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We report time-dependent probability density functions (PDFs) for a nonlinear stochastic process with a cubic
force using analytical and computational studies. Analytically, a transition probability is formulated by using a
path integral and is computed by the saddle-point solution (instanton method) and a new nonlinear transformation
of time. The predicted PDF p(x,t) in general involves a time integral, and useful PDFs with explicit dependence
on x and t are presented in certain limits (e.g., in the short and long time limits). Numerical simulations of
the Fokker-Planck equation provide exact time evolution of the PDFs and confirm analytical predictions in the
limit of weak noise. In particular, we show that transient PDFs behave drastically differently from the stationary
PDFs in regard to the asymmetry (skewness) and kurtosis. Specifically, while stationary PDFs are symmetric
with the kurtosis smaller than 3, transient PDFs are skewed with the kurtosis larger than 3; transient PDFs are
much broader than stationary PDFs. We elucidate the effect of nonlinear interaction on the strong fluctuations
and intermittency in the relaxation process.
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I. INTRODUCTION

Many systems in nature or laboratories not only involve
stochastic processes due to intrinsic variability, or to uncer-
tainty in the system, but may also be far from equilibrium.
Computing the time evolution of the probability density
function (PDF) of such systems is often a major challenge.
While in thermal equilibrium the same level of fluctuations
can be maintained by a reservoir (e.g., heat bath) at a fixed
temperature (e.g., by the fluctuation-dissipation theorem [1]),
far from equilibrium such a reservoir no longer exists. The
level of fluctuations in the system thus changes with time
and becomes a dynamical variable itself. For instance, drastic
change in fluctuations can be caused by a sudden change
in the temperature at the reservoir, or just by an initial
out-of-equilibrium PDF. Consequently, a full knowledge of
the time evolution of PDFs becomes critical.

As a simplest model, a Gaussian process has been widely
used to understand a variety of stochastic processes [2,3]. At
the heart of a Gaussian process is Brownian motion (random
walk) driven by white noise (random noise with a very short
memory), where mean square displacement increases linearly
with time while there is no change in mean displacement.
When subject to a linear force, it becomes the Ornstein-
Uhlenbeck (O-U) process, which is a prototypical model for
a noisy relaxation system, heavily used and extended in many
areas of physical science and financial mathematics (e.g.,
Refs. [2,3]). This model is governed by the following Langevin
equation for a random variable x (say, the position):

dx

dt
= −∂V

∂x
+ ξ, (1)

where a linear force ∂V
∂x

= μox is given by a quadratic potential
V (x) = μox

2/2. Here μo is a non-negative constant and ξ

is the white noise characterized by the following statistical

property:

〈ξ (t)ξ (t ′)〉 = Dδ(t − t ′), (2)

where D is a constant. The angular brackets in Eq. (2)
represent the ensemble average over the noise. Given the initial
condition (initial PDF), the time evolution of the PDF in the
subsequent time is precisely known as the joint distribution
with a Gaussian transition probability. In particular, when the
initial PDF is strongly peaked at x = x0, the marginal PDF of
x, call it p(x,t), has the following time evolution:

p(x,t) =
√

β

π
e−β(x−〈x〉)2

, (3)

where 〈x〉 is the mean position, and β is the inverse temperature
given as

〈x〉 = x0e
−μot ,

1

2β
= 〈(x − 〈x〉)2〉 = D(1 − e−2μot )

2μo

, (4)

In a long time limit, a PDF approaches a stationary Gaussian
distribution where the variance of the PDF is set by 〈x2〉 =
D/2μo. This stationary distribution can be linked to thermody-
namic equilibrium distribution by the fluctuation-dissipation
theorem by using 1

2 〈x2〉 = 1
2T (with the Boltzmann constant

kB = 1) and Eq. (4) as t → ∞ as follows:

T = 1

2β(t → ∞)
= D

2μo

, (5)

which is the Einstein’s relation. We note that a factor of 1/2
in the last term in Eq. (4) and (5) is due to our definition
of D in Eq. (2); that is, conventionally, Eq. (2) is defined
with 2D instead of D. For small time, the effect of the
linear force is negligible compared to dx

dt
, and the second

equation in Eq. (4) recovers the usual Brownian motion with
〈(x − 〈x〉)2〉 ∝ t . For large time, the linear force becomes
important, leading to the approach to the stationary PDF.
Mathematically, a Gaussian process offers a great analytical
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tractability in computing various statistical quantities (e.g., all
even moments determined by second moments, etc).

Gaussian statistics, however, has serious limitations in
explaining emerging complex phenomena such as anoma-
lous transport (super- or sub-diffusion), intermittency, self-
organisation, or phase transition where a long-range correla-
tion plays a key role [4–21]. In fact, non-Gaussian PDFs often
observed in these systems have stimulated active research on
nonequilibrium statistics by considering nonlinear interaction,
finite-correlated or Levy-flight noise, multiplicative noise,
fractional calculus, etc. (e.g., see Refs. [4–15,17,19–23]). The
main aim of this paper to shed light on this issue by elucidating
the effect of nonlinear interaction during the relaxation process
of an initial PDF to a final stationary PDF as an example of
nonequilibrium processes.

To gain the key insight, it is valuable to consider the simplest
nonlinear version of Eq. (1) that has the same symmetry
property under x → −x as the O-U process and compare
results with the O-U process [e.g., Eq. (3)]. To this end,
we consider a cubic nonlinear force (∝ x3) for a quartic
potential V (x) = μx4/4 in Eq. (1) while keeping the same
short-correlated noise ξ given in Eq. (2). The cubic force has
in fact been widely used to model enhanced diffusion in various
systems, including mixing in stellar interiors (e.g., Ref. [24])
and self-organization of shear flow by generalizing a sand
pile in a continuous limit [14,20,25]. In particular, Ref. [20]
showed that similar stationary PDFs are obtained from a zero-
dimensional dynamical model, one- and two-dimensional (1D
and 2D) fluid models. This suggests important implications of
the results from a Langevin equation with cubic nonlinearity
for a broad range of other physical problems with the same
highest nonlinearity.

For the cubic process, the prediction of time-dependent
PDFs has proven to be elusive [2]. However, a stationary
distribution can easily be shown to be a quartic exponential
PDF p(x,t) = Ne−βx4

where N ∝ β−1/4 (see Appendix A for
its property), to which any initial PDF relaxes in the long
time limit. In this paper, we report on time-dependent PDFs
using analytical and computational studies. Analytically, a path
integral formulation [12,14–16,21,26–33] and a nonlinear time
transformation are utilized to predict a transition probability.
The PDF given in the path integral is computed by the
saddle-point solution (instanton method) (e.g., see Refs. [14–
16,21,27–29,31,32]). The predicted p(x,t) in general involves
a time integral, and useful time-dependent PDFs with the
explicit dependence on x and t are presented in certain limits
(e.g., in the short and long time limits). Numerical simulations
of the Fokker-Planck equation present detailed evolution of the
time-dependent PDF and confirm our analytical predictions.

We note that instantons originated in quantum mechanics as
a nonperturbative way of computing the transition amplitude
from one ground state to another. The basic idea is that
the uncertainty relationship between position and momentum
allows one to formulate the transition amplitude from the
initial to the final position by a path, and the transition
amplitude from one ground state to another can be isolated by
considering Euclidean action by taking time to be imaginary.
An instanton is a saddle-point solution of Euclidean action and
corresponds to one particular path that leads to the transition
amplitude between ground states and was used in gauge

field theory to compute the transition amplitude from one
vacuum to another [31]. About 20 years later, the method
was adapted to a classical fluid problem [32] and to a plasma
problem [14–16]. In particular, Refs. [27–29] reported a series
of detailed calculations for (multi)-instantons for double wells
and different anharmonic potentials in quantum mechanics.
Refs. [14–16] utilized it to predict stationary PDF tails of
anomalous transport due to large events by taking a long-time
limit, while Ref. [21] generalized this methodology to predict
the time-dependent PDF for the O-U process without taking
such a long-time limit. It is the purpose of this paper to
extend this work further to nonlinear stochastic processes.
The contribution of this work lies in the prediction of the
time-dependent PDFs p(x,t) by calculating the instanton
solutions which satisfy the boundary conditions at the initial
and final times (see Sec. II).

