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Abstract

Staphylococcal infection and neutrophilic inflammation can act in concert to establish a profoundly hypoxic environment. In this review we
summarise how neutrophils and Staphylococcus aureus are adapted to function under hypoxic conditions, with a particular focus on the impaired
ability of hypoxic neutrophils to effect Staphylococcus aureus killing.
© 2016 The Authors. Published by Elsevier Masson SAS on behalf of Institut Pasteur. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Principal effector functions of neutrophils

Neutrophils are the major cellular arm of the innate im-
mune system and the first line of defence against invading
micro-organisms. They recognise and eliminate pathogens
rapidly and effectively by a range of cytotoxic mechanisms,
and also modulate the wider host response, recruiting other
immune cells and amplifying inflammatory cascades. Neu-
trophils comprise 50%—70% of circulating leukocytes but
have a short circulating half-life, necessitating a bone marrow
generation rate of 10'! per day, increasing to up to 10'* per
day during bacterial infections [1]. Neutrophil homeostasis is
maintained through a delicate balance of granulopoiesis, bone
marrow release, margination in intravascular pools, tissue
recruitment, and cell death and destruction [2].

In health, circulating neutrophils are quiescent but, in dis-
ease states, exposure to priming agents, such as platelet acti-
vating factor, granulocyte-macrophage colony-stimulating
factor (GM-CSF) or bacterial lipopolysaccharide (LPS),
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renders them more responsive to recruitment and activation
signals. Priming also augments pathogen entrapment and
killing mechanisms, including chemotaxis, phagocytosis,
granule exocytosis, production of reactive oxygen species
(ROS) and release of neutrophil extracellular traps (NETs).
Primed neutrophils in the systemic circulation have been
identified in disease states, such as bacterial sepsis, and in
addition to their augmented bactericidal capacity they may
contribute to disease pathogenesis [3].

Extravasated neutrophils migrate towards sites of inflam-
mation and infection down chemoattractant concentration
gradients, a process termed chemotaxis. Chemoattractant
control of neutrophil migration is complex, not least because
the effect on chemotaxis may depend on agonist concentration
and context, but also the in vivo milieu is a dynamic envi-
ronment comprising multiple chemokine signals. There is
intracellular signalling hierarchy, with end-target chemo-
attractants signalling predominantly through p38 MAPK [4].

Neutrophils are avid phagocytes, which recognise and
rapidly ingest bacteria. Target particles are engulfed into the
phagosome, a plasma membrane-derived vacuole formed by
extension of neutrophil pseudopods. Phagocytic receptor
ligation initiates phosphorylation cascades, enabling pseu-
dopod extension by means of dynamic changes in the actin
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cytoskeleton (reviewed in Ref. [5]). As phagosomes mature,
they acquire microbicidal activity by fusion of additional
components, including cytosolic granules which contain
abundant proteases and antimicrobial peptides.

Although they comprise a spectrum, granules are classified
by their protein content: azurophilic granules are rich in
myeloperoxidase (MPO), defensins and serine proteases
including neutrophil elastase (NE), cathepsin G and proteinase
3; specific granules contain abundant lactoferrin and matrix
metalloproteinase-8 (MMP-8); whilst the exemplar protein of
gelatinase granules is MMP-9. Specific and gelatinase gran-
ules also contain p22”"** and gp91”"**, the membrane subunits
of NADPH oxidase, which enable ROS production [6]. As
well as having antimicrobial effects, external release of pro-
teases can degrade the extracellular matrix, enabling neutro-
phil transit through host tissues but also contributing to tissue
injury.

Generation of ROS through activation of the NADPH ox-
idase electron transport chain plays a critical role in the killing
of several bacterial and fungal pathogens. NADPH oxidase is
an electron donor, which reduces molecular di-oxygen to form
superoxide anion, yielding an array of antimicrobial ROS. The
dramatic increase in oxygen consumption associated with
ROS production is termed the respiratory burst. Patients with
chronic granulomatous disease, a rare genetic disorder caused
by a defective NADPH oxidase complex, are unable to mount
an effective respiratory burst and consequently suffer severe
recurrent infections with fungi, such as Aspergillus, and
several species of bacteria, including Staphylococcus aureus
[7]. There is a complex interplay between ROS, granule-
derived proteases and proteins, and pH in the phagosome,
and the contribution of each component to pathogen killing
varies between organisms.

NETs are expulsions of decondensed chromatin, beaded
with antimicrobial proteins and proteases, into the extracel-
lular space; NET formation is stimulated by pro-inflammatory
mediators, including tumour necrosis factor-a. (TNF-a) and
pathogen-associated molecular patterns [8]. NETs adhere to
various pathogens in vivo, and may facilitate killing of or-
ganisms that are too large to be ingested [9], but it has been
postulated that this attachment may be utilised by certain or-
ganisms to form biofilms, and may induce direct tissue dam-
age [10]. There is also conflicting evidence for a direct
microbicidal effect of NETs [8,11].

