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Abstract

We study the attainability of Pareto optimal allocations and existence of quasi-

equilibrium in exchange economies where agents have utility functions that value

consumption in an indefinite future. These utility functions allow for fairly general

discounting of consumption over finite time horizons, but add a utility weight to the

bulk of the consumption sequence, which we identify with the indefinite future. As

our commodity space we use the space of all convergent sequences with the limit of

the sequence representing consumption in the indefinite future. We derive a neces-

sary and sufficient condition for the attainability of the Pareto optimal allocations.

This condition implies that efficiency can only be attained if consumers’ valuations

of time are very similar. Our proof relies on the existence of an interior solution

to certain infinite dimensional optimization problems. If the condition is not met,

no interior quasi-equilibria exist. We extend the model to include consumers with

Rawlsian-like maximin utility.
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1 Introduction

In many fields of economics there is a need to describe economic situations with an open-

ended time-line. Following Bewley (1972) this has mainly been modelled by assuming an

infinite time horizon. As has been clarified by Araujo (1985) and Brown and Lewis (1981),

the commonly used commodity–price duality of bounded and summable sequences in

such models, necessitates the assumption of myopic preferences. So, in a sense, mod-

els in the tradition of Bewley (1972) analyse economies that “fizzle out”, emphasizing

the interpretation of infinity as representing time so far away that it is of no concern to

economic agents.

In applications of such models, the description of an agent’s intertemporal choice

is a crucial ingredient. For example, in the economics of climate change, typically, in-

tertemporal choice is assumed to be independent and stationary (see, for example, Heal,

2005), which implies that the standard exponential discounting model can be used. Even

so, there is a substantial debate about what the appropriate discount rate should be.1

Notwithstanding this debate, in the existing literature, the utility value of consumption

far into the future is assumed to vanish sufficiently fast.

In this paper we want to present a different approach to modelling an open-ended

future, using the notion of indefinite future. By this we mean that we wish, in an infinite

horizon setting, to separate consumption at individual time periods from consumption of

the bulk of the sequence in the far future. Such a setting allows for preferences that are

consistent with the behaviour of agents who care about a “steady state” of consumption,

but are less able to distinguish between individual time periods in the far future than

in the near future. From this point of view, infinity does not literally represent the end

of times, but, rather, the “indefinite future”. For example, people may recycle goods at

some (low) cost to themselves out of environmental concerns for the indefinite future.

Also, many people give money to organizations that conserve our cultural heritage for

future generations.

As a first step in this research programme we wish to establish under what conditions

the Pareto frontier of such an economy is attainable and under what conditions existence

of (quasi-) equilibrium can be guaranteed. It is immediately clear that such models can

not use the usual commodity–price duality, because on the space of bounded sequences

behaviour in the indefinite future is not well-defined. Instead, we are naturally led to the

1See Stern (2007), Nordhaus (2007), Weitzman (2007), Dasgupta (2008), and Heal and Millner (2013).
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space of convergent sequences, with the limit representing consumption in the indefinite

future. On this commodity space we then define utility functions that are a mixture

of discounting over finite time periods and a utility assigned to the indefinite future.

We allow for fairly general modes of discounting, including exponential or hyperbolic

discounting.

Our main result is to provide a necessary and sufficient condition for the attainability

of the Pareto frontier for such utility functions in an infinite horizon exchange economy

with one consumption good. This necessary and sufficient condition, which we call time

value consistency, requires that for each pair of consumers its ratio of utility weights on

consumption far into the future is consistent with the ratio of the weights they put on

consumption at infinity. Since our utility functions are continuous in an appropriate

topology and we assume that initial endowments are in the interior of the positive cone,

standard arguments now imply that time value consistency is a sufficient condition for

the existence of quasi-equilibrium. If time-value consistency is violated, then some (but

not necessarily all) Pareto optima can not be allocated. It turns out that this implies that

any quasi-equilibrium in such an economy (assuming existence) has the property that at

least one consumer gets allocated nothing in the indefinite future.

Since time value consistency requires that there is strong agreement among all con-

sumers about the value of time, our result hints at potential inter-generational issues in

economies where agents have different senses of how far away the indefinite future is.

This is very different from the analysis of conventional (finite and infinite horizon) mod-

els, where, as long as all agents are myopic, agents can discount in any way they like.

This, however, rules out any far-sighted (presbyopic) element to preferences. In partic-

ular, such models can not deal with consumers who have, for example, maximin prefer-

ences. It turns out that our main result can easily be extended to economies where some

consumers have maximin preferences. Their presence does not affect the attainability of

Pareto optimal allocations: Pareto optimal allocations are attainable as long as every pair

of non-maximin preferences is time value consistent.

We prove our results using infinite dimensional versions of the implicit function and

Lagrange theorems. This approach is different from the standard approach, which tends

to rely on the Alaoglu theorem. We, therefore, also make a contribution to the mathemat-

ical toolbox that can be used for analysing infinite dimensional economies.

Unlike in finite dimensional economies, modelling an infinite horizon economy al-

ways involves a trade-off between the commodity and price spaces and the topology that
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puts these two spaces in duality. In order to derive results beyond the standard Bewley

(1972) approach one has carefully recalibrate this duality. We present one such possibil-

ity in this paper. Another approach is studied by Chichilnisky (2012a,b), who extends

the price space to the space of all boundedly additive sequences. That way she can allow

for preferences that value infinity and ensure equilibrium existence. A disadvantage of

this approach, however, is that non-summable price sequences are very difficult to inter-

pret economically. For example, there is no algorithm that allows a social planner or a

Walrasian auctioneer to construct such prices. In fact, the existence of such price func-

tionals depends crucially on the axiom of choice, i.e. such prices can only exist by making

an uncountable number of arbitrary choices. In our approach, the use of convergent se-

quences to represent commodity bundles avoids this problem, because the dual space of

prices consists of summable sequences. While this restriction to the space of convergent

sequences is not innocuous, it has both economic and mathematical appeal, as we explain

in Section 2.

Section 3, then, describes the main ingredients of the infinite-dimensional exchange

economy, followed by a description of time value consistency and the main theorem in

Section 4. The proof of the main theorem is given in Section 5. Results on existence of

quasi-equilibria are presented in Section 6, together with some examples to illustrate the

main issues. Section 7 presents some extensions and special cases. In Section 8 we dis-

cuss the case where several consumers have Rawlsian-like maximin preferences. These

are preferences where a consumer values a consumption sequence solely through the

utility provided by the period in which she is worst-off, much like an intertemporal ver-

sion of the famous Rawlsian social welfare function where individual agents’ preferences

are aggregated by looking at the utility of the agent who is worst-off (see, for example,

Moulin, 1988). Such preferences provide an example of utility functions that cannot be

dealt with in the standard commodity–price duality (because they are not continuous in

the Mackey topology), but do not present any problems in our set-up. Finally, Section 9

provides some concluding remarks.
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2 Choosing A Commodity Space to Deal with the Infinite

Future

As was explained in Section 1, preferences that value the indefinite future can not be used

in an economy with the
〈

ℓ∞, ℓ1
〉

duality, because such preferences are not continuous in

the Mackey topology for this duality. In order to remedy this, we will have to change the

commodity space or the price space (or both). Bewley (1972) has given convincing ar-

guments why, when the commodities consist of sequences, the price space should be the

space of summable sequences, ℓ1. One of the arguments is that sequences in the topolog-

ical dual of ℓ∞, the space of boundedly additive sequences, ba, have no clear economic

interpretation. In fact, many functionals in ba cannot be constructed in any meaningful

way.

The same argument, however, can be levelled at the commonly-used commodity space

of the bounded sequences, ℓ∞. Some of the sequences in this space exhibit such erratic

behaviour over time, that they cannot be constructed in any meaningful way. It can be

argued that such sequences should not be used as potential commodities, especially since

allowing their presence heavily restricts the types of preferences that can be accommo-

dated. In fact, it is precisely this erratic behaviour that requires continuous preferences –

in the Mackey topology on
〈

ℓ∞, ℓ1
〉

– to exhibit sufficiently fast discounting; thereby pre-

cluding any behaviour that values consumption in the far future. This provides a strong

argument to question the choice of ℓ∞ as a commodity space.

Another economic disadvantage of focussing on Mackey continuous preferences on
〈

ℓ∞, ℓ1
〉

is that, if a sequence has a long-run average, this long-run average is not valued

by the consumer per se. The consumer cannot “see” that she is consuming a long-run

average with variations over time. In fact, when thinking about economies over a long

time horizon, it may be quite natural to consider sequences (possibly after de-trending to

account for economic growth) that have a long-run average. This naturally leads to the

consideration of the space of convergent sequences, c, as the limit of a sequence can be

thought of as the long-run average.

In addition, the space of convergent sequences is “close” to the space of bounded se-

quences in the sense that c is dense in ℓ∞. Also, every sequence in c can be constructed

via finite dimensional approximations. This has great advantages for computational im-

plementations of infinite horizon models. In fact, our main proofs rely heavily on this

type of approximation.

5



Finally, our results can fairly easily be extended to more general spaces, for example

those of the periodic sequences. The main ideas of the paper, however, are most easily

explained in the context of the convergent sequences, which is why we focus on infinite

horizon economies where the commodity space is given by c.

3 An Infinite-Dimensional Exchange Economy with Con-

vergent Commodities

An exchange economy with N consumers is a collection

E =
(

〈X,P〉 ,τ, (X i ,ui ,ωi)Ni=1

)

. (1)

where 〈X,P〉 is a commodity-price duality, τ is a topology that is consistent with the

duality 〈X,P〉, and X i ⊆ X+, u
i and ωi ∈ X are the consumption set, utility function on X

and initial endowments of consumer i, i = 1, . . . ,N , respectively.2

For our purposes, we must be able to construct prices for consumption at each indi-

vidual time as well as in the indefinite future. Mathematically, these are the functions

x 7→ xt for t ∈N∪{∞}, where x∞ is shorthand for limt→∞ xt . The largest commodity space

on which we can do this is the space of convergent sequences, c.

The price functionals must then be built from the functionals x 7→ xt . As remarked

by Bewley (1972), there are many non-intuitive ways of doing this (relying on the axiom

of choice). However, the only meaningful ones lead to a value of consumption bundles

equal to:

〈

x,p
〉

=

∞∑

t=1

ptxt + p∞x∞, (2)

where pt ≥ 0 for all t. It is important to realise that p∞ is not a limit, but, rather, a

freely chosen price “at infinity”. For this to make sense we must have that
∑∞

t=1pt < ∞;

conversely, if pt ≥ 0 and
∑∞

t=1pt <∞ then (2) makes sense for all x ∈ c. The price space is

then the linear span of these positive functionals, i.e. the space of all functionals of the

form (2) with
∑∞

t=1 |pt | <∞. Denote this space ℓ1 ⊕R; this is now in duality with c via the

bilinear form (2).

To allow for the widest possible range of utility functions, we should place the strongest

possible topology on c, subject to the dual space being (via the bilinear form (2)) exactly

2Here X+ denotes the positive cone of the commodity space X, i.e. x ≤ y iff y − x ∈ X+ for all x,y ∈ X.
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ℓ1 ⊕R; that is, we require the Mackey topology on c induced by the duality
〈

c,ℓ1 ⊕R
〉

. In

the uniform norm ‖ · ‖∞, c is a Banach space whose dual is ℓ1⊕R (Dunford and Schwartz,

1958, IV.6.3); in this case (Schaefer, 1999, IV.3.4) the Mackey topology coincides with the

norm topology. The required topology on c is therefore that induced by ‖ · ‖∞. Note that

the model itself does not require that we stipulate a topology on the price space. Ac-

cording to convenience, we might use the dual norm ‖p‖1 =
∑∞

t=1 |pt |+ |p∞|, or the weak*

topology induced by c and (2).

