and is279

increasing in v. Thus, rW (v) = −D′

W (v)/DW (v) can also be interpreted as the marginal risk of280

rejection.281

4 Optimal Stage 0 and 1 policies282

The Stage 1 problem may be thought of as a monopolist’s pricing problem, in which marginal283

cost is equal to zero and there exists a true, fixed, maximum willingness to pay for the new drug.284

This WTP is unknown to the HTP, who therefore places a probability distribution upon it. The285

problem is also similar in nature to models such as those of independent private value auctions286

(Van den Berg, 2007). In this section, we outline the optimal solution for each stage: first, we287

derive the HTP’s optimal Stage 1 pricing policy as a function of the estimate of effectiveness288

from the trial. Then we solve for the optimal Stage 0 sample size.289

4.1 Optimal Stage 1 policy290

At the start of Stage 1, x is known, whereas p is to be chosen optimally by the HTP. The Stage291

1 maximisation problem may be considered from the perspective of the optimal choice of the292

ICER, v, by writing Eq. (3) as follows:293

Γ∗

1( θ ) ≡ max
v > 0

N xv [ 1 − FW ( v; m, s ) ] . (5)

The optimal ICER is the value v = v∗(m, s) which solves the first order necessary condition:294

1 − FW ( v ;m, s ) − vfW ( v ;m, s ) = 0, (6)

or, equivalently,295

v =
1

rW (v ;m, s )
, (7)

which is a simplified version of the standard monopolist’s inverse elasticity rule for a single296

product in the presence of zero marginal production cost (Tirole, 1988). By Assumption A1, an297

optimal solution to the maximisation problem in Eq. (5) exists and satisfies Eq. (6) because the298

profit function Γ1( v; θ ) is a differentiable function of the ICER, v, on the interval (0,∞) and299

the term v[ 1 − FW (·) ] in Eq. (5) tends to zero as v tends to infinity, owing to the assumption300
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v

Γ1, DW

1 Expected Profit (Γ1)

Demand (DW )

v∗

D∗
W

Γ∗

1

Figure 2: Expected profit function (Eq. (5), continuous line), expected demand function

DW ( · ) ≡ 1 − FW ( v ;m, s ) (short dash) and the LHS of Eq. (6) (long dash) showing the

optimal choice of the ICER, v∗.

that T has a finite mean (Van den Berg, 2007). Assumption A2 implies that 1 / rW ( v ;m, s ) is301

decreasing in v, so that the solution v∗(m, s) of Eq. (7) must be unique.302

Figure 2 plots the expected profit function, Γ1, the expected demand function (short dash),303

and the LHS of Eq. (6) (long dash) and shows the determination of the optimal ICER, v∗. Note304

that, according to Assumption A1, an increase in s rotates FW clockwise (Figure 1) and the305

expected demand function counter-clockwise (Figure 2), both around m. The change in the306

slope of the expected demand function following an increase in s affects v∗ through Eq. (6).307

As is clear from comparison of Eqs. (5) and (6), N and x affect the level of optimal profits,308

but not the optimal choice of the ICER. This provides two simple, but important, expressions for309

optimal price and profits in terms of the optimal ICER, v∗, which are required to solve the Stage310

0 problem. They show that the optimal price is independent of the population size, while being311

strictly increasing in the effect size, x:312

p∗( x, m, s ) = x v∗(m, s ), (8a)

Γ∗

1( θ ) = xN ρ∗(m, s ), (8b)

where ρ∗(m, s) ≡ v∗(m, s ) [ 1 − FW (v∗(m, s );m, s ) ]

The following comparative statics expressions for optimal price (ICER) and profit with respect313
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to N , x and m are formally derived in Appendix A.1:314

(i)
∂Γ∗

1

∂N
> 0; (ii)

∂Γ∗

1

∂x
> 0; (iii)

∂Γ∗

1

∂m
> 0; (9a)

(iv)
∂p∗

∂N
= 0; (v)

∂p∗

∂x
= v∗(m, s) > 0; (vi)

∂p∗

∂m
≥ 0. (9b)

The results for N and x have been discussed above. For m, the best way to interpret the result is315

to refer to Figure 2: an increase in m shifts DW to the right, raising the probability of acceptance316

at v∗. The HTP may therefore obtain higher expected profits than before, at a higher price,317

because a marginal increase in v raises expected revenue while the demand, or probability of318

acceptance, remains above D∗

W .319

We next consider results for the response of optimal profit and price to changes in the scale320

parameter, s, highlighting their importance for this work by stating them as propositions. Both321

Assumptions A1 and A2 are needed in the proofs.322

Proposition 1 (Effect of uncertainty surrounding the HCI’s maximum willingness to pay323

on Stage 1 optimal expected profit). Optimal Stage 1 profit is a U-shaped function of the un-324

certainty surrounding the HCI’s maximum willingness to pay for one unit of effectiveness, s.325

The function has a global minimum at ŝ = mrT (0). Moreover, the optimal ICER proposed by326

the HTP will be lower/higher than m according to whether s is lower/higher than ŝ, that is,327

m ⋚ v∗(m, s ) ⇐⇒ ŝ ⋚ s.328

Proof: See Appendix A.1.329

330

Note that, in Proposition 1, a result for the value of v∗ relative to m is stated in terms of the331

value of s relative to ŝ. Proposition 2 extends this partial result to a full characterisation of the332

response of the optimal price (and hence the optimal ICER), p∗, to changes in s. Proposition333

2 states a sufficient condition which, by ensuring that ∂v∗/∂s is a strictly increasing function334

of s and that lims→0 v
∗(m, s) = m may be proved, implies a U-shape also for v∗ as a function335

of s. The proposition requires that an assumption be placed on the Mill’s ratio, defined as the336

reciprocal of the hazard function (M(t) = 1/rT (t)), which holds for common distributions such337

as the normal and the logistic.338

Proposition 2 (Effect of uncertainty surrounding the HCI’s maximum willingness to pay339

on Stage 1 optimal expected price). If the Mill’s ratio, M , satisfies M ′′ > 0, then the optimal340

price is a U-shaped function of the uncertainty surrounding the HCI’s maximum WTP for one341

unit of effectiveness, s, with a global minimum at some s̃ < ŝ.342

Proof: See Appendix A.1.343

344

The economic intuition for these results is as follows. When the uncertainty surrounding345

the true value of the HCI’s maximum WTP is relatively small (‘low uncertainty’), the mass of346

the distribution of W is concentrated around its expected value. Hence, if s increases, a small347

reduction in the proposed price keeps the probability of adoption by the HCI comparatively high,348
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while causing just a small reduction in the value of revenues conditional upon adoption. Hence349

p∗ decreases with s. On the other hand, if s is very large (‘high uncertainty’), a small reduction350

in p affects the probability of adoption only marginally. Hence, if s increases, it is optimal to351

increase p∗, to maximise the reward in the event of adoption taking place.352

Concerning the relative size of the intervals defining low, intermediate and high uncertainty,353