Neutrophils undergo constitutive apoptosis, resulting in
short survival times; however, apoptosis can be delayed at sites
of inflammation by both signals from the host, e.g. GM-CSF,
and bacteria, e.g. LPS [12]. In order to limit host tissue
damage from dying cells, efferocytosis safely disposes of
potentially histotoxic neutrophil contents and also inhibits
macrophage pro-inflammatory cytokine production, hastening
the resolution of inflammation (reviewed in Ref. [13]).

Apoptosis can be initiated through the extrinsic pathway
(ligation of cell surface death receptors such as FAS), or
through the mitochondrial-driven intrinsic pathway. Electron
microscopy studies identify comparatively few mitochondria
in neutrophils, but fluorescent dyes have revealed a complex

mitochondrial network which controls cell fate by releasing
pro-apoptotic proteins, such as cytochrome c, into the cytosol
[14]. Bioenergetic profiles and inhibitor studies have demon-
strated that neutrophils rely almost entirely on glycolytic
respiration for energy production, rather than oxidative phos-
phorylation, and that the respiratory burst is independent of
mitochondrial respiration [15]. Hence, these organelles in
neutrophils contribute very minimally to ROS production and
molecular oxygen consumption, with the predominant func-
tion being regulation of cell death.

Neutrophils can also influence other immune cell pop-
ulations. They can release both pro- and anti-inflammatory
cytokines in an agonist-dependent manner [16], secrete prod-
ucts such as defensins and cathelicidins which induce CD4™"
and CD8" T cell chemotaxis [17], and acquire certain prop-
erties of antigen presenting cells [18]. Although these attri-
butes confer a more complex, flexible and environment-
specific role than previously appreciated, the key neutrophil
function remains host defence against invading pathogens, and
when this function is significantly compromised, severe
infection is more likely.

2. Relevance of hypoxia to neutrophils

Neutrophils are generated within the bone marrow, a
significantly hypoxic microenvironment even under healthy
physiological conditions, with murine in vivo measurements
of local oxygen tension recorded as low as 1.3 kPa [19].
Indeed, within the bone marrow structure, haematopoietic
stem cells are found sequestered in regions staining most
strongly for the hypoxia probe pimonidazole, a 2-
nitroimidazole compound, which forms covalent bonds with
cellular macromolecules at oxygen levels below 1.3 kPa.
Taken together with the evidence that low oxygen tensions
favour the maintenance of haematopoietic stem cells in culture
[20], hypoxia appears to play a critical role in neutrophil
development.

Once released from the bone marrow, mature circulating
neutrophils are exposed to a wide range of oxygen tensions,
transiting rapidly from a pO, of 13 kPa in main systemic ar-
teries, to 7 kPa in arterioles and 3—4 kPa in capillaries and
venules. Given the oxygen diffusion limit from capillaries of
80—140 um, the oxygen tension in normal tissues is often even
lower, generating so called “physiological hypoxia”. Along
with the bone marrow, physiological hypoxia has been
demonstrated in tissues such as healthy muscle and connective
tissue [21], colonic epithelium [22] and, intriguingly, even in
the skin [23], despite being in such close proximity to air. This
relative lack of molecular oxygen can be further amplified in
pathological conditions, such as organ inflammation or
ischaemia, and within solid tumours, due to damaged vascu-
lature, compartmentalisation of infection, and high metabolic
activity and oxygen requirements of pathogens and host cells.
Hypoxia has been demonstrated in numerous pathological
environments through in vitro and in vivo sampling: by
microelectrode pO, measurement of wounds and venous ul-
cers [24]; by blood gas analysis of abscesses, a characteristic
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feature of staphylococcal infection [25]; by staining for hyp-
oxia inducible factor (HIF), which increases exponentially
below 6% oxygen, in chronic obstructive pulmonary disease
[26]; by pimonidazole staining in pulmonary infection [27];
and by luminescence-based in vivo optical imaging in skin
infection [28]. Interestingly, in a murine model of acute colitis,
neutrophils actively contributed to the hypoxic microenvi-
ronment by depletion of molecular oxygen through NADPH
oxidase activity and, hence, induced stabilisation of epithelial
HIF [29]. Furthermore, Staphylococcus aureus was shown to
deplete oxygen in a skin infection model, and biofilm-induced
oxygen demand made the underlying dermal tissue anoxic
[30]. Hypoxia impedes wound healing, and has been shown to
impair clearance of inhaled S. aureus, though not Proteus
mirabilis, in a mouse model of lung infection [31]. Moreover,
supra-physiological levels of oxygen can promote resolution
of certain infections [32].