For N consumers, we work in a Banach space which we denote cN , consisting of con-

vergent sequences of N -dimensional vectors. An element x of this space is defined by the

real numbers xit , where 1 ≤ i ≤ N and t ∈N, representing an allocation of xit to consumer

i at time t. We require xit to converge to a limit as t→∞, and denote this limit by xi∞. We

want to develop a natural vectorization of
〈

c,ℓ1 ⊕R
〉

and, therefore, use the norm on this

space given by ‖x‖∞ = sup1≤i≤N,t∈N |x
i
t |. There are natural projections of this space onto

c and R
N : for any given i, xi will denote the convergent real sequence, (xit)t∈N; for any

given t, xt will denote the vector in R
N , (xit)

N
i=1. On R

N we use the∞-norm

‖y‖∞ = max
1≤i≤N

|yi |.

An element of the dual space (cN )∗ can be represented as a sequence (µit)t∈N,1≤i≤N and

a vector (ν i)Ni=1, where for each i,
∑∞

t=1µ
i
t converges, i.e. (µit)t∈N ∈ ℓ

1. The bilinear form

expressing the duality is

〈

x, (µ,ν)
〉

=

N∑

i=1










∞∑

t=1

µitx
i
t + ν i lim

t→∞
xit









. (3)

Let

Z =
{

x = (x1, . . . ,xN ) ∈ X1 × · · · ×XN
∣
∣
∣
∣

N∑

i=1

xi ≤ ω
}

,

be the set of attainable allocations, where ω =
∑N

i=1ω
i . It is assumed here that consumers

can freely dispose of goods. The total endowment at time t is denoted by ωt . Since ω
i ∈ c,

all i = 1, . . . ,N , it follows that the sequence of total endowments converges to a limit ω∞.

In addition we assume that this limit is strictly positive limit (the case ω∞ = 0 is different

in character, and considerably simpler; see Section 7).

Our interest is in the study of preferences that reflect concerns about the indefinite

future. In order to stay close to the Bewley world and the recent literature, in particular
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Araujo et al. (2011), we consider utility functions of the form

ui(xi) =
∞∑

t=1

δitv
i(xit) + ζi lim

t→∞
vi(xit), xi ∈ X i = c+ (4)

defined on the positive cone of the space c. Here, for each i, (δit)t∈N is a strictly positive,

summable sequence, ζi > 0 is the weight that the consumer places on consumption at

infinity (see Section 7 for some observations about the cases δit = 0 for some t and ζi = 0)

and vi is defined on an open set containing [0,∞), i.e. on (−ε,∞) for some ε > 0, and is

twice continuously differentiable. We also assume that vi(0) = 0 and that for x ∈ [0,∞),

(vi)′(x) > 0, and (vi)′′(x) < 0. The utility possibility set of the economy E is then given by

U = {u ∈RN | u ≤ u(x) = (u1(x1), . . . ,uN (xN )), for some x ∈ Z}

= u(Z)−RN
+ .

The utility vector u ∈ U is a weak (Pareto) optimum if there is no û ∈ U such that ûi ≥ ui

for all i with strict inequality for at least one i. The set of Pareto optimal allocations is

essentially the positive boundary of the utility possibility set, ∂U ∩RN
+ .

Assuming that ω is in the interior of X+, Mas–Colell and Zame (1991) show that

closedness of U is sufficient for the existence of a quasi-equilibrium.3 Closedness of the

utility possibility set also means that every Pareto optimum is attainable. In the Bewley-

world closedness of U follows immediately from the Alaoglu theorem. There, however,

non-discounting preferences are not continuous in the Mackey topology on
〈

ℓ∞, ℓ1
〉

. In

our setting, since we are working in the norm topology continuity of utility functions of

the form (4) is easily obtained. Closedness of U , however, cannot be obtained using the

Alaoglu theorem and is, therefore, the main focus of the paper.

Preferences of the form (4) value both individual time periods and the indefinite fu-

ture. One way to think about such preferences is to reinterpret limit consumption x∞ as

long-run average consumption. The parameter ζi measures the weight consumer i places

on average consumption relative to deviations from the average at each individual point

in time. These deviations are discounted over time.

The “discounting sequence”, (δit)t∈N can take various forms, as long as (δit)t∈N ∈ ℓ
1. For

example, the agent could use exponential discounting: δt = δt , for some sufficiently small

3A pair (x,p) ∈ X ×P is a quasi-equilibrium if
〈

p,ω
〉

, 0 and if, for all i,
〈

p, x̄i
〉

≥
〈

p,ωi
〉

whenever ui (x̄i ) >

ui (xi ).
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δ. Hyperbolic discounting in the sense of Laibson (1997), i.e. setting

δt =
γ

1+κt
,

with γ and κ fixed, does not work, because the speed of decay of this sequence is too low.

However, for every ε > 0, the discounting sequence (δt)t∈N with

δt =
γ

1+κt1+ε
,

is admissible. Alternatively, the agent could use quasi-hyperbolic discounting: δt =

(β,δ,δ2, . . . ), for β,δ ∈ (0,1). In fact, agents could even have arbitrary discount factors

for any finite number of periods:

(δt)t∈N = (δ1,δ2, . . . ,δT ,δ
T+1,δT+2, . . . ),

for arbitrary (δ1, . . . ,δT ) and T , and δ small enough.

4 TimeValueConsistency, ParetoOptimality and theMain

Theorem

We begin with some terminology and notation about the utility possibility setU and some

ways in which it can be decomposed. As defined, U contains non-positive vectors which,

because of our normalization vi(0) = 0, do not represent feasible allocations. Since we are

more concerned with allocatable, i.e. non-negative, elements of U and of its boundary,

we make the following definition.

Definition 1. The positive part of the utility possibility set is defined by U+ =U ∩RN
+ or,

more constructively,

U+ = { (ui(xi))Ni=1 | x
i
t ≥ 0,xit + · · ·+ xNt ≤ ωt (1 ≤ i ≤N,t ∈N) } .

Similarly, the positive boundary of U is defined by ∂+U = (∂U )∩RN
+ .

The pointwise or Minkowski sum of sets of vectors in R
N is defined by

A+B = { a+ b | a ∈ A,b ∈ B } .
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Because of the time-separable nature of our utility functions, there are various ways of

decomposing U+ into Minkowski sums. The most important is, for some T ∈N,

UT− =




















T∑

t=1

δitv
i(xit)










N

i=1

∣
∣
∣
∣
∣
∣
∣
∣

xit ≥ 0,
N∑

i=1

xit ≤ ωt (1 ≤ i ≤N,1 ≤ t ≤ T )











UT+ =


















∞∑

t=T+1

δitv
i(xit) + ζivi(xi∞)










N

i=1

∣
∣
∣
∣
∣
∣
∣

xit ≥ 0,
N∑

i=1

xit ≤ ωt (1 ≤ i ≤N,t > T )









U+ =UT− +UT+.

(5)

Here we decompose U+ into the utilities attained up to time period T — an essentially

finite-dimensional object — plus the utilities attained from time T +1 onwards, including

utility attained at∞. Another occasionally useful decomposition is

UF =


















∞∑

t=1

δitv
i(xit)










N

i=1

∣
∣
∣
∣
∣
∣
∣

xit ≥ 0,
N∑

i=1

xit ≤ ωt (1 ≤ i ≤N,t ∈N)









U∞ =









(

ζivi(xi∞)
)N

i=1

∣
∣
∣
∣
∣
∣
∣

xit ≥ 0,
N∑

i=1

xit ≤ ωt (1 ≤ i ≤N,t ∈N)









U+ =UF +U∞

(6)

which we can think of a decomposition ofU+ into the utilities attained over all finite time

times, plus the utilities attained at∞. Here U∞ is essentially finite-dimensional.

At this point, it is helpful to give a concrete description of the closure of U+ as an

infinite Minkowski sum, and to mention an important strict convexity property.

Lemma 1. For t ∈N, let

Ut = {(δ
i
tv

i(xit))
N
i=1 | x

i
t ≥ 0,

N∑

i=1

xit ≤ ωt},

and let

Ǔ =
{ (

ζivi(x̌i)
)N

i=1

∣
∣
∣
∣ x̌

i ≥ 0, x̌1 + · · ·+ x̌N ≤ ω∞

}

.

Then the closure of the positive part of the utility possibility set is given by

Ū+ =


















∞∑

t=1

yt









+ y̌

∣
∣
∣
∣
∣
∣
∣

yt ∈Ut (t ∈N), y̌ ∈ Ǔ








.

If y ∈ ∂+U , then any supporting hyperplane for Ū through y has no other points of intersection

with Ū , i.e. y is an exposed point of Ū .
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Consumer 1’s utility

Consumer 2’s utility

O A B C

D

U+ · · · E

U∞ · · · F

UF · · · G

Figure 1: U+, U∞ and UF in a two-consumer case.

The proof of this lemma is in Appendix A. In the finite-dimensional setting, the hy-

perplane property follows directly from strict convexity of the utility functions but, in

the infinite-dimensional setting, it is a little more delicate: even though (vi)′′ is bounded

away from zero, δit(v
i)′′ becomes arbitrarily small for large enough t, making it more

difficult to deduce strict convexity results about the closure.

To illustrate why U+ might not be closed, consider the following example.

Example 1. Consider two consumers who value time in different ways. Consumer 1 val-

ues finite time periods more highly than the indefinite future; Consumer 2 has exactly

the opposite view. For a concrete example, suppose ωt is constant and that the two utility

functions are

u1(x1) =
2

3

∞∑

t=1

1

2t
v(x1t ) +

1

3
v(x1∞)

u2(x2) =
1

3

∞∑

t=1

1

2t
v(x2t ) +

2

3
v(x2∞)

Then the possible utilities can be represented on a diagram as in Figure 1, where we are

using the decomposition described in (6). The convex region OBGO represents UF, while

OAFO representsU∞. According to Lemma 1, the closure of the positive part of the utility

possibility set is the sum of these two regions, shown as OCDEO. The positive boundary,

∂+U , is in two parts: CD is parallel to AF, while DE is parallel to BG. We can see from

this diagram, without any calculation, that the utility possibility set is not closed. The

simplest observation is that point D is not included: this point can be represented as the

sum of an element of UF (OBGO) and an element of U∞ (OAFO) in only one way, namely

11



as the sum of B and F. This represents an allocation where all endowments are given to

Consumer 1 in all finite time periods (B), and all endowments are given to Consumer 2

at infinity (F); because allocations are convergent sequences, this is not possible and the

utility possibility set is not closed. The crucial point is that we cannot treat infinity as

just another time period: consumption at infinity is determined by consumption in the

far, but finite, future.

More generally, any point on the open arc CD can be represented in only one way as

the sum of an element of UF (OBGO) and an element of U∞ (OAFO): namely, the point B

plus a point on the open arc AF. But point B represents the allocation of all endowments

in all time periods to Consumer 1; in such a case, Consumer 2 has no utility in any time

period, and hence no utility in the limit at infinity. The consumers’ utilities at infinity

thus lie on OA, not on AF. Points on the open arc CD thus do not represent allocatable

utilities.