Proposition 1 defines the value of ŝ as a function ofm and the hazard function for the standardised354

distribution chosen to model maximum WTP (ŝ = mrT (0)). As is shown in Appendix A.1, the355

position of s̃ relative to ŝ may also be defined by making reference to this hazard function, using356

results from Proposition 2. A numerical computation shows that ŝ/s̃ = 2.935 for the standard357

logistic distribution that is chosen for the application of Section 5.358

Propositions 1 and 2 have important policy implications, because they imply that, for s suf-359

ficiently large (s > ŝ), reductions in uncertainty surrounding the HCI’s maximum WTP for one360

unit of effectiveness (e.g. by the HCI being more explicit about the decision process that leads to361

adoption/rejection decisions) induce the HTP to propose lower prices and accept lower expected362

profits. When there is low uncertainty (s < s̃), the same policy would lead to the opposite re-363

sult, that is, higher prices and higher expected profits. Interestingly, for intermediate values of364

uncertainty (s̃ < s < ŝ), both parties would benefit from greater transparency, because optimal365

prices would be reduced and optimal expected profits increased. The reason is that, with less366

uncertainty, it is optimal for HTPs to propose lower prices, but the increase in the probability of367

acceptance that this would imply is such that expected profits would be higher. Figure 4(a) of the368

application shows the three regions of s for which these various effects may be observed.369

As the uncertainty surrounding the value of the HCI’s maximum willingness to pay decreases370

towards 0 the expected demand function DW converges towards a step function that equals one371

when v < m and zero when v > m. In this formal limit case, it is clear that the optimal behaviour372

of the HTP is to choose a price just at the limit of what the HCI will accept, so that v∗ = m. This373

suggests that lims→0 v
∗(m, s) = m and, further, that, as s → 0, any change in m is matched by374

an equal change in v∗.375

4.2 Optimal Stage 0 policy376

At the start of Stage 0, the HTP is in possession of the following information which allows it to377

make an optimal ‘go/no go’ decision for the Phase III clinical trial, and to choose the optimal378

sample size of the trial if the decision is ‘go’: 1. it has a prior distribution on expected incremental379

effectiveness, as described at the start of Section 3; 2. it therefore knows, for any sample size n,380

the prior predictive distribution for the point estimate of incremental effectiveness, X , that will381

result from the Phase III trial (see Section 3.3); 3. it has solved the Stage 1 problem, which has382

established the optimal pricing policy and expected reward as a function of the point estimate, x,383

that results from the trial (Eqs. (8a) and (8b)).384

In this section, we explain how the prior predictive distribution for x and the optimal Stage 1385

policy may be used to establish the expected reward at Stage 0 for any choice of sample size n386

and hence the optimal Stage 0 ‘go/no go’ and sample size decisions.387
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4.2.1 Optimal sample size determination388

From the perspective of the start of Stage 0, define Γ0(n; ·) as the expected reward of running a389

Phase III trial with a sample size n and pricing optimally during Stage 1 according to the policy390

of Eq. (8a) to give the reward in Eq. (8b). In Stage 0, the estimate of incremental effectiveness391

that will result from the trial is a random variable, X . Hence so are the optimal prices and392

rewards, since both are linear functions of the realisation of X (see Eqs. (8a) and (8b)).393

The Stage 0 optimal choice of n uses the prior predictive density for X to weight the Stage 1394

rewards and calculate the expected total reward for the project as a function of n. Because, from395

Eq. (8b), Γ∗

1 is linear in x, optimal Stage 0 expected profits, Γ∗

0, may be written as:1
396

Γ∗

0( · ) ≡ max
n

{

N ρ∗(m, s )E
[

X |X > xcrit(n)
]

P(X > xcrit(n) ) − (I0 + dn)
}

, (10)

subject to n ≥ nmin.

P is the probability that the realisation of x from the trial exceeds the RA’s lower acceptance397

threshold, xcrit(n). Since the prior predictive distribution for X is normal with mean µ0 and398

standard deviation σp(n) =
√

σ2
0 + σ2/n, it follows that399

P(X > xcrit(n) ) = 1 − Φ

(

xcrit(n) − µ0

σp(n)

)

, (11)

where Φ denotes the CDF of the standard normal distribution.400

Changing the sample size, n, has two effects on expected rewards: firstly, increasing n re-401

duces the standard deviation of the predictive distribution, σp; secondly, increasing n lowers the402

acceptance threshold, xcrit. As a result, changes in n change both the conditional expected value403

of X and the conditional probability, P , in Eq. (10).404

For an interior solution, n∗ > nmin and ∂Γ0(·)/∂n = 0, implying that the following condition405

holds:406

N ρ∗(m, s )E[X |X > xcrit(n) ]P(X > xcrit(n) )

n

(

eE[·],n + eP(·),n

)

= d. (12)

The left hand side of this expression is the marginal benefit (MB) of sampling at Stage 0, ac-407

counting for the optimal pricing policy and optimal expected reward at Stage 1. The right hand408

side is the marginal cost (MC). The marginal benefit expression is best interpreted by breaking409

it into two parts. The term that is not in parentheses measures the expected Stage 1 reward at410

the (Stage 0) study-subject level; the expected contribution made to profits of one study subject411

recruited to the trial. The term in parentheses is the elasticity of the Stage 1 expected reward with412

respect to n (by a standard result for the elasticity of a product, this is equal to the sum of the two413

1This is because expected revenue at Stage 0 is
∫∞

xcrit(n) xfX N ρ∗( m, s ) dx, where fX is the pdf of the prior

predictive distribution. Eq. (10) follows because N ρ∗( m, s ) is a constant and
∫∞

xcrit(n) fX x dx = E

[

X | X >

xcrit(n)
]

P( X > xcrit(n) ).
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elasticities that appear in parentheses). These elasticities capture the two aforementioned effects414

of n on the conditional expectation and the probability of acceptance, respectively.415

