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Abstract. In dynamic network loading and dynamic traffic assignment for networks, the
link travel time is often taken as a function of the number of vehicles x(f) on the link at
time ¢ of entry to the link, that is, 7(¢) = f(x(t)), which implies that the performance of the
link is invariant (homogeneous) over time. Here we let this relationship vary over time,
letting the travel time depend directly on the time of day, thus (t) = f(x(t),t). Various
authors have investigated the properties of the previous (homogeneous) model, including
conditions sufficient to ensure that it satisfies first-in-first-out (FIFO). Here we extend
these results to the inhomogeneous model, and find that the new sufficient conditions
have a natural interpretation. We find that the results derived by several previous authors
continue to hold if we introduce one additional condition, namely that the rate of change
of f(x(t),t) with respect to the second parameter has a certain (negative) lower bound.
As a prelude, we discuss the equivalence of equations for flow propagation equations
and for intertemporal conservation of flows, and argue that neither these equations nor
the travel-time model are physically meaningful if FIFO is not satisfied. In Section 7 we
provide some examples of time-dependent travel times and some numerical illustrations
of when these will or will not adhere to FIFO.
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1. Introduction

Friesz et al. (1993), Xu et al. (1999), Zhu and Marcotte

The travel time for each link in a network, in dynamic
network loading (DNL) and dynamic traffic assign-
ment (DTA), has often been modeled as a function of
the number of vehicles x(t) on the link, thus f(x(¢)),
so that for a user entering a link at time ¢ the link exit
time is

() = £+ f(x()). 1)
The variable x(t) is also referred to as the link occu-
pancy and is given by the conservation equation

x(t):/otu(s)ds—/otv(s)ds, ()

where u(t) and v(t) are the inflow and outflow, respec-
tively, at time ¢.

This model and its use in DNL and DTA has been
investigated in many papers and is included in reviews
such as Peeta and Ziliaskopoulos (2001), Szeto and Lo
(2005, 2006), Friesz, Kwon, and Bernstein (2007), and
Mun (2007, 2009). Some properties of the model when
used in DNL or DTA are discussed and illustrated in
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(2000), Carey and Ge (2005b), Carey (2004), Carey and
McCartney (2002), Nie and Zhang (2005a), and Zhang
and Nie (2005): the first four of these papers are dis-
cussed at greater length in this paper. The behavior
and performance of the model is compared with other
macroscopic whole-link models used in DTA in Carey
and Ge (2003a), and Nie and Zhang (2005b). Com-
putational issues for applying the model in DTA are
discussed in Rubio-Ardanaz, Wu, and Florian (2003),
Carey and Ge (2004, 2005a), Nie and Zhang (2005a, b),
and Long, Gao, and Szeto (2011).

In the previous model it is assumed that, given the
current occupancy x(t) of a link, the link travel time
is independent of time. However, in practice the link
travel time predicted at the time of entry to a link may
also vary over time during the day as a result of fac-
tors other than the number of vehicles on the link.
These factors include time-varying traffic control sig-
nals, signs, speed limits, changing visibility because
of the transition from day to night and vice versa,
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time-varying traffic mix, or changing weather condi-
tions, such as the onset of rain, fog, snow, etc. (see Sec-
tion 7). Note that changing weather conditions (rain,
fog, snow, etc.) are usually of a stochastic nature, for
which the deterministic models in this paper are not a
suitable framework for prediction purposes. It is easy
to formally extend the previous model to allow the link
travel time to depend on the time of day as well as the
current occupancy of the link, thus f(x(t),f), so that
the link exit time is

©(t) =t + f(x(t), 1) ®)

There is a long history of papers proposing and dis-
cussing various functional forms for the travel time
functions f(x(t)) in (1), including Branston (1976), Ran
and Boyce (1996), Ran et al. (1997), and Anderson and
Bell (1998), so we do not repeat the discussion of func-
tional forms here. Also, over the past 15 years many
methods have been proposed and used to estimate
these travel-time functions for links or routes. Many
authors suggest using transit vehicles or taxi fleets as
probes with sensors, or using automatic vehicle loca-
tion (AVL), typically using GPS. Others recommend
using automatic vehicle or number plate identification,
using cell phone data, or using loop detectors. One
thing that all of these methods have in common is that
the time of day is automatically or easily available in
the data collection process and hence in the resulting
data sets. This facilitates treating the time of day as
a factor in estimating and predicting travel times and
thus in estimating functions of the form f(x(), t) used
in (3). For example, Zhang, Wu, and Kwon (1997) note
that regression based methods can easily incorporate
various factors that affect travel time, one of the fac-
tors being time of day. Again, we do not repeat the
discussion of functional forms or estimation methods
for f(x(t),t), other than in the first few paragraphs of
Section 7.