In fact, in an example of this type, we should expect the whole of the open arc from C

through D to E to be missing from the utility possibility set, but this cannot so easily be

seen from the diagram. We return to this point in Section 6. ⊳

The problem in the example above is an inconsistency between the values placed by

the consumers on the far, but finite, future, and the indefinite future. This leads us

towards an important concept related to attainability of Pareto optimal allocations: time

value consistency.

Definition 2. Let ui and uj be utility functions of the form (4). The pair of utility func-

tions (ui ,uj ) is time value consistent if

δit

δ
j
t

→
ζi

ζj
, as t→∞. (7)

This condition holds if a pair of consumers value consumption in the far future consis-

tently with consumption in the indefinite future. This condition is very strong: requiring

the ratio of these sequences to be convergent means that the two consumers’ time value

weighting sequences have very similar decay rates.4

Note that in the case of exponential discounting, δit = (δi)t , time value consistency is

equivalent to δi = δj and ζi = ζj , for all i and j . For quasi-hyperbolic-like discounting,

(δit)t∈N = (δi1, . . . ,δ
i
Ti
,δ

Ti+1
i ,δ

Ti+2
i , . . . ),

4Note that since both (δit)t∈N and (δ
j
t )t∈N are summable sequences, they converge to zero.
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a similar reasoning shows that two consumers are time value consistent if and only if

δi = δj and ζi = ζj . For hyperbolic discounting, δit = γi /(1 + κit
1+ε), two consumers are

time value consistent if
γi
ζiκi

=
γj

ζjκj
.

Note that by rescaling the vi , the same consistent functions ui can be represented with

weights such that δit/δ
j
t → 1 as t → ∞ and ζi = ζj . Also, if we have N consumers, then

they are all time value consistent if and only if they are all consistent with some chosen

one: for example, if δ1t /δ
j
t → ζ1/ζj as t→∞ for all j , then δit/δ

j
t → ζi /ζj as t→∞ for all i

and j .

Our main result is that time value consistency is a necessary and sufficient condition

for the attainability of Pareto efficient allocations.

Main Theorem. Consider an economy E which consists ofN consumers with utility functions

of the form (4) with ζi > 0, δit > 0, t ∈ N, and
∑∞

t=1 δ
i
t <∞, for each i = 1, . . . ,N . Assume that

the sequence of total endowments lies in the interior of the cone c+, so ωt > 0 for all t and

ω∞ > 0. Then the utility possibility set is closed if and only if for each i and j , the utility

functions ui and uj are time value consistent.

5 Proof of the Main Theorem

Before we prove the Theorem, we introduce some notation and technical results needed

in the proof. Let ι represent the constant sequence (1)t∈N. The constant sequence (ξ)t∈N

can thus be denoted ξι. In proving that the utility possibility set generated by utility

functions of the form (4) is closed, our basic technical tool is the following result, which

is proved in Appendix A.

Lemma 2. The utility possibility set is closed if and only if for any allocation x ∈ cN , with

uj(xj ) = yj > 0 (1 ≤ j ≤ N ) and for any i (1 ≤ i ≤ N ), we can find an allocation which

maximizes ui subject to the constraints uj(xj ) = yj (1 ≤ j ≤ N,j , i), xj ≥ 0 (1 ≤ j ≤ N ) and

x1t + · · ·+ xNt = ωt (t ∈N).

The following result, also proved in Appendix A, essentially states that, in showing

that the utility possibility set is closed, we can discard the first T time periods and work

only with the tail of the economy.

13



Lemma 3. Consider the positive part U+ of the utility possibility set and, for T ∈ N, the sets

UT− and UT+ described in (5), so U+ = UT− +UT+. Then U+ is closed if and only if UT+ is

closed; equivalently, U is closed.

The proof of the Theorem proceeds in four stages. Part (i) makes use of the infinite-

dimensional analogue of Lagrange multipliers described in Appendix C. The closedness

of the utility possibility set guarantees the existence of certain constrained extrema of

the utility functions, which in turns leads to the first-order conditions from Lagrange’s

method holding true. These fall into two types: those associated with finite time periods,

and those associated with infinity. Provided the utility functions are sufficiently smooth,

we can take a limit as time tends to infinity to link the limiting behaviour of the finite-

time conditions with the infinite-time conditions and hence derive a necessary condition

for the utility possibility set to be closed; this is the time value consistency condition.

In parts (ii)–(iv), we start [(ii)] with the simplest possible scenario, in which all the

sequences describing the economy are constant. Not too surprisingly, in this very special

case we can explicitly solve the equations arising from the Lagrange conditions and de-

duce that, assuming time value consistency, the utility possibility set is closed. We then

[(iii)] use the implicit function theorem to see that, in a small neighbourhood of each of

these solutions, the maximisation problem can still be solved; this shows that the utility

possibility set is closed when the sequences describing the economy are sufficiently close

to being constant. Finally [(iv)], we break the economy into two pieces around some time

point T in the far future; times before T give a closed set because of the topological nature

of finite-dimensional space, and those beyond T give a closed set because the sequences

beyond T are sufficiently close to constant. This is the point where we crucially use the

fact that our sequences are convergent: they have approximately constant tails. We can,

in fact, obtain similar results for sequences with approximately periodic tails, but the

consistency conditions and the associated arguments all become more complicated.

(i) Proof of necessity. Suppose the utility possibility set is closed and choose T ∈ N so

that for all i,
∞∑

t=T+1

δitv
i(ωt) < ζivi(ω∞/N ). (8)

By Lemma 3, the set

UT+ =


















∞∑

t=T+1

δitv
i(xit) + ζivi(xi∞)










N

i=1

∣
∣
∣
∣
∣
∣
∣

xit ≥ 0,
N∑

i=1

xit ≤ ωt
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is closed. For 1 ≤ i ≤N , let

yi =
∞∑

t=T+1

δitv
i(ωt/N ) + ζivi(ω∞/N ).

Clearly, y ∈UT+. Now consider the maximization problem

max
x

∞∑

t=T+1

δ1t v
1(x1t ) + ζ1v1(x1∞)

s.t. xit ≥ 0,
N∑

i=1

xit = ωt (t > T ),

∞∑

t=T+1

δitv
i(xit) + ζivi(xi∞) = yi (2 ≤ i ≤N ),

(9)

which, by Lemma 2, has a solution. Inequality (8) shows that any allocation with xi∞ =

0 for some i ≥ 2 cannot meet these constraints, so we must have xi∞ > 0 for all i ≥ 2.

Moreover,
∞∑

t=T+1

δ1t v
1(x1t ) + ζ1v1(x1∞) ≥ y1,

so (8) shows that x1∞ > 0. It follows that there exists T ′ such that xit > 0 for all i with

1 ≤ i ≤ N and all t > T ′. Now fix xt for t ≤ T ′ and consider the same maximization

problem (9) as a function only of {xt | t > T ′}. Of course, we have the same solution; but,

as xit > 0 for t > T ′ and xi∞ > 0, the solution as a function of {xt | t > T ′} is in the interior

of the cone {(zt)t>T ′ | zt ≥ 0}. The Lagrangian L : cN ×RN−1 × c∗ → R associated with this

maximization problem is given by (see Appendix C)

L(x,λ2, . . . ,λN ,µ,ν) =

u1(x1)−
N∑

i=2

λi(ui(xi)− yi)−
∞∑

t=1

µt










N∑

i=1

xit −ωt









− ν










N∑

i=1

xi∞ −ω∞









. (10)

Note that the constraints can be written asG(x) = (y2, y3, . . . , yN ,ω), whereG : cN →R
N−1×

c is defined by

G(x) = (u2(x2),u3(x3), . . . ,uN (xN ),x1 + x2 + · · ·+ xN ).

Differentiating equation (10) with respect to (xt)t>T ′ (see Lemma 5 in Appendix B) gives

the following first-order conditions, which must be satisfied at an interior maximum (see
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Appendix C where we have evaluated at a point h and expanded the definition of the ad-

joint from the formulation by Deimling (1985, Theorem 26.1); surjectivity of the deriva-

tive is easy to check):

∞∑

t=T ′+1

δ1t (v
1)′(x1t )h

1
t + ζ1(v1)′(x1∞)h

1
∞ −

N∑

i=2









λi

∞∑

t=T ′+1

δ1t (v
i)′(xit)h

i
t + ζi(vi)′(xi∞)h

i
∞









−

∞∑

t=T ′+1

µt

N∑

i=1

hit − ν
N∑

i=1

hi∞ = 0 (h ∈ cNT ′ ).

where cNT ′ is the space of all sequences (hit)i=1,...,N,t>T ′ which converge for all i as t →∞.

Writing these in the same form as (3) we have

N∑

i=1










∞∑

t=T ′+1

({
1
−λi

}

δit(v
i)′(xit)−µt

)

hit +
({

1
−λi

}

ζi(vi)′(xi∞)− ν
)

hi∞









= 0 (h ∈ cNT ′ ),

where
{
1
−λi

}

is 1 if i = 1 or −λi if i > 1. For this to be zero for all h ∈ CN
T ′ , all the coefficients

of the hit must be zero. This gives the equations

δ1t (v
1)′(x1t )−µt = 0 (t > T ′) (11)

−λiδit(v
i)′(xit)−µt = 0 (2 ≤ i ≤N ) (12)

ζ1(v1)′(x1∞)− ν = 0 (t > T ′) (13)

−λiζi(vi)′(xi∞)− ν = 0 (2 ≤ i ≤N ). (14)

We can now eliminate µt from the first two equations and ν from the second two (note that

this step is reversible; µt = δ1t (v
1)′(x1t ) defines a summable series because δ1t is summable

and (v1)′(x1t ) converges to a non-zero limit):

δ1t (v
1)′(x1t ) = −λ

i(vi)′(xit)δ
i
t (t > T ′) (15)

ζ1(v1)′(x1∞) = −λ
iζi(vi)′(xi∞) (2 ≤ i ≤N ). (16)

Because ζi ,δit , (v
i)′ > 0, it follows from these equations that λi < 0 for all i. We can rear-

range to give

δ1t
δit

= −λi (v
i)′(xit)

(v1)′(x1t )
(t > T ′)

ζ1

ζi
= −λi (v

i)′(xi∞)

(v1)′(x1∞)
(2 ≤ i ≤N ).
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Letting t→∞ in the first equation and comparing with the second, we have δ1t /δ
i
t → ζ1/ζi

as t→∞. Taking two different values of i and dividing, we must have for all i, j :

δit

δ
j
t

→
ζi

ζj
(t→∞),

as claimed (this could also be established by maximizing uj subject to the other ui being

fixed).

We also note at this point that any solution of the Lagrange equations (15) and (16)

with T ′ = 0, i.e. for all t ∈ N, leads to a global maximum of u1, subject to the given

constraints. To see this, suppose x, λi , µ and ν are a solution. Suppressing the dependency

on λ,µ,ν, which are now fixed, if x + h satisfies the constraints, then

u1(x + h) = L(x + h) = L(x) +L′(x)h+
1

2
L′′(x +θh)(h,h) = u1(x) +

1

2
L′′(x +θh)(h,h),

for some θ ∈ (0,1), because x satisfies the constraints and L′(x) = 0. It is therefore enough

to show that L′′(x +θh)(h,h) ≤ 0. This follows easily from Lemma 5 in Appendix B:

L′′(x +θh)(h,h) =
∞∑

t=1

δ1t (v
1)′′(x1t +θh1t )(h

1
t )

2 + ζ1(v1)′′(x1∞ +θh1∞)(h
1
∞)

2 −

N∑

i=2

λi
∞∑

t=1

δit(v
i)′′(xit +θhit)(h

i
t)
2 + ζi(vi)′′(xi∞ +θhi∞)(h

i
∞)

2, (17)

which is negative because (vi)′′ < 0, λi < 0, δit > 0 and ζi > 0.