The remainder of the paper is as follows. We present the
path integral solution of PDFs in Sec. II. Exact time-dependent
PDF by simulations are provided in Sec. III. Section IV
contains discussions and conclusions.

II. ANALYTICAL PREDICTION

We consider the evolution of a random variable x under a
quartic potential V (x) = μx4/4 in Eq. (1) and a white noise
given by Eq. (2) as

dx

dt
= −μx3 + ξ, (6)

where μ is the frictional constant for the cubic force. To gain
a key insight into the evolution of this system, it is useful to
obtain the equation for the mean and fluctuating components
of x by letting x = 〈x〉 + δx in Eq. (6). Here 〈x〉 and δx are
the mean value and fluctuation so that 〈δx〉 = 0. Then the time
evolution of 〈x〉 and δx can easily be shown to be as

d〈x〉
dt

= −μ[(〈x〉2 + 〈(δx)2〉)〈x〉 + 〈(δx)3〉], (7)

dδx

dt
= −3μ〈x〉2δx + G + ξ, (8)

where G = 3〈x〉[(δx)2 − 〈(δx)2〉] + (δx)3 − 〈(δx)3〉. For
small fluctuation, we can apply the quasilinear analysis to
ignore G and 〈(δx)3〉 in Eqs. (7)–(8) and obtain approximate
equations:

d〈x〉
dt

= −μ[〈x〉2 + 〈(δx)2〉]〈x〉, (9)

dδx

dt
= −3μ〈x〉2δx + ξ ≡ −μoδx + ξ, (10)

where μo = 3μ〈x〉2 is the (linear) force constant for δx.
When fluctuations are negligible compared to the mean value
[〈(δx)2〉 	 〈x〉2], Eq. (9) becomes d〈x〉

dt
= −μ〈x〉3, with the

solution 〈x〉 = x0/
√

1 + 2μx2
0 t given the initial condition

〈x(t = 0)〉 = x0. As the fluctuation δx increases in time, the
second term in Eq. (9) gives the enhanced force, leading to the
faster movement of the PDF peak from x0 towards x = 0 (see
Sec. III for more details). On the other hand, Eq. (10) shows
that the evolution of fluctuation δx is a linear O-U process with
the effective linear force μo = 3μ〈x〉2.
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For analytical computation of a time-dependent PDF, we
consider a narrow initial PDF approximated by the δ function
p(x,t = 0) = δ(x − x0). In order to obtain a PDF at any later
time, we utilize a path integral formulation by expressing the
transition probability p(xf ,tf ; x0,0) between initial x0 at t = 0
and xf at later time t = tf [12–16,21,26,30,33] as follows:

p(xf ,tf ; x0,0) ∝
∫ (xf ,tf )

(x0,0)
Dx[t]Dx[t]e−S, (11)

where S is the action given by (see Appendix B)

S =
∫ tf

t0

dt

[
−i

(
dx

dt
+ μx3

)
x + 1

2
Dx2 + ψ(x)

]
. (12)

Here x is the conjugate variable to x [e.g., see Eq. (B3) and
also Eqs. (3)–(5) in Ref. [16]], which effectively captures the
effect of the stochastic forcing ξ . ψ = 3

2μx2 in Eq. (12) is due
to the coordinate transformation between ξ and x. As ψ is
negligible in the limit of small D [12], we drop this term for
analytical tractability below. The transition probability given in
Eq. (11) involves the integration along all the paths connecting
initial (x0,0) and final (xf ,tf ) points. We evaluate Eq. (11)
approximately to leading order in D by finding a particular
path which makes the largest contribution to the action S.
This is the so-called saddle-point solution (instantons) which
minimizes the action S, satisfying the zero variation of S with
respect to x and x as follows:

δS

δx
= 0 → i

(
dx

dt
+ μx3

)
= Dx, (13)

δS

δx
= 0 → i

(
dx

dt
− 3μx2x

)
= 0. (14)

Equations (13)–(14) are to be solved with the boundary
conditions x(t = 0) = x0 and x(t = tf ) = xf . We note that the
crux of the instanton method is to capture a nontrivial “time-
varying state” as our basic state. As noted in the introduction,
instanton solutions satisfying boundary conditions were used
for the computation of the time-dependent PDFs for the O-U
process [21].

The explicit appearance of the conjugate variable x in
Eqs. (13)–(14) reflects a vital role of the stochastic forcing
in the determination of a saddle-point solution. That is, the
leading order contribution to the action cannot be obtained by
simply ignoring ξ in Eq. (1). Saddle-point solutions xs and xs

to Eqs. (13)–(14) then give the effective action Seff , simplifying
Eq. (11) as follows:

p(xf ,tf ; x0,0) = N exp[−Seff], (15)

where N is a normalization constant to satisfy∫
dxf p(xf ,tf ; x0,0) = 1 and Seff is the effective action

Seff =
∫ tf

0
dt

1

2D

(
dxs

dt
+ μx3

s

)2

(16)

= −
∫ tf

0
dt

D

2
x2

s . (17)

In the following, in order to obtain saddle-point solutions to
Eqs. (13)–(14), we introduce a nonlinear (nonlocal) time τ as

τ (t) =
∫ t

0
dt1 [x(t1)]2, (18)

and recast Eqs. (13)–(14) in terms of τ as follows:

1

3

d

dτ
[x3e3μτ ] = −iDxe3μτ , (19)

d

dτ
[xe−3μτ ] = 0, (20)

by using d
dt

= x2 d
dτ

. See Appendix C for an example of how
the transformation (18) works. The solutions to Eqs. (19)–(20)
are found as

x(t) = x(t = 0)e3μτ , (21)

(x(t))3e3μτ = x3
0 + B[e6μτ − 1], (22)

where

B = −i
Dx(t = 0)

2μ
. (23)

The boundary condition x(t = tf ) = xf fixes the value of B

as

B = x3
f e3μτf − x3

0

e6μτf − 1
, (24)

where τf = τ (t = tf ). In terms of x(τ ), t is determined by the
inverse of Eq. (18) as

t =
∫ τ

0
dτ1

1

[x(τ1)]2
, (25)

while the effective action Seff in Eq. (17) is expressed by

Seff = 2μ2B2

D

∫ τf

0
dτ1

e6μτ1

[x(τ1)]2
, (26)

where Eqs. (21), (23), and (24) are used. In the following
two subsections, we separately consider the cases x0 = 0 and
x0 �= 0.