The properties of the model (1)-(2) have been de-
rived in several papers but it is not known, and is not
immediately obvious, how the properties of this model
are affected by extending it to allow inhomogeneity
over time, as in (2)—(3). We therefore investigate this
in the present paper. In particular, we investigate the
conditions needed to ensure that the model still retains
desirable first-in-first-out (FIFO) properties. The main
mathematical properties of the model (1)-(2), includ-
ing FIFO, were rigorously derived in Friesz et al. (1993),
Xu et al. (1999), and Zhu and Marcotte (2000). Carey
and Ge (2005b) took some of the conditions or restric-
tions derived in Xu et al. (1999) and Zhu and Marcotte
(2000), and replaced them with conditions or restric-
tions that may be more easily checked or more likely
to be satisfied. In this paper we take the properties
derived in these four papers for model (1)—(2) and seek
to extend them to the model (2)-(3).

In Section 2 we complete the models (1)-(2) and
(2)-(3) by setting out flow propagation equations,
which we note can be interpreted as intertemporal link
conservation equations, and discuss the relationship
between these and FIFO. In Sections 3-6, respectively,
we take the properties of the model (1)-(2), derived
in the four papers previously noted, and investigate
whether and how these extend to the model (2)—(3).
Section 4 assumes a linear form of f(x(t),t) and Sec-
tions 4-6 assume a nonlinear form. In Section 7 we pro-
vide some examples of time-dependent travel times and
some numerical illustrations of when these will or will
not satisfy FIFO. Concluding remarks are in Section 8.

2. Letting Travel-Time Vary with Time:

Inhomogeneous Travel-Time Functions

In the real world of road traffic, FIFO is not strictly
adhered to, since many vehicles overtake and pass each
other. Such overtaking or passing could potentially be
modeled, but it is not explicitly modeled or included in
the travel-time models (1)-(2) or (2)—(3). Nevertheless,
if certain technical properties are not satisfied, these
models can allow traffic cohorts to overtake or pass
each other and in ways that can differ substantially
from what happens in the real world and may not even
be physically possible in the real world. For example,
if certain technical properties are not satisfied, we find
that if the inflow u(t) to a link is falling rapidly over
a short time interval then, based on (1)—(2), all of the
traffic that enters the link in that time interval may
exit before traffic that entered earlier when the inflow
rate was higher, which violates FIFO. That does not
reflect any real world behavior, which is why we wish
to prevent such FIFO violations in the travel-time mod-
els (1)-(2) and (2)—(3).

Completing the model: Intertemporal flow conserva-
tion or flow propagation and FIFO. The link travel-time
model is often stated as (1)—-(2) together with a so-called
flow propagation equation such as (4) or (5) in the next
paragraph. We note that (2) is a contemporaneous con-
servation equation and, as we will see shortly, if FIFO
holds then the flow propagation equation can also be
interpreted as an intertemporal conservation equation.
Thus, the travel-time model consists of (1) subject to
a contemporaneous conservation Equation (2) and an
intertemporal conservation equation such as (4) or (5).
FIFO is not imposed as a separate or additional con-
straint, but must be inherent in (1) subject to these
two forms of conservation equations. To show that
FIFO holds for any particular form of f(x(¢)) in (1)
requires a proof: e.g., proofs are given for a linear
f(x(t)) in Friesz et al. (1993) and for the linear and non-
linear f(x(t)) in Xu et al. (1999) and Zhu and Marcotte
(2000). These remarks refer to the homogeneous travel-
time travel function (1), but we will see that they can
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be extended to the inhomogeneous travel-time func-
tion (3), so that the inhomogeneous travel-time model
consists of (3) subject to the same contemporaneous
conservation Equation (2) and the same intertemporal
conservation equation such as (4) or (5).

The flow-propagation equation is written in various
forms in the literature, in particular

/ m s = [ :t)v(s)ds, @

where u(s) and v(s) are the inflow and outflow from
the link at time s, or alternatively

7(t)
x(x(t) = / u(s)ds, 5)

where x(7(t)) is the number of vehicles on the link at
time 7(t). The flow-propagation equation is sometimes
stated with t defined as the exit time and { — 7*(¢) as the
entry time, where 7°(t) is the link travel time for traffic
that exits at time ¢. Furthermore, the flow-propagation
equation is sometimes stated as the derivative of any of
these forms. All of these forms are derivable from each
other hence we will not discuss them explicitly here.