The per-study-subject expected reward will be strictly positive because xcrit(nmin) can never416

be less than zero. Hence the sign of the marginal benefit function is determined by the signs and417

sizes of the two elasticities. Since both E[X |X > xcrit(n) ] > 0 and P(x > xcrit(n)) > 0, the418

sign of each elasticity depends solely on the sign of the partial derivative that each contains. In419

general, marginal benefit may be an increasing, or decreasing, function of n. There will exist a420

unique optimal value of n∗ > nmin if there is a single point where Eq. (12) is satisfied and the421

marginal benefit function is falling. This situation is illustrated in Figure 3.422

Although a full characterisation of the Stage 0 optimality condition is hard to obtain because423

of the aforementioned effects of changes in n, it is possible to state the main Stage 0 result, which424

concerns the comparative statics results for Stage 0 expected profits and optimal sample size with425

respect to s for the case of a unique n∗ > nmin.426

Proposition 3 (Effect of uncertainty surrounding the HCI’s maximum willingness to pay on427

Stage 0 optimal expected profits and optimal sample size). (a) If FW satisfies the assumptions428

of Section 3 and optimal profit, Γ∗

0, is as defined in Eq. (10), then an increase in uncertainty429

increases/decreases Stage 0 profits according to whether s is greater than or less than ŝ as430

defined in Proposition 1:431

∂Γ∗

0

∂s
R 0 ⇐⇒ s R ŝ. (13)

(b) SupposeFW satisfies the assumptions of Section 3 and that there exists a unique n∗(N,m, s) >432

nmin which solves Eq. (10). Suppose further that the conditions required for applying the implicit433

function theorem in the computation of ∂n∗/∂s are fulfilled. Then the optimal sample size is434

increasing/decreasing in the level of uncertainty according to whether s is greater than or less435

than ŝ:436

∂n∗

∂s
R 0 ⇐⇒ s R ŝ. (14)

437

Proof: See Appendix A.2.438

439

Using the same methods of proof, it is possible to derive comparative static results for optimal440

profits with respect toN andm under the assumptions of Proposition 3(a) which lead to Eq. (13):441

(i)
∂Γ∗

0

∂N
> 0; (ii)

∂Γ∗

0

∂m
> 0. (15)

Further, under the assumptions of Proposition 3(a) and (b) which lead to Eq. (14), it is possible442

to derive the comparative static results for optimal sample size with respect to N and m:443

(i)
∂n∗

∂N
> 0; (ii)

∂n∗

∂m
> 0. (16)
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Figure 3: Determination of an interior solution for the optimal sample size at Stage 0 (Eq. (12)).

Two policy implications follow from these results. First, an increase in m, the expected value444

of maximum WTP, not only increases the expected profit of the project, but also the optimal445

sample size of the trial. Second, since the optimal sample size, n∗, is an increasing function of446

the population size, N , it will be optimal to select lower sample sizes for rare diseases and there447

will exist a lower bound on population size below which no trial will be optimal. This matter is448

considered next, in the context of the optimal investment decision.449

4.2.2 Optimal investment decision450

The dynamic efficiency implications of the regulatory framework that were discussed in Section451

1, that is, the incentives for investment in R&D, can be assessed by considering whether or not the452

HTP chooses to invest in the Phase III trial at the start of Stage 0. Having derived the condition453

for the optimal sample size, the condition for the optimal investment decision is straightforward.454

The project will be started if and only if Γ∗
0( · ) > 0.455

Since Γ∗

0(N = 0; ·) < 0 and given Eq. (15(i)), this allows us to define the minimum size456

of a population to treat, such that the expected profit of investing in the development of a new457

treatment is non-negative:458

Nmin = min {N ‖ Γ∗

0(N, ·) ≥ 0 } . (17)

This equation defines a ‘marginal project’ from the perspective of the market size for the drug459

and is required for some of the analysis of the incentives to invest in trials for rare diseases that460

is presented in Section 5.461
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5 Application462

The main theoretical results of Section 4 can be summarised as follows:463

• Assuming Stage 1 is reached, which occurs if the RA approves the new drug, both optimal464

price and optimal expected profit are at first decreasing, and then increasing, in the degree465

of uncertainty surrounding the HCI’s maximum WTP for one unit of effectiveness. The466

minimum point of the HTP’s optimal price function lies to the left of the minimum point467

of the Stage 1 optimal expected profit function.468

• In Stage 0, both optimal sample size and expected profit over the two stages are first de-469

creasing, and then increasing, in the degree of uncertainty surrounding the HCI’s maximum470

WTP.471

The economic intuition for these results has been stated in the paragraphs immediately fol-472

lowing Proposition 2. In this section, we provide a calibrated application of the theoretical model,473

which we believe is important for a number of reasons. Firstly, it illustrates the U-shaped na-474

ture of the optimal price, profit and sample size functions that were described in Propositions475

1–3. Secondly, it permits us to use published data to provide tentative estimates of the quanti-476

tative impact of changes in some key parameters on optimal values. Thirdly, we generalise the477

model proposed in the theoretical analysis a little. The numerical results obtained in this section478

are valid for the specific setting under consideration and cannot be easily extended to different479

applications. However, the quantitative nature of the numerical results is consistent with the the-480

oretical findings of Section 4. Those wishing to apply the framework in their own settings are481

referred to the code that is released as part of the Online Supplementary Material.482

For the model to be operationalised, a functional form for FW , the CDF of the HCI’s maxi-483

mum WTP, must be specified. We use the logistic distribution, which satisfies all of the assump-484

tions of Section 3.4 and the sufficient condition of Proposition 2. Moreover, it has been used485

for a recent empirical analysis of how estimates of cost-effectiveness and other variables affect486

NICE decisions (Dakin et al., 2014), which we refer to in deriving the values of the location and487

scale parameters.488

Throughout Sections 3 and 4, we assumed that there was no cost to produce or commercialise489

the drug if it were to be approved for reimbursement by the HCI. This allowed us to simplify the490

proofs of some of the results, in particular concerning the choice of the optimal sample size in491

Stage 0. In order to enrichen the contribution of our application, we relax this assumption by492

introducing a parameter representing the production cost per patient treated, cp(N) ≡ I1/N + b,493

where I1 ≥ 0 is a fixed investment cost and b ≥ 0 is a constant marginal cost of production. With494

this assumption, the Stage 1 expected profit function (Eq. (3)) may be written as495