A. x0 = 0

For x0 = 0, the time evolution of the PDF involves only a
change in its width until it becomes the stationary exponential
PDF in the long time limit. Equation (22) is simplified in this
case as

[x(τ )]3 = B0(e3μτ − e−3μτ ),

B0 = x3
f e3μτf

e6μτf − 1
. (27)

With the help of Eq. (27), Eq. (25) can be expressed as

tf = 1

2μB
2
3

0

∫ zf

0
dz1

1(
1 − z3

1

) 2
3

= 1

2μB
2
3

0

sin−1
3
2 ,3

(zf ). (28)

Here z1 = (1 − e−6μτ1 )
1
3 and zf = (1 − e−6μτf )

1
3 . sin−1

3
2 ,3

(zf )

is the generalized p,q-family inverse sine function (e.g., see
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Ref. [34] and Appendix D) with p = 3
2 and q = 3, which

satisfy the generalized trigonometric identity

| sinp,q(zf )|q + | cosp,q(zf )|p = 1. (29)

Equation (28) thus gives us the expression for zf in terms of
time tf as

zf = sin 3
2 ,3(2μB

2
3

0 tf ). (30)

On the other hand, the effective action Seff in Eq. (26) can be
put into the following form:

Seff = μB
4
3

0

D

∫ zf

0
dz1

1(
1 − z3

1

) 5
3

= μB
4
3

0

2D

⎡
⎣2μB

2
3

0 tf + zf(
1 − z3

f

) 2
3

⎤
⎦, (31)

where we used Eq. (28) and the following identity (see
Appendix E):∫ z

0
dz1

(
1−z3

1

)−5/3 = 1

2

[∫ z

0
dz1

(
1−z3

1

)−2/3 + z(1−z3)−2/3

]
.

(32)

By using Eq. (27), we rewrite Eq. (31) as

Seff = μ

2D

[
2μB2

0 tf + x4
f

(1 − e−6μτf )

]
. (33)

The substitution of Eq. (33) into Eq. (15) then determines how
PDFs vary with xf depending on tf . The normalization factor
N = N (t) in Eq. (15) alters the overall amplitude of the PDF
and is discussed in Sec. II C.

Equation (33) involves τf and B0, which is a function of
τf . Since τf = ∫ tf

0 dt1[x(t1)]2, p(x,t) is not given by a simple
function of x and t but as an integral.

In the short and long time limits, the PDFs can, however, be
approximated by a function depending on x and t . To demon-
strate this, we examine the behavior of t and Seff in Eqs. (28)
and (33) in the short and long time limits, respectively. First,
in the long time limit (zf → 1), sin−1

3
2 ,3

(zf ) → 1
2π 3

2 ,3, where

π 3
2 ,3 is the generalized πp,q (see Appendix D). Thus, Eqs. (28)

and (33) give us to leading order in 1/tf

z3
f ∼ 1 −

(
π 3

2 ,3

4μtf x2
f

)3

,

Seff ∼ μ

2D
x4

f

⎡
⎣1 +

(
π 3

2 ,3

4μtf x2
f

)3
⎤
⎦. (34)

Equation (34) shows how the PDF evolves into the quartic
exponential PDF in a long time limit. We can estimate the
time required to reach the stationary state by examining the
behavior of the PDF width in Eq. (34). To do this, we let
α = π 3

2 ,3/(4μtf ) and find xf for Seff = 1 (i.e., the width at

half-peak):

μ

2D

[
x4

f + α3

x2
f

]
= 1.

Solving the above by perturbation as xf = x
(0)
f + x

(1)
f + · · ·

for small α 	 1 leads us to

xf ∼
( μ

2D

) 1
4

[
1 −

( μ

4D

) 3
2

(
π 3

2 ,3

4μtf

)3
]
.

The leading order solution x
(0)
f = (μ/2D)1/4 represents the

width of the stationary PDF, which is much wider than the
width ∝ D−1/2 in the case of the linear O-U process for small
D. From the condition that the second, time-dependent, term
is much smaller than the first term in the above, we obtain an
estimate for the critical time tc required to reach the stationary
state:

tf >
π 3

2 ,3

8
√

μD
(≡ tc). (35)

Interestingly, the critical time tc increases as D−1/2 as D

decreases. That is, the smaller the diffusion, the longer the
relaxation time tc. This should be contrasted to the linear
friction case where the relaxation time is independent of D

and solely determined by the friction μ. This dependence
of the relaxation time on D reveals one of the important
characteristics of the nonlinear process where the diffusion
sets not only the spatial structure (width), but also the time
structure.

On the other hand, in a short time limit (zf → 0), we eval-
uate sin−1

3
2 ,3

(zf ) ∼ zf + 1
6z4

f and use B0z
3
f = x3

f (1 − z3
f )1/2 to

obtain

z6
f

[
sin−1

3
2 ,3

(zf )
]3 = z6

f

(
zf + 1

6
z4
f

)3

= (
2μtf x2

f

)3(
1 − z3

f

)
. (36)

We can then find the leading order solution to Eq. (36) for
small 2μtx2

f in the following form

z3
f ∼ (

2μtx2
f

)(
1 − μtx2

f

)
,

B2
0 = x6

f

(
1 − z3

f

)
z6
f

∼ x6
f

(
1 + 2μtf x2

f

)
(
2μtf x2

f

)2 ,

thereby obtaining

Seff ∼ x2
f

2Dtf

[
1 + 3

2
μtf x2

f

]
. (37)

The parameter 2μtx2
f physically represents the effect of a

nonlinear damping, and the limit of the small value of this
parameter corresponds to considering a sufficiently small
time during which the effect of nonlinear damping can
be considered to be small and thus computed as a small
perturbation from no damping case.

The leading order behavior Seff ∼ x2
f /2Dtf reveals that

initially, the evolution of the PDF is governed by the Gaussian
process with the Gaussian PDF. The quartic term x4

f in Eq. (37)
is symptomatic of the tendency towards a quartic (stationary)
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PDF in the long time limit, shown in Eq. (34). For x0 = 0
considered in this subsection, the relaxation of a transient
PDF undergoes two stages: the first is the Gaussian evolution
where the white noise causes the Brownian motion with a
negligible effect of the nonlinear force. When the nonlinear
force becomes sufficiently large, the PDF broadens its width,
settling in to the stationary quartic exponential.

B. x0 �= 0

Unlike the case x0 = 0, the time evolution of the PDF is
governed by the movement of the peak of the PDF from x0

to x = 0 as well as the broadening of the PDF. Consequently,
the relaxation of a transient PDF is more complex compared
with the x0 = 0 case considered in the previous subsection. In
the following, we show that the relaxation of a transient PDF
involves one more stage between the initial Gaussian evolution
and the final settling in to the quartic exponential PDF.
The extra stage appears when the nonlinear force becomes
sufficiently large and leads to a linear force with the effective
force coefficient 3μ〈x〉2 for fluctuations. That is, the second
Gaussian evolution is approximately the O-U process with the
effective linear force μ0 = 3μ〈x〉2, similar to the quasilinear
result in Eq. (10).

In order to obtain the PDF, we need to find Seff in Eq. (15)
via Eqs. (26), (25), and (22). To this end, it is convenient to
rewrite Eq. (22) in the following form:

x3 = Be3μτ + αe−3μτ = Be−3μτ [e6μτ − γ ], (38)

where B is given by Eq. (24) and

α = x3
0 − B = x3

0e6μτf − x3
f e3μτf

e6μτf − 1
,

γ = − α

B
= x3

0e6μτf − x3
f e3μτf

x3
0 − x3

f e3μτf
. (39)

With no loss of generality, we take x0 � 0 in this paper since
the symmetry of our cubic system under x → −x guarantees
exactly equivalent results for x0 < 0. Equation (39) reveals the
following three different cases depending on the sign of γ and
the ratio of xf to x0:

CASE1: γ > e6μτf (xf < e−μτf x0);

CASE2: γ < 0 (e−μτf x0 < xf < eμτf x0);

CASE3: 0 < γ < e6μτf (xf > eμτf x0).