3. Oxygen sensing by neutrophils

As neutrophils are the frontline cells involved in host
defence in most hypoxic environments, it is vital that these
cells have the capacity to function effectively at low oxygen
levels. Neutrophil adaptation to hypoxia is critically dependent
upon the HIF/PHD pathway (Fig. 1). HIF is a heterodimeric
protein comprising o and B subunits, with degradation of HIF-
o subunits mediated by prolyl hydroxylase domain-containing
enzymes (PHDs) [33]. These oxygen-sensitive hydroxylase
enzymes are inhibited under hypoxia and, thus, hypoxia fa-
cilitates the accumulation of HIF-o subunits, which dimerise
with HIF-B (ARNT) and bind to hypoxia response elements on
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target genes. Further regulation of HIF transcriptional activity
is provided by factor inhibiting HIF (FIH), which hydroxylates
an asparaginyl residue, preventing interaction with HIF co-
activators and further repressing HIF-mediated transcription
[34] (Fig. 1).

Of the 3 known HIF-a subunits, neutrophils express both
HIF-1a and HIF-2oe mRNA, and both proteins are stabilized in
hypoxia and when these cells are exposed to inflammatory
stimuli, such as LPS and streptococci [35]. HIF-1o and HIF-
20 regulate distinct but overlapping target gene sets, with HIF-
1o having a greater impact upon immediate metabolic targets.
In hypoxic culture, neutrophils upregulate glycolytic HIF-1a
target genes, such as glyceraldehyde 3-phosphate dehydroge-
nase and phosphoglycerate kinase [36]. Indeed, neutrophils
deficient in HIF-loo have reduced ATP levels even under
normoxic conditions, reflecting the importance of HIF-1a in
the regulation of neutrophil energetics [37]. It is therefore not
surprising that HIF-1o is essential for extended neutrophil
survival in hypoxia [36]. Notably, deficiency of HIF-2a im-
pairs neither neutrophil survival in hypoxia nor key neutrophil
functions, suggesting that HIF-2a plays a less prominent role
in the control of hypoxic neutrophil responses. Nonetheless,
HIF-20. does appear to regulate neutrophil lifespan in the
context of inflammation; lower expression of the antioxidant
enzyme catalase in HIF-2o deficient neutrophils compared to
wildtype cells was associated with increased apoptosis in
response to nitrosative stress, and enhanced inflammation
resolution in a model of acute lung injury [35].

Neutrophils express 3 isoforms of PHD enzymes (PHDs1-
3). Hypoxia significantly upregulates PHD3 in a HIF-1a
dependent manner. Loss of PHD3 does not alter induction of

HIF-a

HIFp) <« :
p Transcription

HIF-o

Fig. 1. In normoxic environments, prolyl hydroxylase-containing enzymes (PHDs) mark HIF-o for ubiquitination and proteasomal degradation via the von Hippel
Lindau (VvHL) protein complex. Factor inhibiting HIF (FIH) inactivates HIF-o transcription by asparginyl hydroxylation, preventing binding of transcription co-
factors. PHDs and FIH display an absolute requirement for dioxygen, Fe(II), ascorbate and 2-oxoglutarate. In hypoxic environments, reduced hydroxylase activity
due to the lack of molecular oxygen allows stabilisation of HIF-a which translocates to the nucleus and binds HIFB. The HIF heterodimer binds hypoxia response

elements (HRE), upregulating transcription of hypoxia-responsive genes.
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HIF-1o target genes in hypoxic neutrophils but is necessary
for cell survival in hypoxic conditions, suggesting that these
pro-survival effects are mediated independent of HIF-1o in
neutrophils [38]. Interestingly, under hypoxia PHD3 defi-
ciency only impacted on neutrophil apoptosis, with other
effector functions, such as phagocytosis, chemotaxis and the
respiratory burst, being unaffected. Specific roles of the other
PHD enzymes in neutrophils still require elucidation but,
given the distinct functions for PHD3 observed in macro-
phages [39], may well be of interest. PHD enzymes belong to
a wider family of 2-oxoglutarate-dependent oxygenases
including the Jumonji histone demethylases. In hypoxic
macrophages, transcription of specific cytokines was sup-
pressed due to increased methylation of promoter region his-
tone H3 residues as a result of demethylase inhibition [40];
these enzymes have not been studied in the neutrophil.

Crosstalk between the HIF pathway and nuclear factor
kappa-light-chain enhancer of activated B cells (NFkB) adds a
further layer of complexity to oxygen sensing in neutrophils.
HIFIA mRNA levels are regulated by members of the NFkB
pathway via the binding of NF«B to the HIF 1A promoter. This
is likely to be of particular importance in inflammatory mi-
croenvironments as it provides a mechanism by which stimuli
such as LPS and TNF-a can influence basal transcription and
induction of HIFIA mRNA in myeloid cells. Hypoxic induc-
tion of NFkB is in turn regulated by HIF-1a, with evidence of
reduced induction of the NFkB components IKKa, IKKf and
p65 in HIF-1a deficient neutrophils [36].