(ii) Proof of sufficiency: constant total allocations and equal weighting. We now

consider the special case where ω is constant, say ω = ω0ι, and for each i and j , δit/δ
j
t is

constant in t. By rescaling the vi , we can assume that all the δit are equal, say δit = δt ; in

accordance with time value consistency, all the ζi must also be equal, say ζi = ζ. We shall

show that the Lagrange equations derived in stage (i) have a unique solution in this case;

it will then follow from Lemma 2 that the utility possibility set is closed. In fact, apart

from the original constraint equations, we need only solve equation (15): equation (16)

follows from that and the hypotheses that δit = δ
j
t and ζi = ζj ; equations (11)–(14) then

follow from these, as remarked in stage (i). After cancelling δt , equation (15) reads

(v1)′(x1t ) = −λ
i(vi)′(xit). (18)

Notice that this is independent of t: each xt ∈ R
N satisfies the same system of equations.

The same is true of the constraint x1t + · · · + xNt = ω0. We know from the previous stage
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that in any solution to these equations we have λi < 0 for all i, so −λi(vi)′(xit) is a strictly

decreasing function of xit ; similarly, (v1)′(x1t ) is a strictly decreasing function of x1t . It

follows from Lemma 6 in Appendix B that, for any fixed (λi)Ni=1, these equations have at

most one solution; because each xt satisfies them, any solution to equation (18) must be

constant in t.

We may therefore consider a reduced problem involving only constant sequences:

maximize u1(ξ1ι) (ξ1 ∈ R+) subject to ui(ξ i ι) = yi (ξ i ∈ R+) and ξ1 + · · · + ξN = ω0. If

we let ∆ =
∑∞

t=1 δt + ζ, then we wish to maximize ∆v1(ξ1) subject to ∆vi(ξ i) = yi . This is

essentially trivial: because vi is strictly increasing, the equation ∆vi(ξ i) = yi uniquely de-

termines ξ i for 2 ≤ i ≤N ; ξ1 is then uniquely determined by ξ1+· · ·+ξN = ω0 (0 ≤ ξ1 ≤ ω0

because the yi can be allocated). Finally, we let λi = −(v1)′(ξ1)/(vi)′(ξ i).

The constant sequences ξ i ι now satisfy the constraints ui(ξ i ι) = yi (2 ≤ i ≤N ), ξ i ι ≥ 0,

ξ1ι+ · · ·+ξN ι = ω0ι and the Lagrange equation (18); that is, we have a critical point of the

Lagrangian which is allocatable and satisfies all constraints. As observed at the end of

stage (i), this is a global maximum of u1.

We chose to maximize u1 for notational convenience; we could equally have maxi-

mized any other ui . It now follows from Lemma 2 that the utility possibility set is closed.

(iii) Proof of sufficiency: near-constant total allocations and near-equal weighting.

Suppose the consumers are time value consistent, so δit/δ
1
t → ζi /ζ1 as t →∞. As before,

by rescaling vi , we can assume that δit/δ
1
t → 1 and that ζi = ζ1.

We shall now perturb the solution from the previous result, to show that if ω is close

to a constant sequence and each δi is close to a constant multiple of δ1 then the utility

possibility set is closed. More precisely, we shall show that, given ω0 and δ1, there exists

r > 0 such that if for all t, |ωt −ω0| < r and for all t and i, |δit/δ
1
t − 1| < r, then the utility

possibility set is closed.

For notational convenience, we shall write δ1t = δt , δ
i
t = (1 + εit)δt for 2 ≤ i ≤ N (so

εit → 0 as t→∞) and ζi = ζ for all i. Equation (15) now has the form

(v1)′(x1t ) = −λ
i(1 + εit)(v

i)′(xit) (t ∈N),

and equation (16) follows on letting t→∞. Given ω and εi (2 ≤ i ≤ N ), we need to solve

this for x and λ in combination with the original constraint equations

∞∑

t=1

δt(1 + εit)v
i(xit) + ζvi(xi∞) = yi (2 ≤ i ≤N ),
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and
N∑

i=1

xit = ωt (t ∈N).

We know from the above that we can do this ifω is constant, sayω = ω0ι, and εi = 0 for all

i; the solution is of the form xi = ξ i ι, and each λi some negative real number. We now start

from these solutions and use the Implicit Function Theorem in a Banach space context to

show that for any sequence (ωt)t∈N which is sufficiently close to being constant, and any

sequences (εit)t∈N which are sufficiently small, we can solve the Lagrange equations.

The Banach spaces are set up as follows: consider the function

G : c × cN−10 ×RN−1 × cN →R
N−1 × c × cN−1,

where cN−10 is the space of all sequences in R
N−1 converging to zero, and for each

(ω,ε2, . . . , εN ,λ2, . . . ,λN ,x) ∈ c × cN−10 ×RN−1 × cN ,

we define,

G(ω,ε2, . . . , εN ,λ2, . . . ,λN ,x) =
(

(u2(x2), . . . ,uN (xN ))
︸                   ︷︷                   ︸

∈RN−1

,x1 + · · ·+ xN −ω
︸              ︷︷              ︸

∈c

, ((v1)′(x1t ) +λi(vi)′(xit))2≤i≤N,t∈N
︸                                   ︷︷                                   ︸

∈cN−1

)

. (19)

It follows from Lemma 4 in Appendix B that G is continuously differentiable. We wish to

solve (given ω and ε, find λ and x) the equation

G(ω,ε,λ,x) = (y2, . . . , yN , (0)t∈N, (0)2≤i≤N,t∈N).

We know that we have a solution when ω = ω0ι is a constant sequence, εi = 0 for all i

and y2, . . . , yN are allocatable. According to the Implicit Function Theorem (Deimling,

1985, Theorem 15.2), there will be a ball in c × cN−10 centred around (ω0ι,0) in which the

problem has a unique solution, provided the partial derivative of G with respect to (λ,x)

at the established solution defines an invertible mapping fromR
N−1×cN toRN−1×c×cN−1.

The radius of this ball gives us the required r > 0. We calculate the derivative as follows:

Gλ,x(ω,ε,λ,x)(µ,h) =

(( ∞∑

t=1

δt(1 + εit)(v
i)′(xit)ht + ζ(vi)′(xi∞)h

i
∞

)N

i=2
,

h1 + h2 + · · ·+ hN ,
(

(v1)′′(x1t )h
1
t + (vi)′(xit)µ

i +λi(vi)′′(xit)h
i
t

)

2≤i≤N,t∈N

)

. (20)
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The essential structure of this operator from R
N−1 × c × cN−1 to R

N−1 × cN is

T (µ2, . . . ,µN ,h) =
(

φ2(h2), . . . ,φN (hN ),h1 + · · ·+ hN , (M1h1 +M ihi +µia)Ni=2
)

,

where φi ∈ c∗ is a strictly positive functional, M1 is an operator of multiplication by a

negative sequence, bounded and bounded away from zero, M i for 2 ≤ i ≤ N is (because

λi < 0), an operator of multiplication by a positive sequence, bounded and bounded away

from zero, and a is a fixed, positive element of c. We can explicitly calculate the inverse

of T by solving the equations:

φi(hi) = ki (ki ∈R,2 ≤ i ≤N ) (21)

h1 + · · ·+ hN = s (s ∈ c) (22)

M1h1 +M ihi +µia = bi (bi ∈ c,2 ≤ i ≤N ). (23)

We first find h1. Because the multiplier sequences are bounded away from zero, the mul-

tiplication operators M i are all invertible. We can therefore multiply (23) by (M i)−1,

2 ≤ i ≤N , and sum to give

((M2)−1 + · · ·+ (MN )−1)M1h1 + (h2 + · · ·+ hN ) = (M2)−1(b2 −µ2a) + · · ·+ (MN )−1(bN −µNa).

Using (22), this becomes

((M2)−1 + · · ·+ (MN )−1)M1h1 + (s − h1) = (M2)−1(b2 −µ2a) + · · ·+ (MN )−1(bN −µNa),

or, with I representing the identity operator,

[((M2)−1 + · · ·+ (MN )−1)M1 − I ]h1 = (M2)−1(b2 −µ2a) + · · ·+ (MN )−1(bN −µNa)− s.

Now, M1 represents multiplication by a negative sequence and the other M i multiplica-

tion by positive sequences, all bounded away from zero; it follows that [((M2)−1 + · · · +

(MN )−1)M1 − I ] represents multiplication by a negative sequence, bounded away from

zero, and hence invertible. This gives us an explicit formula for h1. Next, we find µi by

applying (M i)−1 followed by φi to (23) and substituting from (21):

φi((M i)−1M1h1) + ki +µiφi((M i)−1a) = φi((M i)−1bi)

This gives us an explicit formula for µi , provided φi((M i)−1a) , 0, which holds because a

is a strictly positive sequence, M i is a strictly positive multiplier, and φi is a strictly pos-

itive functional. Finally, we can find all the remaining hi by applying (M i)−1 to (23) and
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rearranging. The inverse mapping can be shown to be continuous by a straightforward

but messy calculation, or by the general observation that any continuous invertible linear

map between Banach spaces has a continuous inverse (an immediate consequence of the

closed graph theorem).

This shows that, if ω is sufficiently close to being constant and εi is sufficiently small

then the Lagrange equations have a unique solution. As observed at the end of stage (i),

this gives us a global maximum. We also need to check that the allocations in the solution

are positive: this is true for sufficiently small ω − ω0ι and ε, because the unperturbed

solution ξ1ι lies in the interior of the positive cone and the perturbed solution depends

continuously on ω and ε.

We chose to maximize u1 for notational convenience; we could equally have maxi-

mized any other ui . It now follows from Lemma 2 that the utility possibility set is closed.

(iv) Proof of sufficiency: general case. From Lemma 1, we know that any point y on

the positive boundary ∂+U = ∂U ∩R
N
+ is an exposed point of Ū : that is, any support-

ing hyperplane for Ū which passes through y does not intersect Ū at any other point.

Consider arbitrary ω ∈ c+ \ ∂c+ (i.e., such that ωt > 0 and ωt → ω∞ > 0) and arbitrary

utility functions of the form (4), satisfying the time value consistency condition (7), i.e.

δit/δ
1
t → ζi /ζ1. As in the earlier stages, rescale the vi so that δit/δ

1
t → 1 and ζi = ζ for all

i. Choose T ∈N such that for 2 ≤ i ≤N and t > T we have |δit/δ
1
t − 1| < r and |ωt −ω∞| < r,

where r is the radius obtained in stage (iii). Consider a perturbed economy with total

endowments and utility functions

ω̃t =











ω∞ (t ≤ T )

ωt (t > T ),

ũi(xi) =
T∑

t=1

δ1t v
i(xit) +

∞∑

t=T+1

δitv
i(xit) + ζvi(xi∞).

In this economy, by the results of the previous stage, the utility possibility set Ũ is closed.