Γ1( p; θ̃ ) = N( p− cp(N) ) [ 1 − FW ( p / x ;m, s ) ] , (18)

where θ̃ ≡ (N, x, m, s, I1, b ). For the parameter values which we choose for the simulation,496

the qualitative nature of our main results agree with the theoretical results. In particular, we ob-497

serve a U-shaped optimal Stage 1 profit and optimal price function, provided that m > cp(N)/x498
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(this is a reasonable condition, since it simply requires that the price that the HTP would choose499

if HCI’s maximum willingness to pay for one effectiveness unit is m for sure, exceeds cp(N)).2500

We study the recent NICE health technology appraisal of mannitol dry powder (Bronchitol)501

for inhalation for treating cystic fibrosis (NICE, 2012b), which is deemed to be a rare disease502

according to the Orphanet register of rare diseases, with a prevalence of approximately 12.6 per503

100,000 in Europe (Orphanet, 2014).504

The technology is chosen for a number of reasons. Firstly, the status of cystic fibrosis as505

a rare disease means that the R&D decision could potentially be considered to be a ‘marginal506

project’, that is, one with a market size N that is close to the minimum population size required507

for investment to be deemed profitable, Nmin (refer to Eq. (17)). Secondly, high quality data508

on the clinical effectiveness, costs and QALYs upon which NICE made its recommendations509

are available in the NICE report itself and the publications reporting the results of the two key510

Phase III clinical trials (Bilton et al. (2011) and Aitken et al. (2013)). Thirdly, the control was511

effectively placebo in both clinical trials, that is, it was the same drug set at a very low, non-512

therapeutic, dosage. Finally, although the EMA and NICE approved the product for use in 2012513

for a sub-group of cystic fibrosis patients (described below), the U.S. FDA denied marketing514

authorisation in 2013, based on the same clinical trial results, citing concerns over the high level515

of discontinuation with treatment in the clinical trials and the failure to achieve effects that were516

statistically significant.517

Although the trials reported by and overlapped in calendar time, we assume a hypothetical518

scenario in which the first trial (Bilton et al., 2011) reported before the second (Aitken et al.,519

2013). This permits us to use results from the first trial to assign values to the parameters of the520

model, including the prior mean, µ0, and variance, σ2
0 for expected incremental effectiveness. We521

take the perspective of a HTP using information from the first trial to decide whether or not to go522

ahead with the second trial. Full details on the calculations that are used to inform the parameter523

values are contained in Appendix B.524

Table 1 summarises the main parameter values, together with their sources. It should be525

noted that the application is illustrative and is not intended to be a comment on the efficacy or526

cost-effectiveness of the technology in question.527

5.1 The role of uncertainty528

Figure 4(a) shows the U-shaped nature of the optimal ICER (price) and expected Stage 1 profit as529

functions of the uncertainty parameter, s, and the three regions representing ‘low’, ‘intermediate’530

and ‘high’ uncertainty, within which the responses of price and profits to increases in s differ:531

• The ‘low uncertainty’ range is defined as the region to the left of the minimum point on532

2When introducing fixed and variable production costs, the optimal price is no longer independent of N but

decreasing in it. The derivation of ŝ from Proposition 1, needs to be adjusted as follows: ŝ = (m − cp(N)/x)rT (0).

Moreover, the simple result describing the position of ŝ relative to s̃ following Proposition 2 no longer holds, and the

optimal ICER is no longer independent of x. This, in turn, implies that optimal Stage 1 profit is no longer linear in

x, which complicates the theoretical analysis of the optimal Stage 0 policy. Nevertheless, given the parameter values

that we choose, the U-shaped behaviour of Γ∗
0 and n∗ with respect to s that was derived for the case cp(N) = 0 is

still observed.
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Parameter Definition Source Value

1. µ0 Expected value of prior beliefs concerning µ Bilton et al. (2011) 85.0mL

2. σ0 Standard deviation of prior beliefs concerning µ Bilton et al. (2011) 16.1mL

3. I0 Fixed cost of carrying out clinical trial Assumption £10,000,000

4. d Marginal cost of one pairwise allocation Assumption £50,000

5. p Estimated cost of one year’s course of mannitol for patient

who responds, and adheres to, treatment

NICE (2012a) £6,041

6. Estimated cost of placebo NICE (2012b) £0

7a. ICER Incremental cost-effectiveness ratio (using rhDNase) NICE (2012b) £47,095/QALY

7b. ICER Incremental cost-effectiveness ratio (not using rhDNase) NICE (2012b) £41,074/QALY

7c. ICER Incremental cost-effectiveness ratio (not using rhDNase,

rapidly declining lung function)

NICE (2012b)∗ £29,999/QALY∗

8. m Location parameter of logistic distribution Dakin et al. (2014) £39,417/QALY

9. s Scale parameter of logistic distribution Dakin et al. (2014) £11,230/QALY

10. σ Population standard deviation of incremental effectiveness Bilton et al. (2011) 190.5mL

11. Fixed annual prevalence of patients to be treated NICE (2012a) 10,000

12. Market exclusivity horizon EU legislation 10 years

13. N Size of the population to treat with the new technology 11. and 12. 100,000

14. I1 Fixed cost of production Assumption £10,000,000

15. b Marginal cost of production Assumption £0

16. zα Critical value for RA threshold NICE (2012b) 1.96

Table 1: Parameter values and sources used for the application.

NOTES: ∗Reported as being under £30,000 per QALY

1
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the optimal ICER function, s̃= £6,604/QALY. As s −→ 0, the optimal ICER tends to533

the expected value of maximum WTP for one effectiveness unit (m = £39,417/QALY).534

In this region, both optimal price and optimal expected Stage 1 profits are decreasing in535

uncertainty s.536

• The ‘high uncertainty’ range is defined as the region to the right of ŝ = £19,382/QALY,537

the value of the uncertainty parameter which minimises Γ∗
1 and which sets the optimal538

value of the ICER equal to the expected value of maximum WTP, m, of the HCI (see539