4. Hypoxic effects on neutrophil functions
4.1. Apoptosis

Ingestion of S. aureus induces neutrophil apoptosis, which
then progresses rapidly to necrosis and may contribute to
pathogen virulence [41]. Hypoxia modulates the neutrophil
apoptotic threshold, delaying constitutive apoptosis in a
concentration-dependent and reversible manner via HIF-1a
mediation of NFkB signalling. This hypoxic survival effect
can be prevented by NFkB inhibitors, and is diminished in
HIF-1a-deficient murine neutrophils [36]. Further evidence for
a pro-survival effect of HIF-1a is provided by the delayed
apoptosis of human neutrophils observed when HIF is stabi-
lised, either by loss-of-function mutations in von Hippel Lin-
dau (VHL) protein (which targets HIF-1o for degradation)
[42], by exposure of healthy volunteers to acute hypoxia
[43], or by pharmacologic or genetic manipulation of HIF-1a
in zebrafish [44]. Similarly, intermittent hypoxia delayed
apoptosis of TNF-a-treated human neutrophils [45], and
neutrophils isolated from patients with obstructive sleep
apnoea, which is characterised by intermittent hypoxia/re-
oxygenation, exhibited delayed apoptosis and increased
expression of the adhesion molecule CD15 [46]. Hypoxia in-
creases f3, integrin protein expression, which is again mediated
by HIF-1 [47], and may contribute to the hypoxic survival
effect; B, integrin clustering or activation with endothelial 1i-
gands, such as ICAM-1, delays apoptosis through AKT and

MAPK-ERK signalling, although (3, integrin activation in the
presence of death-inducing agonists, such as TNF-a, can also
accelerate apoptosis.

Two further mediators of hypoxic neutrophil survival have
been identified. Firstly, MIP-1f is secreted by hypoxic gran-
ulocytes and confers a survival effect when co-incubated with
normoxic neutrophils [36]. Secondly, PHD3 is upregulated by
hypoxia and prolongs neutrophil survival independent of HIF-
la. by suppression of the pro-apoptotic factor Siva-1. The
impact of hypoxia-mediated neutrophil survival is context
dependent; PHD3-deficient mice exhibited accelerated
neutrophil apoptosis and enhanced resolution of sterile
inflammation (ALI and colitis models) [38], but displayed
increased mortality (thought to reflect aberrant macrophage
function) when challenged with abdominal sepsis [39].

4.2. Adhesion, transmigration, chemotaxis and
recruitment

Firm adhesion of neutrophils to endothelium prior to
transmigration is mediated by the interaction of neutrophil 3,
integrins with endothelial ligands, such as ICAM-1. Multiple
studies support a hypoxia-mediated increase in P, integrin
expression (e.g. Ref. [47]) with only one report (where re-
oxygenation was permitted after neutrophil isolation) finding
no difference [44]. Although reports of modulation of [CAM-1
expression by hypoxia are conflicting [48,49], several studies
have shown increased neutrophil adhesion to the endothelium
under hypoxia (e.g. Ref. [50]). Studies of neutrophil trans-
migration under hypoxia have also shown an increase. Hyp-
oxia enhanced neutrophil transmigration in vitro in a model of
intestinal epithelium ischaemia-reperfusion [51] and in vivo in
rodent models of acute systemic hypoxia when assessed in
multiple organs by intravital microscopy [52] or by quantifi-
cation of MPO [53]. However, the reported effects of hypoxia
on chemotaxis are variable. Extravasated neutrophils undergo
shape change to a polarised morphology, which is essential for
directional movement. McGovern et al. showed no change in
IL-8-induced shape change, or chemotaxis towards IL-8,
bacterial formylated peptide (fMLF) or LPS in human neu-
trophils cultured under hypoxia [54], and, likewise, Peysson-
naux et al. found no difference in chemotaxis towards fMLF
through an endothelial monolayer between wildtype, HIF-1a
null and vHL-null murine neutrophils [55]. In contrast, Wang
and Liu showed enhanced chemotaxis of neutrophils isolated
from hypoxic subjects [56], whereas Rotstein et al. showed
reduced chemotaxis of human neutrophils towards fMLF and
zymosan-activated serum under hypoxia in an agarose gel
migration assay [57]. The different findings in these studies
are likely due to variation in assay type, particularly the use of
true hypoxia versus HIF-1a. manipulation, and the effects of
re-oxygenation of cells prior to assays. It is also unclear how
well these in vitro assays represent the true physiological
environment with its multitude of signals, and studies of true
neutrophil recruitment under normoxia or hypoxia, a com-
posite outcome of adhesion, transmigration and chemotaxis,
have yielded conflicting results. Tissue neutrophil infiltration
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in a murine model of chemical irritant-induced cutaneous
inflammation was significantly reduced in a myeloid HIF-1a.
knockout mouse model at 24 h, whereas vHL deletion pro-
moted infiltration [37]. Likewise, pharmacological HIF-1a
stabilisation enhanced tissue neutrophil recruitment in mice
treated with intradermal LPS [58]. Conversely, pharmacolog-
ical HIF-1a stabilisation has been shown either to diminish
neutrophil recruitment (in murine uropathogenic Escherichia
coli bladder infection) [59], or to have no impact (in murine S.
aureus skin infection) [60]. Recruitment of wildtype, HIF-1o.-
null or vHL-null neutrophils in a mouse model of group A
Streptococcus ulcer was comparable up to 24 h [55]. Similarly,
in a mouse model of Pseudomonas aeruginosa keratitis, HIF-
la siRNA knockdown did not affect neutrophil recruitment at
24 h, although by day 5 there was increased tissue neutrophil
infiltration [61]. The inconsistencies between these studies
may be explained by variations in time, species, induction
agent and tissue site, or they may reflect the fact that hypoxia
does not equate precisely to HIF stabilisation. Overall, there is
currently no clear or consistent picture of how hypoxia affects
neutrophil recruitment in vivo, and any effects are likely to be
highly context-dependent.