If FIFO holds then it is easy to see that (4) and (5)
are simply intertemporal conservation equations. More
specifically, if FIFO holds for all traffic entering up to
time T, then we can see that (4) holding for all time 0 <
t < T is necessary and sufficient to ensure conservation
of flows up to time T. Similarly for (5) if it holds for all
time 0 <t < T. For example, if FIFO holds then all traffic
that entered up to time t must have exited by time 7(f),
so that the only traffic still on the link at time 7(¢) must

have entered between time t and 7(t), i.e., /tw) u(s)ds,
and if flow is conserved this traffic is still on the link,
so that (5) holds.

Now suppose that FIFO does not hold and consider
Equations (4) or (5). If FIFO is violated then some
inflowsu(s) that entered before time ¢ may not exit until
after time 7(t), and conversely some inflows u(s) that
entered after time f may exit before time (). Neither
of these flows is captured by (4) or (5) hence if FIFO is
violated then imposing (4) or (5) would seem to have
no physical justification, and is likely to produce non-
sense results. If FIFO does not hold then neither (4)
nor (5) nor any of the other proposed forms of flow
propagation equations will ensure intertemporal con-
servation of flows. Also, if FIFO does not hold, it is not
at all obvious that there is any form of equation that
would ensure intertemporal flow conservation for the
model (1)—(2) or (2)—(3).

In summary,

(a) If FIFO holds on a link, then an intertemporal
flow conservation equation for the link is equivalent to

the flow propagation equation used elsewhere in the
literature.

(b) If FIFO does not hold then neither the flow con-
servation nor flow-propagation equations make physi-
cal sense and it is not appropriate to impose them.

In view of that, we will refer to intertemporal flow con-
servation rather than flow propagation.

Before leaving the matter in (b), namely flow con-
servation equations without FIFO, it is worth noting
that even though this is not physically meaningful, a
model that allows it may still have a mathematical solu-
tion. For example, suppose that the only traffic on a
link enters between times t; and t, and these inflows
all violate FIFO by exiting in the reverse of the order
in which they entered and consequently t(t,) < 7(t;).
Applying (5) at time t; and again at time ¢, > t; and
subtracting the former from the latter gives an alterna-
tive form of the conservation equation, namely

ty w(tp)
/ u(s)ds :/ v(s)ds. (6)
t ()

As aresult of the FIFO violation, on the right-hand side
(rh.s.) of (6) the upper limit of integration is smaller
than the lower limit, hence the r.h.s. of (6) is negative,
if we treat the outflows v(t) as positive. However, the
left-hand side (L.h.s.) is positive thus we seem to have
a contradiction. There is no mathematical difficulty in
solving (6) because (6) will simply yield negative out-
flows ©v(t), not because they are physically negative
(they are not), but because the time span over which
the outflows v(t) occur is measured backwards in time.

In Sections 3-6, respectively, we take results from
four different papers concerning the homogeneous
case (1) and extend them to the inhomogeneous
case (3). In all four cases we find that the results from
the homogeneous case, including the results concern-
ing FIFO, continue to hold for the inhomogeneous case
if the following condition also holds:

filx, £)>—u(t)/B, @)

where B is an upper bound on u(f).

Some further implications and interpretations of (7)
are discussed in Section 7. We make just two remarks
concerning it here before embarking on derivations
of (7) in Sections 3-6.

(i) If inflow u(t) is at its upper bound B then (7)
reduces to f,(x,t) > —1 and if inflow is at its lower
bound u(t) =0 then (7) reduces to f,(x,t) > 0.

(if) The FIFO sufficient condition (7) depends on the
inflow profile u(t) and its upper bound B, which is
a disadvantage because the inflows are likely to vary
over time and in a network model the inflows to each
link are generally not known in advance. It would be
nice to have a FIFO condition that is independent of
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the inflows. However, it is well known that such a suf-
ficient condition for FIFO is not available even for the
homogeneous case f(x) when the travel time functions
f(x) are nonlinear. In that (nonlinear) homogeneous
case the only available condition sufficient to ensure
FIFO is as follows (see Xu et al. 1999; Zhu and Marcotte
2000) or Section 4 and 5

f:(x) <1/B, ®)

where B is defined as in (7), i.e., it is the upper bound
on the inflows u(t).