Proposition 1). In this region, both optimal price and optimal expected Stage 1 profit are540

increasing in uncertainty s.541

• The ‘intermediate uncertainty’ range is defined as the region lying between s̃ and ŝ. In this542

region, optimal price is increasing in s and optimal expected Stage 1 profit is decreasing in543

s.544

Figure 4(b) shows how these non-monotonic Stage 1 responses feed-back to the determina-545

tion of optimal sample size, n∗, at Stage 0. Both n∗ and Γ∗
0 are first decreasing, then increasing546

in s, with the minimum of the two functions occurring at ŝ.547

Although a full welfare analysis is beyond the scope of the present work, the results obtained548

so far provide some interesting insights. For example, the value of s calibrated using results from549

the analysis of NICE’s decision by Dakin et al. (2014) (£11,230 per QALY) lies between the two550

threshold values previously reported (£6,604 and £19,382 per QALY). Hence for the specific551

case under consideration, a reduction of s to any value between these two values would have the552

following implications: a lower price (Figure 4(a)), a stronger incentive to invest in R&D via553

expected Stage 0 profits (Figure 4(b)) and more precision on the estimate of the effectiveness via554

n∗ (Figure 4(b)).555

Another interesting question is whether, and to what extent, a lack of transparency on the556

true cost-effectiveness threshold (s > 0) can shift rents from the HTP to the HCI. In the formal557

limit case of s = 0 per QALY, if mx > cp(N), the HTP’s optimal price in Stage 1 is p∗ = mx.558

With the parameter values of our application, and assuming that m is equal to the true value559

of the HCI’s maximum WTP, the optimal sample size for this special case is n∗ = 135, and560

the corresponding optimal profit Γ∗

0 = £575,000,000. In comparison, for the situation where s561

equals the value calibrated from NICE’s actual decisions (s = £11,230 per QALY), n∗ = 117562

and Γ∗

0 =£299,000,000. An interesting extension would be to estimate the Expected Value of563

Perfect Information about the cost-effectiveness threshold.564

5.2 The role of market size565

The results of Section 4 showed that the optimal price setting policy is independent of the size566

of the population to treat when cp(N) = 0 because the optimal profit per patient would be567

independent of N . Figure 5(a) shows that this is no longer the case when costs cp(N) > 0 are568

accounted for in Stage 1. In particular, the optimal price is decreasing in the population size,569
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Figure 5: Expected profits at the per patient level as a function of price/sample size for various

sizes of the market.

meaning that, for a comparatively rare disease, it is optimal to propose a higher price. This, in570

turn, leads to a lower probability of acceptance and lower expected profits per patient.3571

Fixing s at £11,230/QALY, Figure 5(b) shows the expected profit per patient at Stage 0 for572

different values of the market size as a function of sample size.4 The figure shows that the optimal573

sample size increases with the size of the population. In increasing order (that is, as N increases574

in Figure 5(b)), the optimal sample sizes for the Stage 0 decision are n∗ = 0, 53, 73, 117 and575

168, respectively. The probability of RA acceptance under the prior, is also strictly increasing576

in N and may be computed for each specific optimal sample size. Performing this calculation577

yields values of probability of adoption equal to 0, 0.864, 0.934, 0.983 and 0.995, respectively.578

From the policy perspective, the main concern about orphan diseases is the lack of incentives579

for the firm to undertake R&D projects that could benefit those patients. In Section 4.2.2 we580

defined Nmin as the minimum market size such that the HTP would find it profitable to start the581

project. Figure 5(b) shows that, for the set of parameters used in the calibration, Nmin is between582

5,000 and 10,000.583

The analysis presented so far shows that some of the parameters relevant in Stage 1 and which584

might be, to some extent, under the control of the HCI may be crucial in providing incentives585

to invest in R&D. We conclude the discussion of our application with an attempt to investigate586

quantitatively the role of two parameters characterising Stage 0: α and nmin. Figure 6 shows Nmin587

3The economic intuition for the effect of N on p∗ is straightforward. Consider two drugs with very different

population sizes, but common fixed costs of production I1 > 0. For both drugs, an increase in p increases expected

revenues if the technology is eventually adopted, but also reduces the probability of adoption. Absent fixed invest-

ment costs, both terms would be proportional to N and the marginal condition would not be affected. But with

I1 > 0, what is left to the firm producing the drug for a less common disease is less. Therefore, the marginal cost

due to the reduction in the probability of adoption is less. This leads to a higher value of the optimal price.
4Figure 5(b) shows profits per patient, and not total profits, for the sake of clarity. Note that the maximisation

problem is unaffected.
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Figure 6: Minimum patient population to benefit (Nmin) as a function of RA’s minimum sample

size (nmin) for different values of α.

as a function of nmin for some different values of α, with 5 ≤ nmin ≤ 80. As expected, for a given588

value of nmin, Nmin decreases in the significance level, α, because a stricter policy by the RA (a589

lower α) requires, other things being equal, larger samples, which pay less in terms of expected590

profit when the population to treat is small (refer to the per study-subject reward that appeared591

in the first order necessary condition for the optimal choice of the sample size in Eq. (12)). For a592

given value of α, Nmin is non-decreasing in nmin because, when the latter is a binding constraint,593

an increase means that a larger market is required to make non-negative profits. The flat parts of594

the curves correspond to regions where n∗ > nmin. Overall, the figure suggests that any policy595

consideration on the impact of statistical requirements on the incentive to invest in R&D should596

take both of these parameters into account. In quantitative terms, for the set of parameters used,597

the impact of increasing α from 2.5% to 20% is to almost halve the value of Nmin when nmin is598

very small.599

6 Discussion and conclusions600

Historically, economic considerations have played a secondary role to the demonstration of safety601

and efficacy in the drug-approval process. However, the increasing need for regulators to assess602

the economic implications of their decisions implies that integration between economic and clin-603

ical considerations is much greater nowadays. To the best of our knowledge, the two-stage model604

that we propose is the first to present a full analysis of how regulation of access to the market605

interacts with the reimbursement decision of a health care insurer, and how exogenous incentives606

within the regulatory framework either encourage, or discourage, investment in R&D for new607

pharmaceutical products.608
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Our main results relate to how the degree of uncertainty surrounding the true value of the609

health care insurer’s maximum willingness to pay for one unit of effectiveness impacts optimal610

profit, price and sample size. In particular, it is shown that, for reasonable functional forms611

describing the uncertainty surrounding the true value of the insurer’s willingness to pay, optimal612

profit, price and sample size are U-shaped functions of the uncertainty parameter. This allows us613

to identify three regions – ‘low uncertainty’, ‘intermediate uncertainty’ and ‘high uncertainty’ –614

within which changes in the uncertainty parameter have different qualitative effects. Although615

a full welfare analysis is beyond the scope of our paper and we cannot characterize the optimal616

degree of uncertainty either from the societal or the HCI’s perspective, the regions provide clear617

insights on who gains and who loses from changes in the degree of uncertainty. In the ‘low618

uncertainty’ region, an increase in uncertainty leads to lower prices, lower expected profits, and619

smaller sample size. Overall, the policy implication is that, in the ‘low uncertainty’ region,620

an increase in uncertainty benefits the insurer via a reduced impact of the new product on the621

budget, but it also reduces expected returns for the industry and hence incentives to invest in622