4.3. Phagocytosis

On reaching a site of infection, neutrophils must employ their
myriad killing mechanisms. Neutrophils obtained from acutely
hypoxic volunteers (whole blood or purified cells) showed
enhanced phagocytosis of zymosan [62] and E. coli, with
enhanced expression of opsonic (FCyIIIbR) and complement
(C1gRp and C5aR) receptors [56], which are important for
pathogen recognition and ingestion. Interaction with matrix
proteins further increased FCyR expression in the setting of
hypoxia [63], which may reflect the in vivo environment more
accurately. Likewise, phagocytosis of zymosan by neutrophils
isolated from rabbits after experimental acute ischaemia [64],
phagocytosis of E. coli by neutrophils isolated from hypoxic
pre-conditioned rats [65] and phagocytosis of S. aureus by
neutrophils isolated from volunteers exposed to intermittent
hypoxia [66] were all increased. These in vitro assays were
performed under normoxic conditions; however, similar results
were obtained using isolated human neutrophils with in vitro
assays performed under hypoxia [67]. Further evidence that
hypoxia-induced signalling pathways can increase phagocytosis
is provided by neutrophils from patients with heterozygous
mutations in VHL protein, which display enhanced phagocytosis
of Streptococcus pneumoniae under normoxia, further
augmented by hypoxia [42]. The same group found that neu-
trophils from healthy volunteers incubated under hypoxia had
enhanced CD11b expression but that phagocytosis of S. pneu-
moniae was not increased [54]. However, the majority of studies
suggest that neutrophil phagocytosis is increased by hypoxia.

4.4. Reactive oxygen/nitrogen species

Data regarding the effects of oxygen availability on ROS
production are conflicting. Studies of neutrophils isolated from

human volunteers or mice exposed to hypoxia have shown an
increase in ROS production [44,56,65], although, of note, all
cell isolation and in vitro assays were conducted under nor-
moxic conditions. Whilst HIF-1a. manipulation did not affect
ROS release [55,60], in vitro assays conducted under hypoxia
have consistently shown decreased intracellular and extracel-
lular superoxide anion production, restored by re-oxygenation
[54] and further increased under hyperbaric oxygen condi-
tions. Moreover, intermittent hypoxia and its clinical correlate
obstructive sleep apnoea appear to prime neutrophils for
augmented superoxide anion generation [68]. Together these
data suggest that ROS production depends on oxygen avail-
ability, and that the decrease seen under hypoxic conditions is
likely due to a lack of molecular oxygen, which is not reca-
pitulated by modulation of HIF-1a signalling. Microbicidal
activity of ROS is highly context-dependent and varies with
bacterial species; ROS production contributes significantly to
S. aureus killing whereas E. coli killing is predominantly
oxidase-independent [54,69]. In addition to ROS, neutrophils
produce antimicrobial reactive nitrogen species, a process
which does appear to be under HIF-1a control. In a zebrafish
mycobacterial infection model, stabilisation of HIF-1a
increased production of reactive nitrogen species via inducible
nitric oxide synthase (iNOS), decreasing mycobacterial burden
[70].

4.5. Granule exocytosis

A clear consensus has emerged that hypoxia increases the
release of neutrophil antimicrobial peptides and proteases. As
such, hypoxia enhanced the release of multiple granule prod-
ucts, including MMP-9, lactoferrin and active NE and MPO
from stimulated human neutrophils [71]. HIF-laa siRNA
knockdown reduced protein levels of murine B-defensins and
cathelicidin-related antimicrobial peptide (analogous to
human antimicrobial peptide LL-37) in a mouse model of
pseudomonal infection [61]. Similarly, HIF-1a null human
neutrophils exhibited reduced NE and cathepsin G activity and
displayed a marked reduction in active cathelicidin expression,
with the opposite true of vHL-deficient neutrophils [55].
Moreover, pharmacological stabilisation of HIF-1a. upregu-
lated the genes encoding LL-37 in human neutrophils [72].
Enhanced degranulation may promote tissue injury and cavity
formation; staphylococcal abscesses are associated with a
massive influx of neutrophils, and MMPs have been impli-
cated in mycobacterial cavity formation [73]. However,
neutrophil proteases might also enhance phagocyte access to
sites of infection and, hence, aid extracellular killing.