To establish the corresponding result for the unperturbed economy, we consider three

21



different sets of partial utility allocations:

U1 =

{( T∑

t=1

δ1t v
i(xit)

)N

i=1

∣
∣
∣
∣
∣
xit ≥ 0,

N∑

i=1

xit ≤ ω∞ (1 ≤ t ≤ T ,1 ≤ i ≤N )

}

U2 =

{( ∞∑

t=T+1

δitv
i(xit) + ζvi(xi∞)

)N

i=1

∣
∣
∣
∣
∣
xit ≥ 0,

N∑

i=1

xit ≤ ωt (t > T ,1 ≤ i ≤N )

}

U3 =

{( T∑

t=1

δitv
i(xit)

)N

i=1

∣
∣
∣
∣
∣
xit ≥ 0,

N∑

i=1

xit ≤ ωt (1 ≤ t ≤ T ,1 ≤ i ≤N )

}

.

Note that Ũ+ =U1 +U2, and U+ =U2 +U3. By Lemma 3,

U1 +U2 is closed ⇐⇒ U2 is closed ⇐⇒ U3 +U2 is closed.

The property of closedness of the utility possibility set is thus equivalent in the two

economies; since it is closed in the perturbed economy, it is closed in the unperturbed

economy.

6 Existence of Quasi-Equilibria

A quasi-equilibrium of the economy E is a pair (p̄, x̄) ∈ (ℓ1 ⊕R)× cN , such that

1.
〈

p̄,ω
〉

, 0, and

2. for all i it holds that
〈

p̄,xi
〉

≥
〈

p̄, x̄i
〉

whenever ui(xi) > ui(x̄i).

The following result follows immediately fromMas–Colell and Zame (1991, Theorem 8.1)

and the main theorem.

Corollary 1. Consider an economy E which consists of N consumers with utility functions of

the form (4) with ζi > 0, δit > 0, t ∈N, and
∑∞

t=1 δ
i
t <∞, for each i = 1, . . . ,N . Assume that the

sequence of total endowments lies in the interior of the cone c+, so ωt > 0 for all t and ω∞ > 0.

If for each i and j , the utility functions ui and uj are time value consistent, then the economy

E has a quasi-equilibrium.

A converse result can also be obtained from the proof of the main theorem.

Corollary 2. Consider an economy E which consists of N consumers with utility functions of

the form (4) with ζi > 0, δit > 0, t ∈N, and
∑∞

t=1 δ
i
t <∞, for each i = 1, . . . ,N . Assume that the
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sequence of total endowments lies in the interior of the cone c+, soωt > 0 for all t andω∞ > 0. If

for some i and j , the utility functions ui and uj are not time value consistent, then the economy

E does not have a quasi-equilibrium with the property that each x̄i is in the interior of the cone

c+.

Proof. Looking again at part (i) of the proof of the main theorem (Section 5), we can

see that, whatever the initial endowments, in the absence of time value consistency the

maximization problem (9) never has a solution which is an interior point of the cone

{(zt)t>T ′ |zt ≥ 0} for any T ′; equivalently, any solution must involve one consumer’s con-

sumption tending to zero at ∞, making that consumer’s consumption stream lie on the

boundary of c+.

So, it might be that there are (quasi-) equilibria in the case that preferences are not

time value consistent, but in any such equilibrium it must be the case that at least one

consumer consumes nothing in the indefinite future. This is illustrated in Example 3

and Figure 2, in which the allocatable boundary segments CH and IJ correspond to con-

sumers 2 and 1 respectively having zero consumption in time period 1.

The following example revisits Example 1 in somewhat more detail. The example also

shows how the model could be applied in a computational setting, by working explicitly

through the approximation of an economy into a finite component and an eventually

constant component.

Example 2. Recall Example 1, in which total endowments are constant at ω0 and the two

consumers’ utility functions are of the form

u1(x1) =
2

3

∞∑

t=1

1

2t
v(x1t ) +

1

3
v(x1∞)

u2(x2) =
1

3

∞∑

t=1

1

2t
v(x2t ) +

2

3
v(x2∞).

We saw earlier that, in this case, U is not closed. We now give a more detailed analysis,

which exactly describes U . Let

U0 =
{
2

3
v(ξ1),

1

3
v(ξ2)

∣
∣
∣
∣
∣
ξ1,ξ2 ≥ 0, ξ1 + ξ2 ≤ ω0

}

.

The set of possible utilities at any finite time t is given by 2−tU0, and the setUF of possible

utilities at all finite times, OBGO in Figure 1 is (see (6)):

UF =

∞∑

t=1

2−tU0 =U0.
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Suppose y0 lies in the positive boundary of U0. Then there is a supporting hyperplane

of U0 passing through y0; that is, a linear functional φ whose maximum value over U0

is attained at y0 and, because of the strict concavity of v, at no other point of U0. We

can write y0 =
∑∞

t=12
−ty0, and this is the only way of decomposing y0 as the sum over

t ∈ N of elements of 2−tU0: any other decomposition y0 =
∑∞

t=12
−tyt would lead to the

contradiction

φ(y0) =
∞∑

t=1

2−tφ(yt) <
∞∑

t=1

2−tφ(y0) = φ(y0).

Moreover, the strict monotonicity of v shows that there is only one allocation (ξ,ω0 − ξ)

such that ((2/3)v(ξ), (1/3)v(ω0 − ξ)) = y0. This shows that the only allocations leading to

utilities on the arc BG in Figure 1 are constant. Now, any point on the open arc DE must

be the sum of the point F with a point on the open arc BG; this corresponds to constant

allocations in which Consumer 2 receives all the endowments at ∞. Consumer 2 thus

receives all endowments in all time periods, leading to point E. Points on the open arc DE

therefore cannot be allocated.

We can now see that U+ consists of the figure OCEO, including the closed lines OC

and EO but excluding the open arc CE. ⊳

The crucial feature of this example is that we can cannot independently allocate U∞

and UF , because consumption at large finite times determines consumptions at ∞. The

inconsistency of the utility functions leads, in this case, to the whole of the interior of

∂U+ not being allocable. The following example shows that this is not always the case

(although the absence of a large subset of ∂U+ is a general feature of inconsistent utility

functions).

Example 3. Consider a two-agent economy with prefenences

u1(x1) = v(x11) +
2

3

∞∑

t=2

1

2t
v(x1t ) +

1

3
v(x1∞)

u2(x2) = v(x21) +
1

3

∞∑

t=2

1

2t
v(x2t ) +

2

3
v(x2∞)

and total endowments

ωt =











ω1 if t = 1

ω0 if t > 1.
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O A B C

UT+ · · · D
E

F
UT− · · · G

H

I
U+ · · · J

Figure 2: Utility possibility set for two inconsistent consumers

We can decompose the utility possibility set into two parts, U =UT−+UT+, with T = 1 (so

UT− represents utilities at time t = 1 and UT+ represents utilities at times t ≥ 2, includ-

ing t = ∞). Apart from a scale factor, the set UT+ is exactly as described in Example 2.

The gradients of the boundary curve of UT− as it crosses the vertical and horizontal axes

are respectively −v′(ω1)/v
′(0) and −v′(0)/v′(ω1); the corresponding gradients for UT+ are

−v′(ω0)/(2v
′(0)) and −2v′(0)/v′(ω0). Under the additional hypothesis that v′(x) → 0 as

x→∞, we can choose ω1 to be large enough that we have v′(ω1) < v′(ω0)/2. The bound-

ary of UT− therefore meets the vertical axis at a shallower angle than the boundary of

UT+, and the horizontal axis at a steeper angle. The possible utilities are illustrated in

Figure 2. Here, the positive boundaries of UT−, UT+ and U are the arcs BG, AD and CJ,

respectively. Points E and F are those at which the positive boundary of UT− is parallel to

the positive boundary of UT+ at A and D, respectively. The arcs CH and IJ are parallel to

BE and FG.

Now, CH is the sum of the point A, which is included inUT+, with the arc BE, which is

included in UT−. All of these points are therefore included in U . Similarly, IJ is the sum

of FG with D, and is included in U+. However, the points on the open arc HI can only be

represented as sums of points from the open arcs AD and EF; since EF is excluded, these

points are excluded.

In summary, the positive boundary of the utility possibility set is the arc CJ; the closed

arcs CH and IJ can be allocated, but the open arc HI cannot. ⊳

For completeness, we briefly discuss an example to illustrates what happens in an

economy with more than two consumers, where some consumers are time value consis-

tent and some are not.
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Example 4. Suppose we have N consumers with utility functions of the form (4), which

have the same weights at each finite time, but possibly different weights at ∞. Total

endowments are constant with ωt = ω0. Any strictly positive point in the boundary ofU+

decomposes uniquely into the sum of two strictly positive points in the boundaries of UF

and U∞.
5 In the same way as Example 2, we can introduce the set

U0 =
{

(vi(ξ i))Ni=1
∣
∣
∣ ξ i ≥ 0 (1 ≤ i ≤N ), ξ1 + · · ·+ ξN ≤ ω0

}

so the set of possible utilities at any finite time t is given by δtU0, and the set of possible

utilities summed over all finite times is UF = (
∑∞

t=1 δt)U0. For exactly the same reasons

as in Example 2, any strictly positive point y0 in the boundary of UF can be written as
∑∞

t=1 δty0 and in no other way as a sum of elements of δtU0. There is a unique (Lemma 6

in Appendix B) allocation (ξ1, . . . ,ξN ) such that vi(ξ i) = yi , ξ i ≥ 0 and ξ1+ · · ·+ξN = ω0, so

any allocation leading to a strictly positive boundary point of U , and hence of U1, must

be constant.

If the ζi are not all equal then any positive boundary point must be associated with

an allocation in which at least one consumer has zero allocation in every time period.

This can be thought of as a separate, smaller economy, excluding the consumers with no

allocations; the above result can then be applied iteratively, to give a kind of simplicial

decomposition of the positive boundary, in which some simplices are included and some

excluded.

For example, suppose we have three consumers, where Consumers 1 and 2 are time

value consistent but Consumer 3 is not. Then the utility possibility set will look some-

thing like Figure 3. Because the three consumers are not compatible with each other,

the open face on the positive boundary cannot be allocated. One dimension down, Con-

sumers 1 and 2 are compatible, so the arc joining their axes can be allocated. Consumer 3,

on the other hand, is not compatible with either of the other two consumers, so the two

boundary arcs from Consumer 3’s axis cannot be allocated. Finally, each consumer can

be allocated all endowments at all time, so the three boundary points on the axes can be

allocated. ⊳

In general, our approach suggests a way of approximating (locally stable) equilibria

in infinite economies by means of finite-dimensional truncations, as follows. Fix a trun-

cation time T and consider the subspace of sequences that are constant for t ≥ T . This is

5In general, an extreme point of a Minkowski sum is the sum of uniquely-determined extreme points of

the summands.
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Consumer 1

Consumer 2 Consumer 3

Figure 3: Utility possibility set, when consumers 1 and 2 are time value consistent, but

consumer 3 is not.

a T -dimensional subspace (with T − 1 standard basis vectors that are 1 in a single place

and 0 elsewhere and one basis vector that is 0 before time T and 1 from time T on-

wards). Our utility functions are easily calculated on this space, and give rise to a finite,

time-separable utility function on ordinary T -dimensional real space. In effect, we have

collapsed the time periods from T onwards, including infinity, into a single time period.