Each of the four papers considered in Section 3-6
assume a travel-time function of the form f(x(t)) used
in (1). For each of these papers we extend some key
results, particularly concerning FIFO, to travel-time
functions of the inhomogeneous form f(x(t),t) used
in (3). The theorems or propositions and their proofs
in those four papers are quite lengthy so we do not
wish to repeat them here. Instead we present only the
changes that are needed to extend the theorems or
propositions and proofs to the inhomogeneous case (3).

Each of the papers discussed in the following sec-
tions makes use of a well-known necessary and suf-
ficient condition for FIFO for any form of travel-time
model, namely that for traffic entering at time ¢, its exit
time 7(f) should be an increasing function of . Thus,
assuming that 7(f) is differentiable, this FIFO condi-
tion is

7'(t) >0, ©)

where the prime (') denotes a first derivative.

3. Extending the Results from
Friesz et al. (1993) to the

Inhomogeneous Case

[The notation used in Friesz et al. (1993) is the same
as in this paper except that they use D to denote
link travel-time functions while we use f, as in (10)
and (11).]

In Section 3 of their paper Friesz et al. (1993) intro-
duce and derive properties of a linear travel-time func-
tion or delay model

f(x(t))=ax(t)+p, (10)

where x(t) is as previously defined and « > 0 and
B >0 are constants. To extend this to an inhomoge-
neous function, while retaining linearity, add a term
y(t), thus

fx(t),8) = ax(t) + g+ y (). (11)

Note that g and y(t) can of course be combined, letting
y*(t) = B+ y(t). Friesz et al. (1993) derive properties of
the linear model (10) in their Theorem 1 as follows.

Theorem 1 of Friesz et al. (1993). For any linear arc
delay function f, the resulting arc exit time function T is
strictly increasing and hence the inverse function T~ exists.

Following the theorem Friesz et al. (1993) note that
this (an increasing exit time function) implies that the
model satisfies FIFO, as also noted in (9). We can extend
their results to an inhomogeneous linear travel-time
model (11) as follows.

Proposition 1. If the travel-time function (10) is replaced
by (11) then Theorem 1 from Friesz et al. (1993) continues
to hold if we also let

y'(t) = —au(t), or equivalently y'(t) > —u(t)/B, (12)

where ' (t) denotes the derivative dy(t)/dt and 1/a = B.

Remark. The parameter « in (10) is often interpreted
as 1/B where B is the maximum flow capacity of the
link in the static or steady state case. To see this, note
that in the steady state case we have an identity x = us
where x is link occupancy, u is the flow rate, and s
is the link trip time. Using the linear travel-time func-
tion s = ax + B to substitute for s in x = us gives a
flow-occupancy function u = x/(ax + ). The latter is
everywhere increasing and is asymptotic from below
to 1/a. Therefore, the linear travel-time functions (10)
imply that the flow u is bounded above by 1/a. Let-
ting 1/a = B we can rewrite y’(t) > —au(t) from (12)
as y’(t) = —u(t)/B. The advantage of the latter form is
that it is the linear form of (7) and hence is the linear
form of the conditions assumed in the propositions in
Section 4-6 to ensure FIFO for nonlinear travel-time
functions.

Proof. In the proof of their Theorem 1, Friesz et al.
(1993) divide the time span into intervals [¢,,t,,,], 1 =
1,2,3,..., and show, in Equation (37), that “7/,(t) >
au(t)” for all time intervals where 7/, (t) is associated
with the interval [f,,¢,,,]. Hence “7/,,(t) > 0” for all
time intervals since au(t) > 0. Therefore, t’(¢) > 0 for
all t and, as noted in (9), '(¢) > 0 ensures FIFO.

Now replace (10) with (11), i.e., replace f(x(t)) =
ax(t) + g with f(x(t),t) = ax(t) + B + p(t). This adds
an extra term, namely y’(t), to the r.h.s. of all expres-
sions for '(t) since, from (3), t(t) =t + f(x(f),t). In
particular, adding y’(t) to the r.h.s. changes their Equa-
tion (37) from “t/ () > au(t)” to “7/,,(t) > au(t) +
y'(t).” However, by assumption (12), au(t) +y’(t) = 0
hence 7/, (t) > 0 for all time intervals [t,,t,,,]. There-
fore, 7/(t) > 0 for all ¢t and, as noted in (9), T’(t) >0
ensures FIFO. Hence the proof of FIFO for the travel-
time function (10) is now extended to the travel-time
function (11) and we are done.