4.6. Neutrophil extracellular traps

There have been few studies into the effect of hypoxia on
NETosis and, to date, the data are variable. Pharmacological
stabilisation of HIF-1o had no observed effect on NET pro-
duction but increased S. aureus killing in vitro, even in the
presence of a phagocytosis inhibitor, an effect which was
abrogated by the addition of deoxyribonuclease [60],
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suggesting that killing was NET-dependent. Consistent with
these results, pharmacological and genetic HIF-1a knockdown
decreased NET production and inhibited extracellular bacte-
rial killing [74]. However, in vitro NET formation under true
hypoxia has been shown to be diminished [71]. As NETosis is
predominantly dependent on NADPH production of ROS [75],
and therefore reliant on availability of molecular oxygen, it
seems likely that NET production under hypoxia would be
reduced in line with the ROS data, though it appears that HIF-
lo signalling also has a role to play. Furthermore, other cells
in a hypoxic environment may also impact on neutrophil
function; for example, in a mouse hepatic tumour model,
neutrophils incubated with media from hypoxic tumour cells
showed increased NETosis, and this was associated with
increased metastatic disease [76].

In summary, hypoxia appears to inhibit neutrophil
apoptosis, enhance degranulation and the release of antimi-
crobial products, and promote phagocytosis, but reduce ROS
and NET production. However, despite increased adhesion of
neutrophils to endothelium in hypoxia, the effect on recruit-
ment to sites of infection is less certain, context-dependent,
and requires further investigation.

5. Hypoxic effects on S. aureus and its killing by
neutrophils

S. aureus is a virulent and versatile pathogen, which causes
significant morbidity. Mortality rates following staphylococcal
bacteraemia are increasing, and methicillin resistant S. aureus
(MRSA) bacteraemia has a higher case fatality record than
methicillin-sensitive strains [77]. Approximately 30% of the
population is colonised with S. aureus, and yet in healthy in-
dividuals this usually has no pathological significance; how-
ever, in some situations there is a major risk of invasive
disease, particularly in vulnerable populations such as the
elderly or immunocompromised, and those with skin barrier
breaches or impaired mucosal immunity. Prosthetic joints,
heart valves and other indwelling devices are a particular risk
for the development of deep-seated infection and provide a
reservoir of staphylococcal infection that is extremely chal-
lenging to eliminate. Clinical manifestations of S. aureus
infection include local tissue destruction and abscess forma-
tion, and haematogenous dissemination, resulting in infections
such as osteomyelitis, endocarditis and pneumonia.

The importance of neutrophils in host defence against S.
aureus infection is well illustrated by patients with defects in
neutrophil number and/or function. The critical neutrophil con-
centration, where bacteria multiply and are phagocytosed at the
same rate, has been determined for S. aureus as 400,000 neu-
trophils/ml [78], similar to the clinically relevant concentration of
500,000 neutrophils/ml, below which neutropaenic patients are at
high risk of severe pyogenic bacterial infection. Furthermore,
patients with severe congenital neutropaenia, leucocyte adhesion
deficiency (impaired endothelial transmigration), Chediak-
Higashi syndrome (impaired chemotaxis and degranulation)
and chronic granulomatous disease (defective ROS production),
all suffer from recurrent staphylococcal infections [79].

S. aureus has evolved extensive virulence mechanisms,
which aim to evade neutrophil killing, including inhibition of
neutrophil chemotaxis and extravasation, strategies to evade
phagocytosis, disarmament of antimicrobial peptides and
proteases, removal of anti-oxidants, degradation of NETs and
direct lysis of neutrophils by secreted leukotoxins. This sub-
ject has been extensively reviewed [80], and further details are
beyond the scope of this review. Despite being considered
classically an extracellular pathogen, S. aureus has been
shown to survive within the phagosome, and transfer of neu-
trophils containing viable intracellular bacteria to a naive an-
imal can institute infection [81]. Given the diversity of
staphylococcal virulence mechanisms, which are intrinsically
linked to neutrophil attack and evasion, it is important to note
that there are a large number of S. aureus clinical isolates and
laboratory strains used experimentally, and commonly used
strains frequently carry significant mutational alterations in
regulatory genes. For example, S. aureus strain NCTC8325,
isolated from a historic sepsis patient and now maintained as
the laboratory strain RN1, is fully antibiotic sensitive and also
defective in two regulatory genes, one of which encodes a
transcription activator of virulence factor protein A. In com-
parison, USA300 is a virulent community-acquired MRSA
clinical isolate with high haemolytic activity and leukotoxin
secretion [82]. Hence, it is conceivable that variations between
strains used experimentally may underlie some of the con-
flicting results.