When x0 = 0, γ = 1, recovering the case in the previous
subsection and thus CASE2 becomes irrelevant. That is, x0 �=
0 leads to the appearance of CASE2. For x0 > 0, a schematic
diagram for the different cases is shown in Fig. 1 where xf is
plotted against τf . From Fig. 1, we observe that a short time
behavior is described by CASE1/CASE3 while a long time
behavior is obtained from CASE2. As τf increases from zero,
the region for CASE1/CASE3 gradually decreases while the
region for CASE2 increases. The crossover between CASE1
and CASE2 is set by xf = x0e

−μτf ≡ xc while the crossover
between CASE2 and CASE3 is set by xf = x0e

μτf ≡ xb. Here
xc = x0e

−μτf is the characteristic of the movement of the PDF
peak. Consequently, the left side of the PDF peak is described

τ
f
μ

0 2 4 6 8 10

x f/x
0

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

   exp(-μ τ
f
)

   exp(μ τ
f
)

CASE2

CASE3

CASE1

FIG. 1. A schematic diagram of xf /x0 against μτf .

by CASE1 while the right side of the PDF peak by CASE2. On
the other hand, xb = x0e

μτf characterizes the boundary around
which the PDF becomes negligible as Seff becomes very large
(details not shown here). That is, xb sets the boundary between
the region of a small probability due to a stochastic noise and
a dead zone. (That is, the probability is zero for xf > xb in
CASE3.) To appreciate the meaning of γ , we rewrite

γ = x3
b − x3

f

x3
c − x3

f

≡ �b

�
,

where � = xc − xf and �b = xb − xf . Since � and �b

measure the deviation of xf from xc and xb, respectively, the
probability becomes larger for smaller � and larger �b. For
instance, CASE1 with the large value of γ corresponds to the
region where the probability is largest.

To determine the relation between tf and τf along xf =
x0e

−μτf , we note that Eq. (39) gives α = x3
0 and B = 0.

Thus, the saddle-point solution in Eq. (38) is simplified as
x = x0e

−μτ , leading to tf in Eq. (25):

tf =
∫ τf

0
dτ1

1

[x(τ1)]2
= 1

2μx2
0

(e2μτf − 1)

= 1

2μx2
0

(
x2

0

x2
f

− 1

)
,

and consequently

e2μτf = x2
0

x2
f

= 1 + 2μtf x2
0 . (40)

In the following subsections, γ > 0 (CASE1) and γ < 0
(CASE2) are separately considered. (The analysis for y − γ >

0 is included in Appendix F for completeness.)

1. CASE1: γ � 0 (α > 0, B < 0), x f < x0e−μτ f

We first find the relation between tf and τf by using Eq. (38)
in Eq. (25) for γ > 0. To do this, we let y = e6μτ and note
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γ − y > 0 (since γ − e6μτf > 0) to obtain

tf = 1

6μB
2
3

I0, (41)

where

I0 =
∫ yf

1

dy

y
2
3

1

(γ − y)
2
3

, (42)

and yf = e6μτf . The integral in Eq. (42) can be written in terms
of the generalized two-family inverse hyperbolic sine (e.g., see
Ref. [34]). On the other hand, Eq. (26) can be shown as

Seff = μB
4
3

3D
I1

= μ

6D

{
6μtf |αB| − 3|B| 4

3 [y
1
3 (γ − y)

1
3 ]

yf

1

}
, (43)

where

I1 =
∫ yf

1
dy

y
1
3

(γ − y)
2
3

. (44)

In the second line in Eq. (43), we used Eq. (41) and the
identity (see Appendix G):

I1 = 1

2

{
γ I0 − 3[y

1
3 (γ − y)

1
3 ]

yf

1

}
. (45)

Equation (43) shows that Seff becomes zero along the char-
acteristics xf = x0e

−μτf as B = 0. Recall that along these
characteristics, Eq. (40) holds. This means that the PDF takes
its maximum value along these characteristics. To facilitate the
analysis, it is thus useful to consider the deviation � from the
characteristics

� = x0e
−μτf − xf , (46)

where � � 0 since xf � x0e
−μtf . By using Eqs. (24), (39),

and (44) in Eq. (43), we obtain

Seff = μ

2D
|B|[2μtf (x3

0 + |B|) − (
xf e3μτf − x0

)]
= μ

2D
|B|[2μtf |B| + �e3μτf ], (47)

where α = x3
0 + |B| (as B < 0), [y

1
3 (γ − y)

1
3 ]

yf

1 =
(xf e3μτf − x0)|B|− 1

3 , and yf = e6μτf are used. To obtain the
PDF in terms of �, we rewrite |B| by using Eq. (46) and

Q = y
1
3
f = e2μτf = 1 + 2μtf x2

0 as

|B| = 1

2μtf

3�Q
1
2 − 3�2

x0
Q + �3

x2
0
Q

3
2

Q2 + Q + 1
. (48)

Then, by using Eq. (48) together with Q = 1 + 2μtf x2
0 from

Eq. (40) in Eq. (46), we obtain the leading order behavior of
Seff in the short and long time limits depending on the value
of Q, respectively, as follows:

Seff = �2

4Dtf

[
2 − 3

�

x0
+ 2

�2

x2
0

]
, (for Q → 1) (49)

∼ μ�2

2D

[
�2(1 − 1.5Q−1)

− 3x0�Q− 1
2 + 3x2

0Q−1
]
. (for Q 
 1) (50)

The crossover between Eqs. (49) and (50) is set by the time
where eμτf ∼ 1, or equivalently, tf 	 (2μx2

0 )−1, indepen-
dently of D. In the short time limit (Q → 1), the first term in
Eq. (49) demonstrates the Gaussian PDF, the width increasing
as t1/2 for small �. As the width broadens, the cubic and quartic
terms in � become important for the PDF. In particular, the
quartic term leads to the broadening of the PDF width just
before the transition to the second stage governed by Eq. (50)
for a sufficiently large time Q 
 1.

Notably, Eq. (50) reveals the mixture of the Gaussian PDF,
cubic, and and quartic exponential PDF depending on the
relative size of the three terms on the right-hand side. Since
x2

0Q
−1 ∼ 〈x2〉, we recognize that 3μx2

0Q−1 = 3μ〈x2〉 = μo

is the effective linear force coefficient for fluctuations defined
in Eq. (10). Therefore, the third term on the right of Eq. (50)
gives rise to a Gaussian PDF with the inverse temperature
∝μo/2D (equivalently, with the width ∝√

2D/μo). This is
remarkably similar to the quasilinear result and t1/2 increase
in the PDF is caused by the decrease in μo as the mean value
〈x〉 decreases with the movement of the PDF peak towards
x = 0.

In comparison, the first term on the right of Eq. (50) leads
to a quartic exponential PDF with the width ∝(2D/μ)1/4 for
larger time Q−1 → 0. To compare the size of the first and third
term on the right of Eq. (50), we approximate Q−1 ∼ 2μx0tf
and � ∼ 2Dtf to obtain the estimate of the ratio of the third
to the first terms as

3x2
0Q−1

�2(1 − Q−1)
∼ 3

4t2
f Dμ

.

Thus, for tf 	 √
3/4Dμ, the PDF is Gaussian, while in the

opposite large time, the PDF relaxes to the quartic exponential
PDF. This transition time from the Gaussian to stationary
quartic exponential PDF depends on D, increasing as D

becomes smaller.
Finally, it is interesting to observe that in both Eqs. (49)

and (50), the first order correction term has a negative sign
(since � > 0), leading to the increase in the PDF above
the leading order term. This is to be contrasted to CASE2
considered in the next subsection where the first order
correction � is shown to depress the PDF (as Seff increases).

2. CASE2: γ < 0 (α > 0, B > 0), x0e−μτ f < x f < x0eμτ f

We begin by rewriting Eq. (38) as

x = B
1
3 e−μτ [e6μτ + |γ |] 1

3 , (51)

where B (> 0) is given by Eq. (24). I0 in Eq. (41) is given by

I0 =
∫ yf

1

dy

y
2
3

1

(y + |γ |) 2
3

, (52)

where y = e6μt and yf = e6μτf . Similarly, Eq. (26) can be
written as

Seff = μB
4
3

3D
I1

= μ

2D

{
−2μtf |αB| + B

4
3 [y

1
3 (y + |γ |) 1

3 ]
yf

1

}
, (53)
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where

I1 =
∫ yf

1
dy

y
1
3

(y + |γ |) 2
3

= 1

2

{
−|γ |I0 + 3[y

1
3 (y + |γ |) 1

3 ]
yf

1

}
.