R&D. Even if development is undertaken, sample sizes of Phase III trials will be smaller. In623

contrast, in the ‘high uncertainty’ region, the impact of an increase in uncertainty leads to a624

higher price, higher expected profit, a larger impact on health budgets, and a larger sample size.625

A particularly interesting case is that of ‘intermediate uncertainty’: in this region, by reducing626

uncertainty, insurers would be better off due to the lower prices and the more precise estimate627

of effectiveness provided by trials with larger samples; the industry would benefit from larger628

expected profits; this in turn will benefit patients, especially those with diseases in areas that are629

of limited interest for the industry, such as orphan diseases, by making the decision to invest in630

R&D more likely. This final case is of particular interest given the results of the application,631

which show that the calibrated value for the uncertainty parameter lies within the intermediate632

region.633

A question that naturally follows from this result is how, in practice, an insurer could change634

the degree of uncertainty around its maximum WTP for one unit of effectiveness. While many635

insurers include cost-effectiveness among criteria on which their adoption decisions are based,636

few of them explicitly state a specific threshold or a range for the maximum value of the ICER.637

Those that already refer to a specific range could reduce uncertainty by either narrowing the638

range, or by defining, and making public, rules that affect the adoption decision within that639

range. For example, a price premium could be explicitly defined as a function of the size of the640

population to treat, if favouring orphan drugs is an objective, or it could be stated that the upper641

limit of a range is the relevant cost-effectiveness threshold for drugs targeted to life-threatening642

conditions.643

Concerning incentives that can be provided at the development stage, it has been suggested644

that this opportunity for regulators might have been under-explored so far (Clarke et al., 2014).645

Our model provides a framework to investigate this and, in principle, to study the substitutability646

of incentives at the commercialisation and the development stage. Our application includes a647

tentative estimate of the impact of a change in the significance level (α) of the statistical test, used648

by the RA to approve a new drug, on the minimum size of the market that ensures non negative649

expected profit from an investment in R&D. There is a strong convention within RAs that the650

type I error rate should be controlled at 5% 2-sided, that is, that the one-sided level, α, should651
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be 0.025. However, the FDA has stressed that this rule is not written in stone and actual FDA652

decisions for rare diseases confirm this (Sasinowski, 2012). Our results on the consequences of653

different choices of α are therefore practically relevant.654

We conclude with a discussion of a number of limitations of the model and opportunities for655

future research. It is assumed that there is only one authority which controls access to the market656

– the RA – and one which decides on reimbursement – the HCI. Although key decisions tend to657

be concentrated in a limited number of RAs in the real world (e.g. the FDA in the US and the658

EMA in Europe), this is not the case for insurers. In addition, it is assumed that the regulatory659

hurdles are set exogenously, and we study the optimal behaviour of the HCI in the presence660

of these hurdles. A natural next step would be to consider the regulatory process itself as an661

optimisation problem, and to model the optimal behaviour of both HCI and regulatory agencies.662

Regarding reimbursement decisions, our model is based on a ‘cost per unit of effectiveness’663

criterion. However, not all insurers use such an approach. For example, multiple HCIs are active664

in the US, and US legislation bans the formal use of cost per QALY for insurance decisions.665

Both the concept of quality-adjustment of life, and of setting a price on the value of a life (year)666

are far from uncontroversial. Our model could potentially be extended to allow the sponsor gain667

to be dependent on decisions from a multitude of RAs and HCIs. Moreover, decisions made668

in different countries may not be independent, such as when reference pricing mechanisms are669

adopted. Taking this into account would raise a number of interesting and challenging questions670

related to strategic interactions and a provider’s optimal sequence of reimbursement decisions.671

Another valuable extension would be the formal modelling of price negotiations at Stage 1.672

One could also relax the assumption that the incremental cost of the new technology only673

depends on the difference between prices. A better technology may, for example, also reduce674

other health care costs, which would introduce dependency between incremental cost and effec-675

tiveness. Methods similar to those used by Kikuchi and Gittins (2009) and Kikuchi et al. (2008)676

(see Section 2) could be used to model such a relationship.677

Although exogenous in our model, the HTP’s beliefs about the HCI’s maximum WTP could678

be modelled as endogenous, so that the HTP learns about the true value of the maximum WTP679

by observing the HCI’s decisions and updating beliefs.680

Although it is acknowledged that the drug discovery and development process extends well681

beyond the remit of this paper (Pennings and Sereno, 2011), the part of the process that we682

consider is crucial because of the size of its costs, which are estimated to be around 50% of683

the total cost of clinical development (Pharmaceutical Research and Manufacturers of America,684

2014), and the high probability of failure (estimated to be around 50% in Phase III). Neverthe-685

less, the recursive nature of the solution to the model could permit earlier stages in the drug686

development process to be added.687

Finally, our model has assumed that the RA and HCI refer to a common measure of effec-688

tiveness for a single condition. Things get more complicated when RAs and HCIs focus on689

distinctly different variables: RAs often prefer an objective, ‘hard’, endpoint, while HCIs may690

look more at patient-reported quality-of-life. Recently, the EMA has invited HCIs to increase691

the alignment. In an extension, we could therefore assume the existence of two different, but692

correlated, response variables, one for each stage of the model. An interesting question would693

be the degree to which a lack of alignment between RA and HCI objectives could disincentivise694
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drug development. A further extension could consider use of the product for multiple conditions.695
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703

A Proofs704

A.1 Stage 1705

Proofs of comparative static results (Eqs. (9a) and (9b)):706

• Results for Γ∗

1: Since v∗(m, s) > 0 and 0 < FW < 1, that
∂Γ∗

1

∂N
and

∂Γ∗

1

∂x
are positive is707

immediate from Eq. (8b). By the Envelope Theorem,708

∂Γ∗

1

∂m
=
∂Γ1

∂m

∣

∣

∣

∣

p=p∗

= Np∗

(

1

s

)

fT

(

p∗/x−m

s

)

> 0.