S. aureus infection often establishes a hypoxic environ-
ment; for example staphylococcal biofilms induce hypoxia in
dermal tissue, impairing wound healing [30]. A second
example relates to osteomyelitis; healthy bone is intrinsically
hypoxic, and further decreases in skeletal oxygen concentra-
tion upon S. aureus infection were revealed by intravital ox-
ygen monitoring [83]. Hence, S. aureus must possess
flexibility in order to survive in hypoxic environments. Bac-
teria can adapt to hostile environments via two component
histidine kinase systems. Transposon sequencing in a murine
model of S. aureus osteomyelitis identified the staphylococcal
respiratory response two component system SirrAB as essential
for hypoxic survival, co-ordinating an increase in quorum
sensing-dependent exotoxin production, which enhanced
in vitro human osteoblast cytotoxicity [83]. Infection with an
SrrA  mutant decreased staphylococcal growth in vivo
although, interestingly, the growth defect was rescued by
depletion of neutrophils, suggesting that S. aureus requires
StrAB to resist hypoxic stress imposed by neutrophils. Tar-
geted mutations have shown that SrrAB is activated by
hypoxia and required for staphylococcal growth in a hypoxic
static biofilm [84]. However, SrrAB control of virulence in
hypoxia seems context specific as over-expression of SrrAB in
a rabbit model of S. aureus endocarditis repressed virulence
factors [85].

It is fascinating to consider how hypoxia influences S. aureus
infection, as both bacteria and neutrophils appear well adapted to
function in this environment and both may induce hypoxia in the
surrounding tissues. Some studies have suggested that hypoxia
restricts S. aureus infection. Pharmacological stabilisation of
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HIF-1o with two different agonists increased the bactericidal
capacity of human neutrophils against S. aureus in vitro, and
limited S. aureus proliferation and lesion formation in mouse
skin infection [60,72]. Hypoxia increased S. aureus killing by
stimulated human neutrophils in vitro [67], and neutrophils iso-
lated from subjects exposed to intermittent hypoxia had
enhanced bactericidal activity against S. aureus [66]. However,
whether HIF-1a stabilisation reflects true hypoxia is debatable as
S. aureus was not subjected to low oxygen tensions in these
models and may therefore be more susceptible. Furthermore, itis
not clear whether the in vitro experiments were conducted under
hypoxia or after re-oxygenation; for example, in one such study
[67], neutrophils were rendered hypoxic by circulating blood in a
gas-permeable silicon circuit against an anoxic gas mixture, but
no mention was made of how (or if) hypoxia was maintained
during the subsequent 4 h killing assay.

In fact, the majority of the literature suggests that hypoxia
impairs S. aureus killing by neutrophils. Hypoxia reduced the
ability of neutrophils to kill S. aureus in vitro (e.g. Ref. [86]),
increased the size of S. aureus lesions in dog and rabbit skin
infection models [32,87], and impaired clearance of S. aureus
from the lung in rodent pneumonia models (e.g. Ref. [31]).
Furthermore, pharmacological HIF-1 inhibition increased
survival in a mouse model of S. aureus peritonitis [88].

Effective S. aureus killing is predominantly dependent on
ROS production [69]. A number of in vitro studies have sug-
gested that impaired ROS generation in hypoxia accounts for
decreased bactericidal activity of neutrophils against S.
aureus; the degree of phagocytosis has not been found to be
diminished [54,86]. McGovern et al. showed that hypoxia
markedly reduced both ROS generation and S. aureus killing,
and, interestingly, observed an intracellular bacterial survival
advantage when S. aureus was incubated with neutrophils
under hypoxia [54]. They proposed that reduced ROS pro-
duction was due to the lack of molecular oxygen as hypoxia
did not change the expression of NADPH oxidase subunits;
although challenging to interrogate NADPH oxidase assembly
directly, addition of pyocyanin (which oxidases intracellular
NADPH, NADH and reduced glutathione) did not increase
ROS generation under hypoxia, indicating that the hypoxic
effect on ROS production was independent of NADPH.
Furthermore, in this study, a brief (15 min) period of re-
oxygenation restored both ROS formation and bactericidal
capacity. Inhibition of neutrophil ROS production by selective
inhibitors of p38 and p44/42 MAPK has also been shown to
decrease S. aureus killing, although these inhibitors addition-
ally reduced mobilisation of B, integrin to the plasma mem-
brane, which may have contributed to the effect [89].
Neutrophils isolated from patients suffering recurrent pyo-
genic infections showed a strong correlation between impaired
S. aureus killing and reduced superoxide anion production
[90], and neutrophils from patients with chronic granuloma-
tous disease (where ROS generation is absent) had signifi-
cantly impaired ability to kill S. aureus [32]. Furthermore,
neutrophil oxidants were able to inhibit a S. aureus quorum-
sensing virulence-inducing peptide, a control mechanism
which may be lost in hypoxia [91].