(54)

As xf > x0e
−μτf in CASE2, we define �c to be the deviation

from the characteristics according to

xf = x0e
−μτf + �c, (55)

where �c � 0. By using Eqs. (24), (39), and (46) in Eq. (53),
we obtain

Seff = μ

2D
B

[ − 2μtf
(
x3

0 − B
) + (xf e3μτf − x0)

]
= μ

2D
|B|[2μtf B + �ce

3μτf ], (56)

where α = x3
0 − B (B > 0), [y1/3(γ − y)

1
3 ]

yf

1 = (xf e3μτf −
x0)B−1/3, and yf = e6μτf are used. To obtain the PDF in terms

of �c, we again express B by using Eq. (56) and Q = y
1
3
f =

e2μτf = 1 + 2μtf x2
0 as

B = 1

2μtf

3�cQ
1
2 + 3�2

c

x0
Q + �3

c

x2
0
Q

3
2

Q2 + Q + 1
. (57)

Then, by using Eq. (57) and Q = 1 + 2μtf x2
0 in Eq. (56), we

obtain the leading order behavior of Seff in the short and long
time limit as follows:

Seff = �2
c

4Dtf

[
2 + 3

�c

x0
+ 2

�2
c

x2
0

]
(for Q → 1), (58)

= μ�2
c

2D

[
�2

c(1 − 1.5Q−1)

+ 3x0�cQ
− 1

2 + 3x2
0Q−1

]
(for Q 
 1). (59)

Similarly to Eqs. (49) and (50) in CASE1, the crossover
between Eqs. (58) and (59) is set by the time where eμτf ∼ 1, or
equivalently, tf ∼ (2μx2

0 )−1, independently of D. In the short
time limit (Q → 1), Eq. (58) demonstrates the initial Gaussian
PDF, which becomes modified by the quartic term just before
the transition to the second stage governed by Eq. (59).
The second stage in Eq. (59) starts with another Gaussian
evolution, followed by the transition from this Gaussian to the
final stationary quartic exponential PDF for tf 	 √

3/4Dμ

in the long time limit. In contrast to CASE1, in both limits,
the first order correction which is odd in �c > 0 is now
positive and results in further decrease in the PDF as �c

increases.

C. Summary of CASE1 and CASE2

By combining Eqs. (49)–(50) and (58)–(59), we write Seff

on either side of the PDF peak in terms of �c = xf − e−μτf x0

as

Seff = �2
c

4Dtf

[
2 + 3

�c

x0
+ 2

�2
c

x2
0

]
(for Q → 1), (60)

= μ�2
c

2D

[
�2

c(1 − 1.5Q−1)

+ 3�cx0Q
− 1

2 + 3x2
0Q−1] (for Q 
 1). (61)

Overall, starting from a narrow PDF centered about x = x0,
the PDF undergoes three stages. The first is the Gaussian
evolution ending with the broadening of the PDF around
tf ∼ (2μx2

0 )−1, described by Eq. (60). This stage reflects the
initial Brownian motion where the white noise is balanced by
the inertia dx/dt , terminating when the effect of nonlinear
force becomes non-negligible, leading to a slight broadening
of the PDF. The nonlinear force shortly gives rise to a coherent
force, initiating the second stage of yet another Gaussian
evolution where fluctuation evolves with the effective frictional
force as μo ∝ μ〈x〉2 governed by the O-U process. With
further increases in time, the PDF finally settles in to the final
stationary quartic exponential PDF in Eq. (61) for tf 
 tc
where

tc ∼
√

3

4Dμ
. (62)

[See Appendix H for an alternative derivation of Eq. (62).] The
critical time tc in Eq. (62) increases as D decreases, similarly
to the case of x0 = 0 given in Eq. (35), demonstrating that
the final relaxation time to a stationary PDF depends on D

and μ (and not on x0). Aforementioned different stages of
PDF evolution and the two characteristic transition times [tf ∼
(2μx2

0 )−1 and Eq. (62)] are confirmed from the exact solutions
obtained by numerical calculations in Sec. 3.

The odd terms in r signify the asymmetry of the PDF
around its peak, where the PDF on the left side of the peak
is enhanced over that on the right side of the peak. Recalling
that x0 > 0 in our analysis, this illustrates the enhancement of
the PDF around x0 = 0 as the PDF moves towards xf = 0.
This asymmetry property is also confirmed by numerical
calculation in Sec. 3.

Finally, the peak amplitude of the PDFs is determined by
the normalization N in Eq. (15), which is determined by∫

dxf p(xf ,tf ; x0,0) = 1. For the Gaussian PDF of the form
p(x,t) = Ne−βx2

, the peak amplitude N = √
β/π ∝ β1/2

while the width is proportional to β−1/2. Thus, for the Gaussian
PDFs in Eqs. (61)–(62), the behavior of the peak amplitude
of the PDFs can easily be inferred from the effective inverse
temperature β. This is discussed in Sec. III together with the
interpretation of the numerical results. For the quartic PDF of
the form p(x,t) = Ne−βx4

, N ∝ β−1/4 (see Appendix A for
its property).

III. EXACT PDFs FROM THE FOKKER-PLANCK
EQUATION

To complement the analytic study in Sec. II, we compute
numerical solutions of the time-dependent PDFs. While it
would have been possible to obtain the marginal PDF p(x,t)
by stochastic simulation of Eq. (1) or (6), we instead solve the

052118-7



EUN-JIN KIM AND RAINER HOLLERBACH PHYSICAL REVIEW E 94, 052118 (2016)

10−6 10−4 10−2 100 102 104
100

101

102

103

104

t

(a)

d=10−3

d=10−7

10−6 10−4 10−2 100 102 104
10−4

10−3

10−2

10−1

100

t

(b)

d=10−3

d=10−7

FIG. 2. (a) peak amplitudes; (b) widths at half-peak. The heavy solid lines are the cubic case with initial condition (64), the dash-dotted
lines are the linear case with initial condition (64), and the dotted lines are the linear case with a δ-function initial condition. The five different
lines in each set correspond to d = 10−3 to 10−7, from left to right as indicated.

corresponding Fokker-Planck equations (e.g., Refs. [1,2]):

∂p

∂t
= d

∂2p

∂x2
+ ∂

∂x
(xnp), (63)

where n = 1 for the linear O-U process, and n = 3 for the cubic
process. For convenience, we use d = D/2 where D is defined
in Eq. (2). Without loss of generality, we also set μ0 = 1 for
n = 1 and μ = 1 for n = 3 in Eq. (63). The entire equation
can always be rescaled to make this coefficient one, which is
convenient numerically to reduce the number of parameters in
the problem.

To solve these equations numerically, we begin by re-
stricting the interval in x to [−1,1], rather than the original
[−∞,∞]. There is again no real loss in generality involved
here; by suitably rescaling x, t , and/or d, any finite interval
can always be mapped to [−1,1]. As long as d and the initial
condition are chosen such that p would be negligible outside
this interval anyway, then solving Eq. (63) only on [−1,1],
and with p = 0 boundary conditions, should yield results in
good agreement with the analytic formulations. The numerical
solution involves second-order accurate finite differencing in
x, using up to M = 4 × 106 grid points. The time stepping
is also second-order accurate, with step sizes as small as
�t = 10−7. Both M and �t were varied to ensure accuracy
to within at least 0.1%. Especially in the later stages of the
evolution, once an initially narrow peak has started to broaden
considerably, M can also be decreased and �t increased,
without loss of accuracy.