• Results for p∗: Partial differentiation of Eq. (8a) immediately gives ∂p∗

∂N
= 0 and ∂p∗

∂x
=709

v∗(m, s) > 0. Since v∗ satisfies the first order condition, differentiation of Eq. (7) gives710

∂v∗

∂m
rW (v∗ ;m, s ) + v∗

(

∂rW
∂v

(v∗ ;m, s )
∂v∗

∂m
+
∂rW
∂m

(v∗ ;m, s )

)

= 0 ⇐⇒

∂v∗

∂m
= − v∗ ∂rW

∂m
(v∗ ;m, s )

rW (v∗ ;m, s ) + v∗ ∂rW

∂v
(v∗ ;m, s )

.

By Assumption A2, ∂rW

∂v
≥ 0. Since v∗ > 0 and rW > 0 always hold, the denominator of711

the fraction above is positive and the sign of ∂v∗

∂m
equals the sign of −∂rW

∂m
. But ∂rW

∂m
≤ 0,712

so that ∂v
∗

∂m
≥ 0 and ∂p∗

∂m
≥ 0.713

�714
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Proof of Proposition 1:715

Let g(v ;m, s ) = vrW (v ;m, s ). Assumption A2 can be used to show that g is strictly increas-716

ing in v:717

∂g(v ;m, s )

∂v
= rW (·) + v

∂rW (·)
∂v

> 0. (19)

Note that the hazard function for W is rW (w) = rT
(

w−m
s

)

/s.5 As can be seen by rearranging718

Eq. (6), g(v∗(m, s ) ;m, s ) = 1. Combining this result with Eq. (19) implies that, for any v,719

v ⋚ v∗(m, s ) if and only if g(v ;m, s ) ⋚ 1. In particular, for v = m,720

m ⋚ v∗(m, s ) ⇐⇒ mrW (m ;m, s ) ⋚ 1 ⇐⇒ mrT (0)/s ⋚ 1 ⇐⇒ mrT (0) ⋚ s.

Hence, for any fixed m > 0, there exists a value of the scale parameter, ŝ = mrT (0), such that721

the optimal ICER, v∗(·), is greater than m if and only if s > ŝ. This observation may be used722

to characterise the response of Γ∗

1 to changes in s. For, by the Envelope Theorem applied to Eq.723

(8b) and the rotation result for FW in Eq. (4) (and shown in Figure 1):724

∂Γ∗
1

∂s
=
∂Γ1

∂s

∣

∣

∣

∣

p=p∗

= −Nxv∗
∂FW
∂s

(v∗;m, s ) R 0 ⇐⇒ v∗ R m ⇐⇒ s R ŝ.

�725

Proof of Proposition 2:726

By making use of the substitution v = m + st, we see that solving the first order necessary727

condition in Eq. (7) for v > 0 is equivalent to solving the following transformed problem for728

t > −m/s,729

(m+ st)rT (t)/s = 1 ⇐⇒ −m/s = t− 1/rT (t) ⇐⇒ ψ(t) = −m/s,

where ψ(t) ≡ t − 1/rT (t). By Assumption A2, ψ(t) is strictly increasing. This implies that730

its inverse ψ−1 is well-defined and that the solution to the equation above may be written as731

t∗ = ψ−1(−m/s). The corresponding solution for the original problem is then v∗ = m +732

sψ−1(−m/s). Fixing m, differentiation with respect to s yields733

∂v∗

∂s
(s) = ψ−1(−m/s) +

m/s

ψ′ (ψ−1(−m/s)) .

Now, since the change of variable θ = ψ−1(−m/s) ⇐⇒ ψ(θ) = −m/s defines a strictly734

increasing mapping of s ∈ (0,∞) on to θ ∈ (−∞, ψ−1(0)), ∂v∗

∂s
(s) is strictly increasing if and735

only if θ 7→ θ− ψ(θ)
ψ′(θ)

is strictly increasing. Differentiation with respect to θ results in the sufficient736

condition737

1 − ψ′(θ)2 − ψ(θ)ψ′′(θ)

ψ′(θ)2
> 0 ⇐⇒ ψ(θ)ψ′′(θ) > 0.

5The probability density function of W may be written as fW (w) = F ′
T (w−m

s
) = fT

(

w−m
s

)

/s. The hazard

function for W is therefore: rW (w) = [fT

(

w−m
s

)

/s] /
[

1 − FT

(

w−m
s

)]

= rT

(

w−m
s

)

/s.
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Since ψ(θ) = ψ(ψ−1(−m/s)) = −m/s < 0 when m > 0, we obtain the sufficient condition738

ψ′′(θ) < 0 for θ ∈ (−∞, ψ−1(0)). Because M(θ) = θ − ψ(θ), this is equivalent to M ′′(θ) > 0.739

This concludes the proof thatM ′′ > 0 implies that ∂v
∗

∂s
(s) is strictly increasing. By combining740

this result with the result from Proposition 1 thatm ⋚ v∗(m, s) ⇐⇒ ŝ ⋚ s, it is straightforward741

to show that lims→0 v
∗(m, s) = m. This in turn implies that, as s increases, v∗ is first strictly742

decreasing and then strictly increasing, attaining a minimum value at some s̃ which must satisfy743

0 < s̃ < ŝ.744

�745

Position of s̃ relative to ŝ:746

Proposition 1 defines ŝ = mrT (0). There is no closed form solution for the value of s̃. However,747

from the proof of Proposition 2, it may be shown that s̃/m = 1/|ψ(θ̃)|, where ψ(t) = t−1/rT (t)748

and θ̃ = argmaxθ<0|θ|rT (θ). As a result, the ratio ŝ/s̃ may be written as rT (0)|ψ(θ̃)| and is749

entirely determined by the choice of the standardised distribution for the uncertainty concerning750

the HTP’s maximum WTP. Numerical computations show that ŝ/s̃ = 2.935 for the standard751

logistic distribution and ŝ/s̃ = 2.946 for the standard normal distribution.752

A.2 Stage 0753

Proof of Proposition 3:754

Let ζ(n) = E

[

X |X > xcrit(n)
]

P(X > xcrit(n) ), so that Γ0 = N ρ∗(m, s )ζ(n) − (I0 + dn).755

By the Envelope Theorem,756

∂Γ∗

0

∂s
=
∂Γ0

∂s

∣

∣

∣

∣

n=n∗

= ζ(n∗)N
∂ρ∗(m, s )

∂s
. (20)