We can now apply known computational methods [Scarf (1982, §3), Kehoe (1991, §§ 2.2,

2.3)] to this finite-dimensional economy.

Such methods effectively seek a fixed point p̂ of some function φ and actually find

some p such that ‖p − φ(p)‖ < ε where ε is some tolerance; an allocation vector arising

from such a solution can be interpreted in the infinite-dimensional setting by repeating

the value in the last time period ad infinitum. Of course, the relationship between the

statements “p is close to φ(p)” and “p is close to a fixed point of φ” is delicate even

in finitely many dimensions [Scarf (1982, §3), Kehoe (1991, §2.4)] and further analysis

along the lines of Kehoe (1991, §2.4) will be required to make this final step.
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7 Some Extensions and Variations

In this section we discuss some extensions and variations on the theorem that were hinted

at earlier in the paper, to show that similar results hold in some more general contexts.

Some of these extensions are needed in Section 8, where Maximin utility functions are

introduced.

Endowments Equalling or Tending to Zero

The case whereωt→ 0 as t→∞ is somewhat different in character. Here, because 0 ≤ xit ≤

ωt , the set of possible allocations forms a closed, bounded and equiconvergent family of

sequences, and is, hence, compact in the norm topology on cN (see Dunford and Schwartz

(1958), IV.13.9). Any norm continuous utility functions therefore lead to a closed utility

possibility set. Utility functions of the form (4) reduce to a myopic form: we necessarily

have xit → 0, so the values of ζi are irrelevant.

We can also consider the case where ωt = 0 for some values of t. Such time periods

make no contribution to any utility function, so they can be removed to give an economy

with the same utility possibility set and total endowments ω̃t > 0 for all t. Assuming this

economy has infinitely many time periods, the time value consistency condition works

much as above: if ω∞ = 0, no further condition is needed for the utility possibility set

to be closed, and if ω∞ > 0 then we require δit/δ
j
t → ζi /ζj as t → ∞ through those t for

which ωt , 0. In the extreme case where ωt > 0 for only finitely many t, the economy is

essentially finite-dimensional and closedness follows from the Heine-Borel Theorem.

Purely Myopic Preferences

Suppose some of the ζi are zero and some non-zero; for definiteness, say ζ1 > 0 and ζi = 0

for some i. Then (16) cannot be satisfied, so the utility possibility set is not closed. If,

however, we have ζi = 0 for all i then (16) is trivially satisfied. The consistency condition

δit/δ
j
t → ζi /ζj is needed precisely to ensure that (16) holds; in the event that ζi = 0 for all

i it can therefore be abandoned, with the rest of the proof of the main theorem showing

that the utility possibility set is closed. This is reminiscent of Bewley (1972), where we

have an equilibrium provided all consumers are myopic.
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8 Maximin Preferences

In this section we present a corollary to the main theorem, in which we consider a mixture

of time-separable utility functions of the form (4) and utility functions, in which utility

depends only on the time period in which the consumer is worst-off. Inspired by Rawlsian

social welfare functions that take a similar approach to measuring the welfare of a cross-

section of consumers (see, for example, Moulin, 1988), we call such preferencesmaximin.

Precisely, we consider utility functions ui where

ui(xi) =











∑∞
t=1 δ

i
tv

i(xit) + ζivi(xi∞) (1 ≤ i ≤N )

vi(inft∈N xit) = inft∈N vi(xit) (N +1 ≤ i ≤M)

and δit , ζ
i and vi satisfy the conditions stated after (4). As in the main theorem, we

assume that the total allocations (ωt)t∈N satisfy ωt > 0 and ω∞ > 0. Let ωmin = inft∈Nωt ,

so ωmin > 0.

Corollary. For the economy described above, the utility possibility set is closed if and only if

the time-separable utility functions satisfy the time value consistency condition (7).

Given the main theorem, the proof that this condition is necessary is straightforward.

We prove sufficiency in the same way as in the main theorem, showing that if we fix

the utilities of all but one consumer, then we can maximize the utility of the remain-

ing consumer; closedness then follows from Lemma 2. Because there are two forms of

utility function, there are two maximization arguments: one for a time-separable utility

function, one for a Rawlsian utility function.

Proof of necessity. Suppose the utility possibility set U is closed. Then its positive part

U+ is also closed and hence so is

U ′ = {(y1, . . . ,YN ) : y ∈U+ and yN+1 = · · · = yM = 0}.

But this is the positive part of the utility possibility set of the reduced economy consisting

only of consumers 1, . . . ,N . This economy has only time-separable utility functions which,

by the main theorem, must satisfy the time value consistency condition.

Proof of sufficiency: maximizing a time-separable utility function. Suppose the time-

separable consumers satisfy the time value consistency condition. We wish to maximize

one of the time-separable utilities, say u1(x1), subject to the attainable constraints ui(xi) =

yi for 2 ≤ i ≤M .
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ForN +1 ≤ i ≤M (the maximin consumers), let ξ i = (vi)−1(yi). Any allocation meeting

the constraints ui(xi) = yi for N +1 ≤ i ≤M must satisfy xit ≥ ξ i for N +1 ≤ i ≤M and all

t ∈ N; it follows that ξN+1 + · · ·+ ξM ≤ ωmin, otherwise no feasible allocation would meet

these constraints.

Now consider the reduced economy consisting of N consumers with utility functions

u1, . . . ,uN and total endowments ω̃t = ωt −ξN+1− · · ·−ξM ; note that ω̃t ≥ 0 because ξN+1+

· · ·+ ξM ≤ ωmin ≤ ωt .

There is an allocation x in the original economy which satisfies the constraints ui(xi) =

yi (2 ≤ i ≤M); in this allocation, we have, for N + 1 ≤ i ≤M and t ∈ N, xit ≥ ξ i and hence

xN+1
t + · · ·+xMt ≤ ωt −ξN+1− · · · −ξM = ω̃t ; it follows that (x1, . . . ,xN ) is a feasible allocation

in the reduced economy, satisfying ui(xi) = yi for 2 ≤ i ≤N . Because the consumers in the

reduced economy satisfy the time value consistency condition, it is possible to maximize

u1(x1) subject to the constraints ui(xi) = yi for 2 ≤ i ≤N .

If we now let xit = ξ i for N + 1 ≤ i ≤ M and all t ∈ N, then (x1, . . . ,xM ) is a feasible

allocation in the original economy and satisfies the constraints ui(xi) = yi for 2 ≤ i ≤M .

We shall now show that this allocation maximizes u1(x1) subject to the given constraints.

Suppose w is any other feasible allocation such that ui(wi) = yi for 2 ≤ i ≤M . Then,

for N +1 ≤ i ≤M , ui(wi) = yi so inft∈Nwi
t = ξ i . Define a new allocation z by

zit =

















w1
t + (wN+1

t − ξN+1) + · · ·+ (wM
t − ξ

M ) if i = 1

wi
t if 2 ≤ i ≤N

ξ i if N +1 ≤ i ≤M.

This preserves the total allocation in each time period, so it is a feasible allocation, and it

satisfies ui(zi) = yi for 2 ≤ i ≤M ; we also have z1t ≥ w1
t for all t, so u1(z1) ≥ u1(w1). Now,

z1t + · · · + zNt = w1
t + · · · +wM

t − ξN+1 − · · · − ξ
M ≤ ωt − ξN+1 − · · · − ξ

M = ω̃t , so (z1, . . . , zN ) is

a feasible allocation in the reduced economy, and for 2 ≤ i ≤ N we have ui(zi) = ui(wi) =

yi . By construction of x, u1(z1) ≤ u1(x1). We already know that u1(w1) ≤ u1(z1), so we

have u1(w1) ≤ u1(x1), showing that x does indeed maximize u1(x1) subject to the given

constraints.

Proof of sufficiency: maximizing a maximin utility function. Assuming again that

time-separable consumers satisfy the time value consistency condition, we wish to max-

imize a maximin utility, say uM(xM ), subject to the attainable constraints ui(xi) = yi for

1 ≤ i ≤ M − 1. Let S be the set of all non-negative real numbers ξ such that there is a

feasible allocation x with ui(xi) = yi for 1 ≤ i ≤N and x1t + · · ·+ xNt ≤ ωt − ξ for all t.
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For N + 1 ≤ i ≤M − 1, let ξ i = (vi)−1(yi). Because the constraints are attainable, there

is a feasible allocation x such that ui(xi) = yi for N + 1 ≤ i ≤ M − 1. In this allocation,

inft∈N xit = ξ i for N +1 ≤ i ≤M −1, so x1t + · · ·+x
N
t +ξN+1+ . . .ξM−1 ≤ ωt for all t; this shows

that ξN+1 + · · · + ξM−1 ∈ S . Also, ωmin is an upper bound for S , because if ξ > ωmin then

ωt −ξ < 0 for some t. We can therefore let Ξ = sup(S); necessarily, ξN+1 + · · ·+ξM−1 ≤ Ξ ≤

ωmin, and [0,Ξ) ⊆ S .

We shall now show that Ξ ∈ S . If Ξ = 0 then this is trivial, so assume not.

Let Ũ be the positive part of the utility possibility set in the reduced economy com-

prising N consumers with utility functions u1, . . . ,uN and total endowments ω̃t = ωt −Ξ.

This involves only weighted consumers satisfying the time value consistency condition,

so Ũ is closed.

Suppose ε > 0. It follows from the differentiability hypotheses on the vi that each ui

is uniformly continuous on any bounded subset of cN+ . Hence, there exists δ > 0 such that

if x and z are feasible allocations (in the original economy) such that ‖x − z‖∞ ≤ δ (i.e.

|xit − z
i
t | ≤ δ for all i and t) then, for all i, |ui(xi)−ui(zi)| < ε. Without loss of generality, we

may assume that δ < Ξ, so Ξ − δ ∈ S . By definition of S , there exists an allocation w such

that ui(wi) = yi (1 ≤ i ≤N ) and w1
t + · · ·+wN

t ≤ ωt −Ξ + δ. Let

zit =











ωt−Ξ
ωt−Ξ+δ

wi
t (1 ≤ i ≤N )

wi
t (N +1 ≤ i ≤M)

Clearly, this is a feasible allocation and z1t + · · ·+ zNt ≤ ωt −Ξ for all t. Moreover, if N +1 ≤

i ≤M then |wi
t − z

i
t | = 0 and if 1 ≤ i ≤N then

|wi
t − z

i
t | =

(

1−
ωt −Ξ

ωt −Ξ + δ

)

wi
t =

δ

ωt −Ξ + δ
wi
t ≤ δ

because wi
t ≤ w1

t + · · · +wN
t ≤ ωt − Ξ + δ. It follows that, for all i, |ui(w) − ui(z)| < ε, i.e.

|yi −ui(z)| < ε.

Now, (z1, . . . , zN ) is a feasible allocation in the reduced economy, so (u1(z1), . . . ,uN (zN )) ∈

Ũ . We have therefore shown that for any ε > 0 there is an element of Ũ closer than ε

to (y1, . . . , yN ). Because Ũ is closed, we have (y1, . . . , yN ) ∈ Ũ , so there is an allocation

(x1, . . . ,xN ) ≥ 0 such that ui(xi) = yi (1 ≤ i ≤ N ) and x1t + · · ·+ xNt ≤ ωt −Ξ for all t; that is,

Ξ ∈ S .