The initial condition was taken as

p = 1√
π10−8

exp
[
− (x − 0.7)2

10−8

]
, (64)

that is, a Gaussian with a peak at x0 = 0.7 and a width 1.7 ×
10−4. The question then is how this initial condition evolves
toward the final equilibrated state, either p ∝ exp(−x2/2d)
for the linear process or p ∝ exp(−x4/4d) for the cubic
process, with the constant of proportionality in each case fixed
by

∫
pdx = 1 (see Appendix A). For the linear process, an

analytic solution for the entire time evolution given in Eq. (3)

takes the following form:

p(x,t) = 1√
2πd

1√
1 − κe−2t

exp

[
− (x − x0e

−t )2

2d(1 − κe−2t )

]
, (65)

where κ is an arbitrary constant. Taking κ = 1 would
correspond to a δ-function initial condition, whereas κ =
1 − 10−8/2d corresponds to the actual initial condition (64).

Figure 2 shows how the peak amplitudes and widths at
half-peak evolve in time, for the five values d = 10−3 to
10−7. The heavy solid lines show the cubic case that we are
ultimately most interested in. The dash-dotted lines show the
linear case with initial condition (64), and the dotted lines
the linear case with a δ function initial condition [that is, the
dash-dotted lines have κ = 1 − 10−8/2d in Eq. (65) whereas
the dashed lines have κ = 1]. If we first compare the two
different initial conditions in the linear case, we see that
a δ-function initial condition relatively quickly (on a time
scale ∼10−8/d) becomes indistinguishable from the initial
condition (64). This is encouraging, as it indicates that all the
theoretical analysis developed for a δ-function initial condition
is still relevant even for (64). The other point to note about the
linear cases is how the evolution is indeed completed once
t ≈ 1, independent of d. Different stages of PDF evolution
with the two transition times above agree with the analytical
prediction summarized in Sec. II C.

Turning next to the cubic cases, we see that up to t ≈ 0.1
they follow the corresponding linear cases almost exactly. The
detailed structure continues to be Gaussian in this regime (as
indicated also by further diagnostics below). For t � O(1) the
peaks continue to decrease and the widths to increase, before
eventually settling in to the final equilibrated solutions where
the peaks scale as d−1/4 and the widths as d1/4. Note also
how the time required to reach the final stationary PDF clearly
scales as d−1/2, in agreement with the analytic predictions in
Sec. II C.

Turning next to where p is located, Fig. 3 shows two dif-
ferent ways of measuring this, the mean value 〈x〉 = ∫

xp dx,
and the position of the maximum value of p, call it xpeak.
Up to t ≈ 1 both measures are essentially indistinguishable
from the expected result x0/

√
1 + 2tx2

0 for small fluctuations
〈(δx)2〉 	 〈x〉2; as fluctuations increase with time, deviations
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FIG. 3. (a) The mean value 〈x〉, for d = 10−3 to 10−7 as indicated. (b) xpeak, the location where p takes its maximum value. In both panels
the dotted line denotes x0/

√
1 + 2tx2

0 . (c) The difference, xpeak − 〈x〉.

do begin to appear as shown in the range t > O(1) in Fig. 3.
As predicted in Eq. (9), 〈x〉 tends to zero somewhat faster
than expected from x0/

√
1 + 2tx2

0 , especially for the larger
values of d. This is due to the contribution from fluctuations
〈(δx)2〉 in Eq. (9), which increases with d. Since larger d

corresponds to greater variance, 〈x〉 tends to zero faster. That
is, fluctuations lead to the enhanced dissipation of the mean
value. Considering xpeak next, this ultimately follows the same
trend of tending to zero faster and with the same variation
with d. It is interesting to note that for brief intermediate times
these curves are slightly above x0/

√
1 + 2tx2

0 . The final panel
in Fig. 3 shows the difference between these two measures of
position. For all five values of d there are times where this
difference is surprisingly large, comparable to the larger of the
two at the corresponding time.

The fact that these two measures of location give somewhat
different answers is already indicative of the result noted
above, that the PDF is expected to be asymmetric about its
peak. This can be further quantified by computing the skewness∫

[(x − 〈x〉)2/σ ]3 p dx, where σ = [
∫

(x − 〈x〉)2 p dx]1/2 is
the variance. Another interesting quantity is the kurtosis∫

[(x − 〈x〉)2/σ ]4 p dx. Analytically one finds easily enough
that a Gaussian profile has kurtosis 3, whereas the final quartic
profile has kurtosis 2.19 (e.g., see Appendix A). A third

quantity to consider is the ratio of the variance σ to the
half-peak width. For this one finds analytically that a Gaussian
has 0.425, whereas a quartic has 0.319. Figure 4 shows
how these three diagnostics evolve in time. The skewness
starts and ends at zero, as expected, but at intermediate
times reaches a peak negative value of −0.56, reflecting
this difference in the two location measures in Fig. 3. This
negative value of skewness is predicted in Sec. II C. The
kurtosis similarly starts at 3 and ends at 2.19, as expected,
but at intermediate times actually increases to a peak of 3.37.
The variance-to-width ratio follows the same pattern as the
kurtosis.

These results are interesting in the following two aspects.
First, this clearly shows that the stationary PDF is very different
from the nonequilibrium PDF. Second, the broadening of the
PDF in the intermediate time before reaching the stationary
PDF is reminiscent of a cyclic geodesic solution in Ref. [18],
suggesting an important role of nonlinear interaction (force)
in a geodesic. Detailed discussion on the implications of these
results for information change is provided in Ref. [35]. The
last point to note about all three diagnostics is how the curves
for different values of d are essentially identical, but offset in
time according to a d−1/2 scaling. This is another reflection
of the result derived analytically and discussed in Sec. II C

10−1 100 101 102 103 104
−0.6

−0.4

−0.2

0

t

d=10−3

d=10−7
(a)

10−1 100 101 102 103 104
2
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(b)
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FIG. 4. (a) The skewness
∫

[(x − 〈x〉)2/σ ]3 p dx, (b) the kurtosis
∫

[(x − 〈x〉)2/σ ]4 p dx, and (c) the ratio of variance to half-peak width.
In each panel d varies from left to right as 10−3 to 10−7. Note the ∝ d−1/2 scaling in time.
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[see. Eq. (62)] and also seen in Fig. 2 that the final adjustment
time scale for the cubic process scales as d−1/2.

IV. CONCLUSION

We have presented time-dependent PDFs in a cubic
nonlinear stochastic process where the frictional force is
given by a cubic nonlinearity. Analytically, we applied an
instanton method based on a path integral formulation to
a nonlinear system in the limit of weak noise (small D)
and proposed a new nonlinear time transformation to solve
nonlinear instanton (saddle-point) equations. We predicted
a PDF which in general involves an integral and elucidated
the effect of nonlinear interaction on enhanced dissipation in
relaxation processes. Useful local time-dependent PDFs were
presented in certain limits (e.g., in the short and long time
limits). In particular, a transient PDF in the cubic process
was shown to be asymmetric around its peak while the
relaxation time tf > tc ∼ 1√

μD
in Eq. (62) depends on D,

increasing as D decreases. This sharply contrasts a linear
stochastic process where transient PDFs are Gaussian and
symmetric while the relaxation time tf to the final stationary
PDF is independent of the diffusion coefficient D. The D

dependence of the relaxation time for a cubic process reflects
a close interlinking between space and time in nonlinear
relaxation processes. Alternatively, time flows at a different
rate depending on the coordinate. We also demonstrated the
utility of generalized two-family trigonometric functions in
solving nonlinear equations. Numerical simulation of the
Fokker-Planck equation revealed detailed evolution of the
time-dependent PDF; analytical and numerical results agreed
on overall PDF evolution, in particular, transition times for
different evolutions (e.g. relaxation time tf ) and asymmetry,
as noted in Sec. II C and 3. Furthermore, it highlighted
that transient PDFs behave drastically differently from the
stationary PDFs in regard to the asymmetry (skewness) and
kurtosis. Of particular interesting is the settling in to a
symmetric and narrow stationary PDF only after undergoing a
transient state with asymmetric and broad PDF.