The prevailing view of the role of ROS in bacterial killing
has been that the generation of highly toxic oxidants in the
presence of MPO have a direct microbicidal effect; superoxide
generated by NADPH oxidase dismutates to yield H,O,, a
substrate for MPO, which then catalyses the oxidation of ha-
lides, the most important and cytotoxic being hypochlorous
acid (HOCI). Recently this scheme has been challenged: Segal
and colleagues have suggested that the primary role of
NADPH oxidase is electron delivery to the phagosome, which
is compensated by an influx of potassium ions, alkalinising the
vacuolar pH so that it is optimal for antibacterial protease
activity [92]. They argue that oxidant production is a by-
product, with MPO acting as a scavenger to protect pro-
teases from oxidant damage and inactivation, and in fact
inhibiting bacterial killing by H,O, at physiological pH.
However, Green et al. still maintain that HOCI is instrumental
in bacterial killing, demonstrating that decreased chlorination
in the phagosome halved killing of S. aureus [93]. HOCI
production was predominantly localised to the phagosome
and, although a significant amount reacted with phagosomal
proteins prior to microbial contact, there was sufficient HOCI
to be directly microbicidal. Indeed, modifications of host
proteins by HOCI may provide further active species, such as
chloramines, which could extend microbial killing. Whether
ROS act directly or indirectly in this regard, there is consid-
erable in vitro evidence that the lack of ROS generation in
hypoxia substantially reduces S. aureus killing.

The role of neutrophil proteases in host defence against S.
aureus under hypoxia is unclear. Hypoxia enhances neutrophil
degranulation, and the granule protease cathepsin G appears to
be particularly important for S. aureus killing; mice lacking
cathepsin G had increased mortality in a peritoneal sepsis
model [92]. However, NE did not kill S. aureus directly, NE-
null neutrophils killed S. aureus as well as wildtype cells
in vitro, and mice lacking NE actually had a survival benefit in
S. aureus sepsis [94], possibly due to excess damage of host
tissues by NE in wildtype mice, which may be further
increased in hypoxia.

Controversy surrounds the role of NETs in S. aureus
killing. Whether NETs kill [8,95] or merely trap [11] S.
aureus, it seems likely that a reduction in NETosis
under hypoxia (as discussed in Section 4.6.) would allow
Staphylococcus to thrive. Moreover, NET-associated S. aureus
had decreased amounts of o toxin when compared with free
bacteria, suggesting that NETs have a potential role in con-
trolling S. aureus by degrading virulence factors [8]. However,
S. aureus has been shown to degrade NETs in vitro and these
degradation products can induce macrophage apoptosis [96].
At this stage, the role of NETs in hypoxic environments and
their interaction with other cells of the immune system re-
mains speculative.

In summary, the majority of the literature supports defec-
tive killing of S. aureus under hypoxic conditions, both in vitro
and in vivo, predominantly due to impaired ROS production
(Fig. 2). The role of antimicrobial proteases and NETosis in
hypoxic staphylococcal killing is not well established and
invites further investigation.
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Fig. 2. In normoxic environments, S. aureus is ingested into the phagosome; fusion of neutrophil granules releases antimicrobial proteins and proteases into the
vacuole, and NADPH oxidase facilitates production of ROS from molecular oxygen, contributing to S. aureus killing. Neutrophils may either form NETSs, trapping
S. aureus, or undergo apoptosis and clearance. In conditions of hypoxia, phagocytosis of S. aureus is maintained; neutrophil granules release antimicrobial proteins
and proteases into the vacuole but there is markedly reduced ROS production due to lack of molecular oxygen. S. aureus killing within the vacuole is severely
impaired, with the potential for pathogen escape. Hypoxia augments extracellular granule release, with the potential to damage host tissue.

6. Conclusion

Neutrophils and S. aureus are often found in profoundly
hypoxic environments where both must function effectively,
each striving for dominance. At first appearance, it seems that
neutrophils are well adapted to hypoxia, with reliance on
anaerobic energy production, prolonged survival, and
augmented phagocytosis and degranulation. However, S.
aureus has evolved numerous strategies to evade neutrophil
killing and this evasion is further enhanced by hypoxia, where
lack of molecular oxygen significantly impairs neutrophil ROS
production and, hence, staphylococcal killing. Currently, S.
aureus appears to be winning the hypoxic battle. Modulation

of the hypoxic neutrophil response is certainly worthy of
future investigation to see if the balance can be tipped.
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