Since ζ(n∗) is always positive and the sign of ∂ρ∗/∂s equals the sign of ∂Γ∗

1/∂s (for any fixed,757

but arbitrary, x), part (a) follows from Proposition 1.758

By the implicit function theorem,759

∂n∗

∂s
= −

(

∂2Γ0

∂n2

)−1
∂2Γ0

∂s∂n

∣

∣

∣

∣

n=n∗

. (21)

By assumption, ∂2Γ0/∂n
2

∣

∣

∣

∣

n=n∗

< 0, and hence the sign of ∂n∗/∂s equals the sign of760

∂2Γ0

∂s∂n

∣

∣

∣

∣

n=n∗

=
∂2

∂s∂n
(Nρ∗ζ − (I0 + dn))

∣

∣

∣

∣

n=n∗

= N
∂ρ∗(m, s)

∂s

∂ζ(n∗)

∂n
. (22)

By definition, n∗ solves the first order necessary condition, implying761

∂ζ(n∗)/∂n = d/(Nρ∗(m, s)) > 0. Therefore, the sign of ∂n∗/∂s equals the sign of ∂ρ∗/∂s,762

and part (b) follows from Proposition 1.763

�764
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B Sources of parameter values for application765

We briefly summarise the results of the two clinical studies considered (Bilton et al. (2011);766

Aitken et al. (2013)) and the NICE health technology appraisal as it relates to the estimates of767

cost-effectiveness.768

• The Phase III trials. Bilton et al. (2011) compared 400 mg of mannitol twice daily with769

placebo for 324 subjects aged 6 years or over, randomised 3:2 to mannitol and control. The770

subjects were based in Europe, Australia and New Zealand. At 26 weeks, upon conclusion771

of the double-blind stage of the study, the authors reported a significant improvement in772

forced expiratory volume in one second (FEV1) in subjects receiving mannitol compared773

with control. Aitken et al. (2013) compared the same dosage of mannitol to placebo for774

192 patients aged 6 years or over, again randomised 3:2. Patients were recruited from775

North America, South America and Europe. The authors reported a statistically significant776

improvement in FEV1 for the mannitol group compared with control during the double-777

blind stage of the study (the first 26 weeks). Both studies included open label periods,778

running for 26 weeks after the double-blind stage had concluded, intended to collect more779

data on adverse reactions. The studies also collected data on quality of life, together with780

other secondary outcome measures.781

• The NICE Health Technology Appraisal’s assessment of cost-effectiveness. Cost-782

effectiveness was assessed in the manufacturer’s submission to NICE using a Markov783

model comparing treatment with and without mannitol and populated with data from the784

clinical trials (NICE, 2012a). The NICE technology appraisal calculates ICERs according785

to subgroups defined according to whether or not patients were using an alternative treat-786

ment, rhDNase. The results for the estimated ICER are split by this classification: that787

for mannitol compared to treatment without mannitol in the rhDNase group is £47,095788

per QALY and that for the group not using rhDNase is £41,074. The report summarises789

the results of various sensitivity analyses which resulted in changes in these estimates790

and concluded that the high reported ICERs (between £50,000 and £80,000 per QALY)791

for patients taking rhDNase meant that the treatment could not be recommended for them792

because it was not cost-effective; the ICER for those not on rhDNase because they were in-793

eligible, intolerant, or because of inadequate response was considered to be above £30,000794

per QALY. However, for those in the latter group whose lung function was decreasing795

rapidly, the ICER was considered to be under £30,000 per QALY (two reported estimates796

are £27,700 and £30,100 per QALY). The NICE appraisal committee therefore concluded797

that mannitol could be considered a cost-effective use of NHS resources for this sub-group798

only.799

Bilton et al. (2011) report a statistically significant improvement in FEV1 compared with800

placebo (p < 0.001) in the first trial. Averaged across the post-randomisation visits, the point801

estimate of x is reported to be 85.03mL with a 95% confidence interval of (53.5mL,116.6mL)802

(Bilton et al., 2011, page 1073, section entitled ‘Efficacy’). It is therefore assumed that µ0 =803

85.03mL for the start of the second Phase III trial (Aitken et al., 2013).804

28



The 95% confidence interval reported by Bilton et al. is used to obtain an estimate of σ, the805

standard deviation of the difference between effects in the treatment and control arms. Assume806

that the standard deviations in the two trial arms are equal, with a common value, σ/
√

2. Then,807

referencing Table 1 of Bilton et al. (2011), the sample sizes of nt = 177 (number of subjects in808

treatment arm) and nc = 118 (number of subjects in control arm), an estimate of σ/
√

2 may be809

obtained by rearranging the standard error formula for two independent means when the variance810

is known:811

σ̂/
√

2 = SE(X)
(

√

1/nt + 1/nc

)−1

, (23)

where SE(X) = (116.6 − 85.03)/1.96 = 16.10, obtained from the 95% confidence interval.812

Solving Eq. (23) yields σ̂ =
√

2 ∗ 135.5 = 191.63. Alternatively, we may assume a sample813

size equivalent to approximately n = 140 pairwise allocations and estimate σ directly as σ̂ =814

SE(X)
√
n = 16.10 ×

√
140 = 190.5. The standard deviation for the prior is simply taken to be815

the standard error, σ0 = SE(X) = 16.10.816

The calibration of the values for m and s of the logistic function merit some discussion.817

The values in units of £/QALY are taken from Dakin et al. (2014), who estimate a number of818

different regression models for past NICE appraisal decisions and find that the reported ICER819

was the major factor influencing the probability of acceptance (no other factor, other than the820

type of condition, was found to have a statistically significant effect on NICE’s decision). For821

the model with the highest prediction accuracy, Dakin et al. (2014) report that the ICER values822

corresponding to probabilities of NICE recommendations of 0.25, 0.50 and 0.75 were £51,754,823

£39,417 and £27,047 per QALY, respectively (Table III, model 4 in Dakin et al. (2014)). The824

pairs (0.5, 39,417) and (0.75, 51,754), when inserted into the logistic function, give two equations825

for m and s which can be solved to yield the following estimates: m = £39,417/QALY and826

s = £11,230/QALY. Now, the unit of the incremental efficacy x is not measured in QALYs,827

but as FEV1 mL. Hence, when performing computations within the model, it is first necessary828

to convert incremental efficacy into the corresponding number of QALYs. Calibration gives a829

conversion factor of 0.0018 QALY/mL.830

We assume 10,000 patients treated per year, and a time horizon of 10 years, which is the831

length of the exclusivity period allowed in the European Union for rare diseases. This implies832

N = 100,000.833
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