Now let ξM = Ξ − ξN+1 − · · · − ξM−1 and for t ∈ N and N + 1 ≤ i ≤ M let xit = ξ i , so

(x1, . . . ,xM ) is a feasible allocation in the original economy and satisfies the constraints
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ui(xi) = yi (1 ≤ i ≤M − 1). We claim that this allocation maximizes uM(xM ) subject to the

constraints on ui(xi). To see this, notice that any larger value of uM(xM ) would require

a value of xM with a larger infimum, so we would have h > 0 such that xMt ≥ ξM + h for

all t. For N + 1 ≤ i ≤ M − 1, to meet the constraints ui(xi) = yi we must have xit ≥ ξ i

for all t; we therefore have xN+1
t + · · ·+ xMt ≥ ξN+1 + · · ·+ ξM + h = Ξ + h; correspondingly,

x1t + · · ·+ xNt ≤ ωt − (Ξ + h) for all t. But Ξ + h > Ξ = sup(S), so Ξ + h < S and by definition

of S no such x1, . . . ,xN can satisfy ui(xi) = yi . This shows that no allocation with larger

uM(xM ) can meet all the constraints, so we have indeed maximized uM(xM ).

Note that the reduced economies used in themaximization arguments could specialize

into various non-generic forms: specifically, we could have ω̃∞ = 0, or ω̃t = 0 for some t.

As discussed in Section 7, these extensions do not cause any difficulties.

If all consumers are maximin, we can easily adapt the maximin maximization argu-

ment to show that the utility possibility set is closed: replace the construction of Ξ with

the definition Ξ = ωmin, define ξ
1, . . . ,ξN in exactly the same way and allocate xit = ξ i for

all i and t. Any larger value of u1(x1) would lead to x1t + · · ·+ xNt > ωt for some t.

9 Concluding Remarks

In this paper we have built a model of an infinite-dimensional exchange economy where

consumers care about the indefinite future. We restrict attention to consumption bundles

that are convergent. These can be interpreted as bundles which consist of a long-run av-

erage component and, for each individual period of time, a deviation from that average.

The novelty of this paper is that this long-term average consumption, or “consumption at

infinity”, needs to be priced. Since limit consumption depends on the tail of the consump-

tion sequence, this “price at infinity” is related to the prices at finite time periods. We

find that closedness of the utility possibility set (a sufficient condition for the existence of

quasi-equilibrium) can be guaranteed if and only if the preferences of all consumers are

time value consistent. This implies that consumers’ (utility) valuation of the indefinite

future should be closely aligned, which, in turn, means that a completely atomistic view

of decentralized market economies can not be combined with claims that such market

interactions necessarily lead to efficient allocations.

From a mathematical point of view, the paper shows that infinite-dimensional eco-

nomic models can be analyzed using the infinite-dimensional versions of techniques that

are well-known to economists schooled in finite-dimensional analysis; in particular the
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implicit function theorem and the theorem of Lagrange. The advantage of using this tool-

box as opposed to the more abstract and indirect route that is usually taken (via Alaoglu’s

theorem) is that the model presented here opens up the possibility of developing a com-

putational variant that can be used in applied economic analysis.

In addition, the model presented here may open up an avenue for alternative general

equilibrium approaches, not requiring myopic preferences, of branches of economics that

are naturally formulated in the language of the indefinite future. We think, in particular,

about possible applications in environmental economics, the theory of economic growth,

and financial economics.

Appendix

A Proofs of Lemmas

Lemma 1. For t ∈N, let

Ut = {(δ
i
tv

i(xit))
N
i=1 | x

i
t ≥ 0,

N∑

i=1

xit ≤ ωt},

and let

Ǔ =
{ (

ζivi(x̌i)
)N

i=1

∣
∣
∣
∣ x̌

i ≥ 0, x̌1 + · · ·+ x̌N ≤ ω∞

}

.

Then the closure of the positive part of the utility possibility set is given by

Ū+ =


















∞∑

t=1

yt









+ y̌

∣
∣
∣
∣
∣
∣
∣

yt ∈Ut (t ∈N), y̌ ∈ Ǔ








.

If y ∈ ∂+U , then any supporting hyperplane for Ū through y has no other points of intersection

with Ū , i.e. y is an exposed point of Ū .

Proof of Lemma 1. Because (vi)′′ < 0 and {xt | x
i
t ≥ 0,x1t + · · ·+x

N
t ≤ ωt} is compact, eachUt

has the property that a supporting hyperplane intersecting Ut at a strictly positive point

intersects Ut at no other point.

Let σt = sup{‖y‖ | y ∈Ut}; because the δt are summable and the ωt are bounded, the σt

are summable. Let

U ′ =


















∞∑

t=1

yt









+ y̌

∣
∣
∣
∣
∣
∣
∣

yt ∈Ut (t ∈N), y̌ ∈ Ǔ
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(these series all converge because the σt are summable). Any element of U+ certainly lies

in U ′; however, elements of U ′ do not obviously lie in U+: roughly speaking, because the

associated sequence (yt)t∈N might not converge to the associated y̌. We shall show that,

in fact, U ′ is the closure of U+. We begin by showing that U ′ is compact. Consider a

sequence


















∞∑

t=1

yt,n









+ y̌n










n∈N

in U ′. By a Cantor diagonal argument, we can extract subsequences such that as k→∞,

yt,nk → yt for all t ∈ N and y̌nk → y̌. Since yt,nk ∈ Ut and Ut is compact, yt ∈ Ut ; similarly,

y̌ ∈ Ǔ . We also have for all n and t, that ‖yt,nk‖ ≤ σt and
∑∞

t=1σt <∞. It now follows from

the Dominated Convergence Theorem (often known as Tannery’s Theorem in the case of

infinite sums, rather than more general integrals), that










∞∑

t=1

yt,nk









+ y̌nk →










∞∑

t=1

yt









+ y̌ ∈U ′

as k→∞, showing that U ′ is compact.

We now show that U+ is dense in U ′. Fix some z ∈U ′, say

z =










∞∑

t=1

zt









+ ž.

Given ε > 0, choose T such that
∑∞

t=T+1σt < ε/2. Now define yt = zt for 1 ≤ t ≤ T and y̌ = ž.

Choose any allocation at∞ giving rise to utility y̌ and any allocations at times t with t > T

which do not exceed the total endowments and converge to the chosen allocation at ∞;

these will give rise to utilities yt for t > T such that y∞ = y̌, so we have

y =










∞∑

t=1

yt









+ y∞ ∈U

+.

Now,

‖y − z‖ ≤
∞∑

t=T+1

‖yt − zt‖ ≤
∞∑

t=T+1

2σt < ε.

This shows that U+ is dense in U ′; since U ′ is closed, U ′ is the closure of U+.

Suppose z lies in the positive boundary of U ′. Then, because U ′ is compact and con-

vex, there is a supporting functional φ such that φ(y) ≤ φ(z) for all y ∈ Ū . The problem of

maximizing φ(y) over U ′ has a unique solution, namely z = (
∑∞

t=1 zt)+ ž where zt (t ∈N) is
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the unique point ofUt at which φ attains its maximum overUt , and ž is the corresponding

point for Ǔ . There is thus no other point y ∈ U ′ for which φ(y) = φ(z), so z is an exposed

point of U ′ = Ū .

Lemma 2. The utility possibility set is closed if and only if for any allocation x ∈ cN , with

uj(xj ) = yj > 0 (1 ≤ j ≤ N ) and for any i (1 ≤ i ≤ N ), we can find an allocation which

maximizes ui subject to the constraints uj(xj ) = yj (1 ≤ j ≤ N,j , i), xj ≥ 0 (1 ≤ j ≤ N ) and

x1t + · · ·+ xNt = ωt (t ∈N).

The proof of Lemma 2 depends on the following result about convex sets. The crucial

property (*) means, essentially, that any line parallel to a coordinate axis intersects the

set K in a closed line segment.

Lemma. Suppose K ⊆ R
N
+ is a non-empty and comprehensive set (i.e., if y ∈ K and 0 ≤ z ≤ y,

then z ∈ K). Then K is closed if and only if:

(*) for each y ∈ K and 1 ≤ i ≤N , K ∩
{

z ∈RN
∣
∣
∣ zj = yj (j , i)

}

is closed.

Proof. One direction is trivial: if K is closed then its intersection with any closed set, in

particular any line, is closed. Suppose, then, that (*) holds and that y lies in the closure

of K ; we need to show that y ∈ K . This is trivial if y = 0, so assume y , 0.

Suppose z ∈RN
+ is such that

zi











< yi if yi > 0

= 0 if yi = 0.

Let r = minyi,0 y
i − zi , so for each i we have either zi = yi = 0 or zi ≤ yi − r. Now, since y

lies in the closure of K , we can choose w ∈ K such that ‖y −w‖∞ < r, i.e. |yi −wi | < r for all

i. We can assume that wi = 0 whenever yi = 0 (this will make w smaller, so still in K , and

will if anything make ‖y −w‖∞ smaller). The inequality |yi −wi | < r can be rewritten as

yi − r < wi < yi + r, which leads to zi < wi for all i such that yi , 0 and zi = wi = 0 for all i

such that yi = 0. We now have 0 ≤ z ≤ w ∈ K , so z ∈ K .

For simplicity, we initially consider the case where yi > 0 for all i, so if 0 < hi < yi for

all i then y − h = (y1 − h1, y2 − h2, . . . , yN − hN ) ∈ K . Since this lies in K for all h1 ∈ (0, y1),

it follows from (*) with i = 1 that (y1, y2 − h2, y3 − h3, . . . , yN − hN ) ∈ K . Since this lies in

K for all h2 ∈ (0, y2), it follows from (*) with i = 2 that (y1, y2, y3 − h3, . . . , yN − hN ) ∈ K .

Continuing in this way, we see that y ∈ K . For a point y with yi = 0 for some i, choose h
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such that hi = 0 if yi = 0 and 0 < hi < yi if yi > 0, and argue in the same way for each i

such that yi , 0.

Proof of Lemma 2. The utility possibility set is, by definition, U+ −RN
+ , where

U+ = {(u1(x1), . . . ,uN (xN )) : xit ≥ 0,
N∑

i=1

xit ≤ ωt}.

It is clear from this that closedness of the utility possibility set and of U+ are equivalent.

The set U+ has, by continuity and monotonicity of the utility functions and the nor-

malization vi(0) = 0, the property that if y ∈ U+ and 0 ≤ z ≤ y then z ∈ U+. For any

point y ∈ U+, the line through y parallel to the ith coordinate axis intersects U+ in a line

segment. One end of this has the ith coordinate equal to zero; this lies in U+ because

it is less than or equal to y. The intersection is therefore closed if and only if the other

end point lies in U+. This corresponds to maximizing ui(xi) subject to the constraints

uj(xj ) = yj (1 ≤ j ≤N,j , i), x
j
t ≥ 0 (1 ≤ j ≤N , t ∈N) and x1t + · · ·+xNt ≤ ωt (t ∈N). By strict

monotonicity, a maximum cannot occur if x1t + · · ·+ xNt < ωt for some t, so we can replace

the constraint x1t + · · ·+x
N
t ≤ ωt with x1t + · · ·+x

N
t = ωt , as claimed. Closedness now follows

from the preceding lemma.

We need only consider yj > 0, because yj = 0 is exactly equivalent to an allocation

of 0 to consumer j in all time periods; we can therefore consider the lower-dimensional

problem involving only those consumers for which yj > 0 and then, where yj = 0, assign

x
j
t = 0 for all t. The resulting set of utility values is closed if and only if the set of utility

values in the lower-dimensional problem is closed.