The generality of our methodology and predicted exponen-
tial PDF are reminiscent of the possibility of transforming any
automonous nonlinear Langevin equation driven by a white
noise to the Brownian motion, while our proposed nonlinear
time transformation plays a role of random time change: the
so-called Lamperti transformation [2,3]. The latter transforms
away a nonlinear diffusion coefficient (D) to a constant
diffusion (e.g., see Refs. [36,37] and Theorems 7.37 and 7.39
and Remark 7.4, chap. 7 in Ref. [2]). Together with the change
of variables, or change of measure (Girsanov transformation)
which removes the drift term (i.e., ∂V

∂x
in our case), the solution

to any stochastic equation with time-independent coefficient
can be obtained by the Brownian motion (e.g., see Refs. [2,3]).
However, since the resulting Brownian motion depends on
random time, it is not clear how to calculate transient PDFs
by using this method. In comparison, our nonlinear time
transformation seems to offer a systematic way of computing
the PDFs in different limits. This opens a large scope for
future study including the application of our method to other
nonlinear stochastic processes. Of particular interest would be
the inclusion of a linear (negative) force in the cubic process

to investigate the dynamics of growth, phase transition, and
long-term memory. A change of variables would then permit
us to examine the Feller-branching process with a logistic
growth (e.g., see Ref. [36]). Furthermore, the investigation
of the change in information in nonlinear processes in terms
of information length [17] is addressed in the accompanying
paper [35].

APPENDIX A: PROPERTY OF p(x) = N exp(−βx4)

We first show how to fix N by the unity of the total
probability

∫ ∞
−∞ dx p(x) = 1:

N−1 =
∫ ∞

−∞
dx e−βx4

= 2
∫ ∞

0
dx e−βx4

= 1

2
β− 1

4

∫ ∞

0
dy y− 3

4 e−y

= 1

2
β− 1

4 �

(
1

4

)
, (A1)

where the change of the variable y = βx4 (dx = 1
4β− 1

4 y− 3
4 dy)

was used and �(z) = ∫ ∞
0 dy yz−1e−y is the Gamma function.

That is,

p(x) = 2β
1
4

�
(

1
4

)e−βx4
.

By using Eq. (A1), we can calculate the second and fourth
moments as follows:

〈x2〉 =
∫ ∞

−∞
dx x2p(x) = 2N

∫ ∞

0
dx x2e−βx4

= N

2
β− 1

4 β− 1
2

∫ ∞

0
dy y− 1

4 e−y

= �
(

3
4

)
�

(
1
4

)β− 1
2 (A2)

and

〈x4〉 =
∫ ∞

−∞
dx x4p(x) = 2N

∫ ∞

0
dx x4e−βx4

= N

2
β− 1

4 β−1
∫ ∞

0
dy y

1
4 e−y

= �
(

5
4

)
�

(
1
4

)β−1 = 1

4
β−1, (A3)

where �(z) = (z − 1)�(z) was used for z = 5
4 in the last line.

From Eq. (A2) and Eq. (A3), we find the kurtosis κ:

κ = 〈x4〉
〈x2〉2

= 1

4

[
�

(
1
4

)
�

(
3
4

)
]2

= 2.1884. (A4)

Thus, the quartic exponential PDF has kurtosis less than 3,
indicating narrow width and flatness. Note that the Gaussian
PDF has κ = 3.
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APPENDIX B: PATH INTEGRAL IN EQ. (12)

For Gaussian statistics with vanishing first moment, the
prescription of the second moment given by Eq. (2) is
sufficient. It is simply because all odd moments vanish
while even moments can be expressed as a product of
second moments. Note that even if the forcing is Gaussian,
statistics of x can be non-Gaussian because of the non-
linearity of the dynamical equation. An equivalent way of
prescribing the second moment (2) for the Gaussian forcing
is to introduce the probability density function for ξ as
follows [12,26,33]:

d[ρ(ξ )] = Dξ exp

{
−1

2

∫
dtD−1ξ (t)2

}
. (B1)

This is a Gaussian distribution for ξ (t). The average value of
a quantity Q is then computed as

〈Q〉 =
∫

d[ρ(ξ )] Q.

When the average value of a functional of x (i.e., 〈Q[x]〉) is
required, the constraint should be imposed that ξ and x satisfy
the original equation (1). This can be done by inserting an
identity with a δ function, which enforces Eq. (1), as

1 =
∫

Dx δ

[
dx

dt
+ ∂V

∂x
− ξ

]
J

∝
∫

DxDx exp

{
i

∫
dt x

[
dx

dt
+ ∂V

∂x
− ξ

]}
J, (B2)

where J = J [ ∂ξ

∂x
] is the Jacobian due to the change of variables

for the delta function. Let us show in detail how this is done.
Starting from the definition,

〈Q[x]〉 =
∫

Dξ Q[x] exp

{
− 1

2D

∫
dtξ (t)2

}

=
∫

DξDx Q[x] δ

[
dx

dt
+ ∂V

∂x
− ξ

]
J

× exp

{
− 1

2D

∫
dtξ (t)2

}

=
∫

DξDxDx Q[x] exp

{
i

∫
dt x

[
dx

dt

+ ∂V

∂x
− ξ

]}
J exp

{
− 1

2D

∫
dtξ (t)2

}

=
∫

DxDx Q[x] e−S , (B3)

leading to S given in Eq. (12). In Eq. (B3), Eq. (B2) was
used to obtain the third line; J = e−ψ and ψ = − 3

2μx2 [see,
e.g., Eq. (96)–(97) in Ref. [33], Eq. (2.10) in Ref. [12]] for
V (x) = μx4/4 and the Gaussian integral over ξ were used
to obtain the last line. Taking Q[x] = δ(x(tf ) = xf )δ[x(0) =
x0] gives us Eq. (11). Note that x is a conjugate variable,
which acts as a mediator between the forcing ξ and dynamical
variable x.

APPENDIX C: NONLINEAR TRANSFORMATION [EQ. (18)]

Let us consider a homogeneous cubic equation dx
dt

= −μx3.
The usual way of solving this equation is to separate variables
and integrate to obtain

x(t) = x0√
1 + 2μtx2

0

, (C1)

where the initial condition x(t = 0) = x0 is used. To elucidate
how the nonlinear transformation defined in Eq. (18) works,
we rewrite dx

dt
= −μx3 as follows:

0 = dx

dt
+ μx3 = x2

(
dx

dτ
+ μx

)
. (C2)

The solution to Eq. (C2) is x(τ ) = x0e
−μτ where x0 = x(τ =

0) = x(t = 0). To obtain x(t), we use x(τ1) = x0e
−μτ1 in

Eq. (25):

t =
∫ τ

0
dτ1

1

[x(τ1)]2
= 1

2μx2
0

(e2μτ − 1)

= 1

2μx2
0

{
x2

0

[x(t)]2
− 1

}
. (C3)

Solving Eq. (C3) for x(t) gives the same solution [Eq. (C1)].