The above extension of the proof of Theorem 1 of

Friesz et al. (1993) is given in outline and does not list
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all of the specific changes that are needed in extend-
ing the proof. More specific changes in the proof are
as follows.

Add y(t) to the rh.s. of Equations (23), (26), (29),
(32), and to the r.h.s. of the first three equations in (36).
Add y’(t) after the equation sign in (24), (35), and (37).
In (28)! add y’(t) after each of the four equation signs,
and add y’[7;!(#)] to the denominator of the quotient
term in the third and fourth lines in (28). This changes
the last line in (28) from “75(t) > au(t) > 0” to “75(t) >
au(t)+y’(t) hence 75(t) > 0 since au(t) + y’(t) > 0 by
assumption (12).” Also change (31) from 7,(t) > au(t)
to 7,(t) > au(t) +y’(t), and change (34) and (37) from
T () >au(t)to) () >au(t)+y'(t). O

The change noted in the preceding paragraph, from
“T'(t) > au(t) =07 to “t'(t) > au(t) +y’(t) = 0” is inter-
esting though it is only an intermediate result in the
proof and is not in the statement of the theorem. It
means that even if the inflows u(t) are “large,” if y’(t)
is negative then 7’(t) can be close to zero, so that the
exit time 7(t) can increase very slowly. Note that 7/(t)
“close” to zero means that the flow is “close” to vio-
lating FIFO (though it of course does not violate FIFO,
as is shown by the proposition). Conversely, even if the
inflows u(t) are “small,” if () is positive and large
then 7’(t) will be large, so that the exit time 7(t) will
increase rapidly. These outcomes are what one would
expect.

4. Extending the Results from Xu et al.

(1999) to the Inhomogeneous Case

[The notation used in Xu et al. (1999) is different than
in this paper and in the papers discussed in Section 3,
5, and 6. Xu et al. (1999) uses b(t) rather than u(t) for
the link inflow rate, v(f) rather than x(f) for the link
occupancy, and s(v(t)) rather than f(x(t)) for the non-
linear travel-time function. However, for consistency,
when quoting from their paper we have changed their
notation to the same as in the rest of the present paper.]

Xu et al. (1999) set out two FIFO theorems, namely
Theorem 3.1 that applies when the link travel-time
function is nonlinear and Theorem 3.2 that applies
when it is linear. We consider only Theorem 3.1 here
since Theorem 3.2 is similar to the Friesz et al. (1993)
Theorem 1, already considered in Section 3. As is usual,
they let the link travel time be f(x(t)) where x(t) is
the number of vehicles on the link at time f so that,
for a user entering the link at time ¢, the exit time is

T(t) =t + f(x(t)).

Theorem 3.1 of Xu et al. (1999). Assume that there exists
a finite instant T” such that, for all t less than T, the entry flow
rate function u(t) is well defined, nonnegative, bounded from

above by B, Lebesgue integrable, and that f'(x) <1/B for

all x in the interval [0, X ] where X = fOT u(t)dt. Then:

(i) x is everywhere nonnegative and differentiable almost
everywhere on [0, 7(T")];

(ii) 7 is strictly increasing and invertible on its domain;

(iii) 7 and ©7! are differentiable almost everywhere on
their respective domains, and there exists a positive constant
C such that T'(t) > C forall t in [0, ©(T")];

(iv) v is well defined, nonnegative, Lebesque integrable,
and bounded from above by B;

(v) the functions x, t, t™*, and v are well defined.

Proposition 2. If link travel time f(x(t)) is replaced by
f(x(t), t) then Theorem 3.1 from Xu et al. (1999) continues
to hold if we also let (7) hold, i.e., if we assume f,(x,t) >
—u(t)/B.

Remark. If f(x(t),t) is linear in this proposition, as in
Equation (11) for the Friesz et al. (1993) linear model,
then condition f,(x,t) > —u(t)/B in (7) and in the
proposition reduces to y’(t) > —u(t)/B, which is the
same condition as in Proposition 1 for the linear model,
except that in Proposition 1 we found a weak inequality
(> instead of >).

Proof. In proving their Theorem 3.1, Xu et al. (1999)
use the derivative of the travel-time function (1), that is

() =1+ f/(x(B)x (). (13)

If we allow the travel-time function to be inhomo-
geneous over time as in (3), i.e, 7(t) =t + f(x(t), 1),
then (13) becomes

() =1+ fo(x(b), (1) + fi(x(b), 1),  (14)

where f, and f,, respectively, denote the derivatives of
f(x,t) with respect to the first and second argument.