Lemma 3. Consider the positive part U+ of the utility possibility set and, for T ∈ N, the sets

UT− and UT+ described in (5), so U+ = UT− +UT+. Then U+ is closed if and only if UT+ is

closed; equivalently, U is closed.

Proof of Lemma 3. Note first that UT− is compact, because it is the image of a compact

set under a continuous mapping. If UT+ is closed, then (Heine-Borel) it is compact, and

the sum of two compact sets is easily seen to be compact, and hence closed.

Now suppose that U+ is closed, and hence compact, and for a contradiction that UT+

is not closed. Then there is a point y0 in the positive boundary of UT+ which does not lie

in UT+ itself. By Lemma 1, y0 is an exposed point of the closure ŪT+ of UT+, so there is

functional φ such that φ(y) ≤ φ(y0) for all y ∈ ŪT+ and φ(y) < φ(y0) for all y ∈ ŪT+ with

y , y0; in particular, φ(y) < φ(y0) for all y ∈UT+.
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Choose z0 ∈ UT− such that φ(z0) = maxz∈UT−
φ(z) (such z0 exists because UT− is com-

pact), and note that for any y ∈U+ we have y = ŷ + y̌ for some ŷ ∈UT−, y̌ ∈UT+, so

φ(y) = φ(ŷ) +φ(y̌) < φ(z0) +φ(y0) (24)

Because y0 ∈ ŪT+, there is a sequence (yn)n∈N in UT+ converging to y0. The sequence

(z0 + yn)n∈N lies in U+ = UT− +UT+ and converges to z0 + y0 so, because U+ is closed, we

have z0 + y0 ∈U
+. But φ(z0 + y0) = φ(z0) +φ(y0), contradicting (24).

B Some Supporting Technical Material

For a map between Banach spaces, there are various non-equivalent ideas of differentia-

bility. We need only the idea of differentiability in the sense of Fréchet: briefly, if A is an

open subset of a Banach space X, then F : A → Y is differentiable at x ∈ A if there is a

continuous linear mapping from X to Y , denoted F ′(x), with the property

F(x + h) = F(x) +F ′(x)h+ rx(h)

where ‖rx(h)‖/‖h‖ → 0 as h → 0. We say that F is continuously differentiable on A if

it is differentiable at each point of A and the mapping x 7→ F ′(x) is continuous. See, for

example, (Deimling (1985), §7.7) for amuch fuller description. For completeness, we now

find the Fréchet derivatives of the functions used most frequently in our calculations.

Lemma 4. Let cN be the space of all convergent sequences in R
N . Suppose A is an open subset

of RN and f : A→R
M is k times differentiable, and therefore has a Taylor expansion

f (ξ + η) =
k−1∑

j=1

1

j!
f (j)(ξ)(η, . . . ,β) + rξ(η).

(Here f (j) is a j-linear map from (RN )j to RM and rx(h) = o(|h|k−1) as h→ 0). Define a subset

A of cN by A = {x ∈ cN | xt ∈ A for all t}, and a mapping F : A→ cM by [F(x)]t = f (xt). Then

F is k times differentiable and has a Taylor expansion

[F(x + h)]t =
k−1∑

j=1

1

j!
f (j)(xt)(ht , . . . ,ht) + rxt (ht). (25)

If f (k) is bounded in some neighbourhood of limt→∞ xt , then the error term isO(‖h‖k) as h→ 0.

If f (k) is bounded on A, then the error is O(‖h‖k) uniformly for x ∈ A.
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Proof. Although it is clear that (25) is a valid identity, we need to check that its elements

correspond to bounded multilinear forms between cN and cM and that the error term

has the correct decay, in the norm on cN . For simplicity, we work with the case M = 1;

the M-dimensional case is then a direct sum of M 1-dimensional cases. Fix x ∈ A. For

1 ≤ j ≤ k − 1, define a mapping from (cN )j to the space of all real sequences by

[(F(j)(x))(z)]t = (f (j)(xt))(zt).

It is clear that this is j-linear. Because f (j) is continuous and x ∈ cN , f (j)(xt) converges as

t→∞; we also know that zt converges as t→∞. It is now a straightforward consequence

of multilinearity that (f (j)(xt))(zt) converges as t→∞, so F(j) maps (cN )j to c. We also see

that ‖F(j)‖ ≤ supt∈N ‖f
(j)(xt)‖; this is finite because f

(j)(xt) converges as t→∞. This shows

that the multilinear forms in (25) map continuously between the correct spaces.

It remains to show that the error term has the correct order. We have for some θ ∈

(0,1),

rxt (ht) =
1

k!
f (k)(xt)(θht , . . . ,θht),

from which we have

|rxt (ht)| ≤
1

k!
‖f (k)(xt)‖‖h‖

k . (26)

If f (k) is bounded in a neighbourhood of limt→∞ xt , then clearly there is an upper bound

for all the ‖f (k)(xt)‖ terms, showing that the error is O(‖h‖k) as h→ 0. If there is a bound

for ‖f (k)‖ on A, then this gives a uniform O(‖h‖k) estimate for the whole of A.

Note that the Taylor approximation to the original function f has a remainder which

is O(|h|k) at each point of A, provided f (k) exists on A. For the infinite-dimensional re-

mainder to be O(‖h‖k), we also require local boundedness of f (k). This is because the

remainder involves f (k)(xt) at every point xt of a convergent sequence, not just at a single

point x. This boundedness hypothesis is not redundant: even in one dimension, every-

where differentiable functions can have locally unbounded derivatives, e.g. x2 sin(1/x2).

Lemma 5. Suppose A is an open subset of RN , v : A→R is twice differentiable with bounded

second derivative, (δt)t∈N is a positive, summable sequence and ζ ∈ R. Define A ⊆ c as in

Lemma 4 and a mapping from u :A→R by

u(x) =
∞∑

t=1

δtv(xt) + ζ lim
t→∞

v(xt).
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Then u is continuously differentiable on A and

(F ′(x))h =

∞∑

t=1

δtv
′(xt)ht + ζ lim

t→∞
v′(xt) lim

t→∞
ht .

Proof. Define V in the same way as F in Lemma 4: [V (x)]t = v(xt), and let

φ(x) =
∞∑

t=1

δtxt + ζ lim
t→∞

xt ,

so φ ∈ c∗ and u = φ ◦ V . Because φ is linear, φ′(x) = φ for all x. By the chain rule and

Lemma 4, u is differentiable on A and u′(x) = φ ◦V ′(x), i.e.

(F ′(x))h =

∞∑

t=1

δtv
′(xt)ht + ζ lim

t→∞
(v′(xt)ht).

This is the result claimed, except that limt→∞(v
′(xt)ht) has been rewritten as

lim
t→∞

v′(xt) lim
t→∞

(ht),

to fit with the usual way of describing elements of c∗.

Lemma 6. Suppose f 1, . . . , f N are strictly decreasing functions on an interval [0,ω] ⊆R. Then

the equations

f 1(x1) = f 2(x2) = · · · = f N (xN ); x1 + x2 + · · ·+ xN = ω,

(xi ∈ [0,ω]) have at most one solution.

Proof. Let Ri = f ([0,ω]). Because f i is strictly decreasing, there is a well-defined, strictly

decreasing inverse mapping (f i)−1 : Ri → [0,ω]. Let R = ∩Ni=1R
i , so each (f i)−1 is defined

on R. Suppose we have two solutions to the stated equations, one with f i(xi) = a for all

i and one with f i(yi) = b for all i. Then a,b ∈ R and we have (f 1)−1(a) + · · · + (f N )−1(a) =

(f 1)−1(b) + · · · + (f N )−1(b) = ω. But (f 1)−1 + · · · + (f N )−1 is strictly decreasing, so we must

have a = b. This gives f i(yi) = f i(xi) for all i; because f is strictly decreasing, xi = yi for

all i.

C Lagrange multipliers in Banach spaces

Thewell-knownmethod of Lagrangemultipliers generalizes without great difficulty from

the finite-dimensional to the infinite-dimensional world. We give here a brief description

of the main result; for details see, for example, (Deimling, 1985, Theorem 26.1).
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In the finite-dimensional setting, we often think of a finite number, say d, constraints,

each one of which has an associated scalar, the “Lagrange multiplier.” Another way of

thinking of this is to regard each constraint equation as one component of a single, com-

posite, vector-valued constraint function mapping to R
d , and the multipliers as a vector

in R
d . In this form, we can generalize to infinitely many dimensions: we have a single

constraint function mapping to some Banach space Y and the analogue of the Lagrange

multiplier is a vector in the dual of Y (the distinction between a space and its dual is not

so readily visible in finitely many dimensions).

Suppose A is an open subset of a real Banach space X and that we wish to maximize or

minimize F : A→R, subject to the constraint G(x) = y0, where y0 is an element of another

real Banach space Y and G : A→ Y .

As in the finite-dimensional case, we assume that F and G are continuously differen-

tiable; this is in the sense of Frećhet, so F ′(x) ∈ B(X,R) = X∗ and G′(x) ∈ B(X,Y ) (here

B(X,Y ) denotes the space of continuous linear mappings from X to Y ). The Fréchet

derivative of a function assigns to each point in its domain a locally good linear approxi-

mation to that function (see Appendix B for some more details). In the finite-dimensional

setting, where such a derivative exists, its representation in the standard basis is the Ja-

cobian matrix; as a partial converse, if all the partial derivatives exist and are continuous,

then the Fréchet derivative exists and is continuous [Apostol (1974, §§12.8, 12.12)].

The infinite-dimensional Lagrange theorem now states that if x0 ∈ A is a constrained

maximum or minimum and G′(x0) is surjective (the analogue of the full-rank condition

in the finite-dimensional setting), then there is a Lagrange multiplier λ ∈ Y ∗ such that

F ′(x0) + (G′(x0))
∗λ = 0. (27)

Here (G′(x0))
∗ : Y ∗ → X∗ is the Banach space adjoint operator of the derivative G′(x0).

The multiplier equation can be rewritten by expanding out the definition of the adjoint,

leading to the alternative and often more directly useful form

F ′(x0)h+λ(G′(x0)h) = 0 (h ∈ X). (28)

The main difference from the finite-dimensional setting is that the multiplier is now a

vector in Y ∗. This effectively allows us to work with infinitely many scalar constraints,

something which is meaningless in the finite-dimensional world but perfectly sensible in

infinitely many dimensions. If Y is finite-dimensional then so is Y ∗, and we can think of

λ as a finite vector of multipliers, just as in the finite-dimensional case.
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Although the theorem has been stated with a single constraint, it easily accommodates

more. For example, if we have N constraint functions, say Gn : A → Yn, then we let

Y = Y1 × · · · × YN , so Y ∗ = Y ∗1 × · · · × Y
∗
N and combine the functions into a single mapping

G : A → Y given by G(x) = (G1(x), . . . ,GN (x)). The derivative of this map is given by

G′(x0)h = (G′1(x0)h, . . . ,G
′
N (x0)h), and a Lagrange multiplier is an element of Y ∗, i.e. a

vector (λ1, . . . ,λN ) where λn ∈ Y ∗n . The Lagrange equation becomes (in the formulation

of (28))

F ′(x0)h+
N∑

n=1

λn(G
′
n(x0)h) = 0 (h ∈ X).
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