APPENDIX D: GENERALIZED TWO-FAMILY
TRIGONOMETRY FUNCTIONS

The generalized sine function with two parameters p,q,
where p > 1 and q > 1, is defined through its inverse
function [34]

arcsinp,q(x) =
∫ x

0
dt (1 − tq)−1/p, (D1)

where x = [0,1]. Note that when p = q = 2, Eq. (D1)
recovers the definition of the usual arcsin(x). When x = 1,
Eq. (D1) defines the generalized πp,q as

arcsinp,q(1) =
∫ 1

0
dt (1 − tq)−1/p = πp,q

2
, (D2)

which again recovers π/2 when p = q = 2. We note that
sinp,q(x) is a monotonically increasing function of x, mapping
[0,1] → [0,πp,q/2], and Eq. (D1) can also be written in terms
of Gaussian hypergeometric function.

The (p,q)-cosine is defined as

cosp,q(x) = d sinp,q(x)

dx
= {1 − [sinp,q(x)]q}1/p, (D3)

where x is a real number. Hence, cosp,q(x) is strictly decreasing
on [0,πp,q/2], cosp,q(0) = 1, cosp,q (πp,q/2) = 0 and satisfies
the following identity:

| sinp,q(x)|q + | cosp,q(x)|p = 1, (D4)

which is Eq. (29) with x = zf .
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APPENDIX E: DERIVATION OF EQ. (32)

To show the identity Eq. (32), we let the left-hand side of
Eq. (32) be I1 and reexpress it as follows:

I1 ≡
∫ z

0
dz1

1(
1 − z3

1

)5/3
(E1)

=
∫ z

0
dz1

[
1 − z3

1(
1 − z3

1

)5/3
+ z3

1(
1 − z3

1

)5/3

]
(E2)

≡ I0 +
∫ z

0
d[

(
1 − z3

1

)−2/3
]
z1

2
(E3)

= I0 + 1

2

z

(1 − z3)2/3
− 1

2

∫ z

0
dz1

1(
1 − z3

1

)2/3 (E4)

= I0 + 1

2

z

(1 − z3)2/3
− 1

2
I0 = 1

2
I0 + 1

2

z

(1 − z3)2/3
(E5)

= 1

2

[∫ z

0
dz1

(
1 − z3

1

)−2/3 + z(1 − z3)−2/3

]
, (E6)

obtaining Eq. (32) in the text. Here I0 in Eqs. (E3)–(E5) is
defined as

I0 ≡
∫ z

0
dz1

1(
1 − z3

1

)2/3 , (E7)

and integration by parts is used to obtain Eq. (E4) from
Eq. (E3).

APPENDIX F: FOR y − γ > 0

In this case, we obtain from Eq. (38) and Eq. (25)

t = 1

6μB
2
3

I0, (F1)

where

I0 =
∫ yf

1

dy

y
2
3

1

(y − γ )
2
3

. (F2)

Here y = e6μt and yf = e6μτf . Similarly, Eq. (38) can be
written as

Seff = μB
4
3

3D
I1 = μ

6D
{6μtf |αB| + 3B

4
3 [y1/3(y − γ )

1
3 ]

yf

1 },
(F3)

I1 =
∫ yf

1
dy

y
1
3

(y − γ )
2
3

. (F4)

In the second line in Eq. (F3), we used Eq. (F1)
and the following identity (similar to that used in
Appendix C):

I1 = 1

2

{
γ I0 + 3[y1/3(y − γ )

1
3 ]

yf

1

}
. (F5)

APPENDIX G: DERIVATION OF EQ. (45)

We rewrite I0 in Eq. (42) in terms of I1 in Eq. (44) as

I0 =
∫ yf

1
dy

y− 2
3

(γ − y)
2
3

= 1

γ
[I1 + J ], (G1)

where

J =
∫ yf

1
dyy− 2

3 (γ − y)
1
3

= 3

{
[y

1
3 (γ − y)

1
3 ]

yf

1 + 1

3

∫ yf

1
dyy

1
3 (γ − y)−

2
3

}

= 3[y
1
3 (γ − y)

1
3 ]

yf

1 + I1. (G2)

By using Eq. (G2) in Eq. (C1), we obtain

γ I0 = 2I1 + 3[y
1
3 (y − γ )

1
3 ]

yf

1 ,

which gives Eq. (45).

APPENDIX H: ALTERNATIVE DERIVATION OF THE
RELAXATION TIME TO THE STATIONARY PDF

To estimate the relaxation time to the stationary PDF, we
let r = r (0) + r (1) in Eq. (61) by assuming a small Q−1 and
find

r =
(

2D

μ

) 1
4

− 3

4
√

2μtf
.

By comparing the two terms in r above, we conclude that
the critical time tc required to relax into the equilibrium PDF
satisfies

tf >
9

32
√

2Dμ
(≡ tc). (H1)
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[8] D. Acosta, P. F. de Córdoba, J. M. Isidro, and J. L. G. Santander,

arXiv:1107.1898 (2011).
[9] S.-I. Itoh, K. Itoh, M. Yagi, M. Kawasaki, and A. Kitazawa,

Phys. Plasmas 9, 1947 (2002).
[10] C. Tsallis, Introduction to Nonextensive Statistical Mechanics:

Approaching a Complex World (Springer, New York, 2009).
[11] S. P. Das and G. F. Mazenko, J. Stat. Phys. 149, 643 (2012).
[12] P. Hänggi, Z. Phys. B 75, 275 (1989).
[13] J. Anderson and E. Kim, Plasma Phys. Controlled Fusion 52,

012001 (2010).
[14] E. Kim, H.-L. Liu, and J. Anderson, Phys. Plasmas 16, 052304

(2009).
[15] E. Kim and P. H. Diamond, Phys. Rev. Lett. 88, 225002 (2002).
[16] E. Kim and P. H. Diamond, Phys. Plasmas 9, 71 (2002).
[17] J. Heseltine and E. Kim, J. Phys. A: Theor. Math. 49, 175002

(2016).
[18] E. Kim, U. J. Lee, J. Heseltine, and R. Hollerbach,

Phys. Rev. E 93, 062127 (2016).
[19] S. B. Nicholson and E. Kim, Phys. Lett. A 379, 83 (2015).
[20] A. P. L. Newton, E. Kim, and H.-L. Liu, Phys. Plasmas 20,

092306 (2013).
[21] E. Kim and S. Nicholson, Phys. Lett. A 379, 1613 (2015).
[22] R. Hermann, Fractional Calculus: An Introduction for Physicists

(World Scientific, Singapore, 2011).
[23] J. Anderson, E. Kim, and S. Moradi, Phys. Plasmas 21, 122109

(2014).
[24] M. H. Pinsonneault, S. D. Kawaler, S. Sofia, and P. Demarque,

Astrophys. J. 338, 424 (1989).

[25] E. T. Lu, Phys. Rev. Lett. 74, 2511 (1995).
[26] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

(Oxford Science Publications, Oxford, 2008), Chs. 2–4.
[27] J. Zinn-Justin and U. D. Jentschura, Ann. Phys. 313, 197 (2004);

313, 269 (2004).
[28] U. D. Jentschura and J. Zinn-Justin, Ann. Phys. 326, 2186

(2011).
[29] U. D. Jentschura, A. Surzhykov, and J. Zinn-Justin, Ann. Phys.

325, 1135 (2010).
[30] R. P Feynman and A. R. Hibbs, Quantum Mechanics and Path

Integrals (McGraw-Hill, New York, 1965), Ch. 2; R. P. Feyn-
man, Statistical Mechanics (W. A. Benjamin, New York, 1972),
Ch. 3.

[31] G. ‘t Hooft, Phys. Rev. Lett. 37, 8 (1976).
[32] V. Gurarie and A. Migdal, Phys. Rev. E 54, 4908 (1996); G.

Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, ibid. 54,
4896 (1996).

[33] U. Seifert, in Soft Matter, From Synthetic to Biological Ma-
terials, Lecture Notes of the 39th IFF Spring School 2008,
edited by J. K. G. Dhont, G. Gompper, G. Nägele, D. Richter,
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