As in Friesz et al. (1993) (see Section 3), they divide
the time span into intervals [t;,¢;,,], i =1,...,n. Then,
using (13) and assuming f,(x(t)) < 1/B, they prove (in
the multiline equation on page 345, column 1, lines 2
to 7) that (72)'(t) > max(C, u(t)/B), where the “2” super-
script denotes the second time interval, [t;, t,]. By their
definitions C > 0, therefore (72)'(t) > 0. They extend this
recursively to all time intervals, hence obtain 7’(t) > 0
for all ¢, and their FIFO result follows immediately
from that, as noted in (9).

If now we replace (13) with (14), then in their mul-
tiline equation for the first time interval, referred to in
the preceding paragraph

(t2Y(t) > max(C, u(t)/B)becomes (72)'(t)
> max(C, u(t)/B) + fi(x(t),t),

hence (72)'(t) > u(t)/B + fi(x(t), t).

However, u(t)/B + f,(x(t),t) > 0 by assumption (7),
therefore (7%)'(t) > 0. This can be extended recursively
to all time intervals [t;,¢;,,],i=1,...,n,to give T/(t) >0
for all t, which ensures FIFO, as noted in (9), which
completes the proof. O
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5. Extending the Results from
Zhu and Marcotte (2000) to the

Inhomogeneous Case
[The notation used in Zhu and Marcotte (2000) is the
same as in this paper except that they use D to denote
link travel-time functions while we use f.]

Zhu and Marcotte (2000) set out two FIFO theorems,
namely Theorem 5.2 that applies when the link travel-
time function is nonlinear and Theorem 5.1 that applies
when it is linear. We consider only Theorem 5.2 here.
Their Theorem 5.1 is similar to the Friesz et al. (1993)
Theorem 1, already considered in Section 3.

Theorem 5.2 of Zhu and Marcotte (2000). Let T’ be a
finite instance such that, for all t in [0,T"], the functions
uP(t),p € P are well defined, nonnegative, and Lebesgue
integrable, and u(t) = X,cp uf(t) is bounded from above
by B (B > 1). Let the functions f be nonnegative, non-
decreasing, and differentiable with respect to x. If f'(x) <
1/(B + n) for some positive number 1, then the strong FIFO
condition on the link holds with constant n/(B + ).

In the above theorem, u(t) = 2,cp u?(t) is the sum
of the inflows to the link on the paths p € P that pass
through it. The condition f’(x) < 1/(B +n) is a stronger
version of the condition (8). The extra term, 1, is a posi-
tive number that was introduced by Zhu and Marcotte
(2000) to give a stronger form of FIFO, to ensure that
the travel time function f(x) is strongly monotone.

Proposition 3. Theorem 5.2 of Zhu and Marcotte (2000)
continues to hold if the homogeneous link travel-time func-
tion f(x(t)) is replaced with the inhomogeneous func-
tion f(x(t),t) and we introduce an additional assumption,
namely

filx, ) 2 —u(t)/(B+n), (15)

and the bounded gradient condition f’(x) <1/(B + n) is
changed to f.(x,t) <1/(B+n).

Remark. The difference between (15) and (7) is the
extra term 7. If 1 =0 then (15) reduces to (7) since B
and 7 are nonnegative, (15) is a stronger version of the
condition (7) that is used in the propositions in Sec-
tions 3-6.

Proof. The proof is the same as the proof of Theo-
rem 5.2 in Zhu and Marcotte (2000), except for

(a) their unnumbered equation in line 13 in col-
umn 2 on page 413, and

(b) the four-line equation at the bottom of column 2
on page 413.2

In both of these, the result still holds but the deriva-
tion of it needs extending, as shown next.

(a) Onreplacing f(x(t)) with f(x(t), t), the equation
in line 13 in column 2 on page 413 becomes

T'(t) =1+ fo(x(t), ult) + fi(x(t), t). (16)

By assumption, f;(x(¢),t) > —u(t)/(B + 1), and adding
+1 to each side gives

filx(®), ) + 12 [(B+n) = u(b)]/(B +n).

Then using assumption u(t) < B reduces this to
fi(x(t),t) +1 > n/(B +n). Substituting the latter in (16),
and noting that the term f,(x(¢), t)u(t) is always non-
negative, yields 7’(t) > n/(B + 1), which is the same
result as in Zhu and Marcotte (2000) in the sixth line
after their Equation (37).

(b) In the four-line equation at the bottom of col-
umn 2 on page 413, Zhu and Marcotte 