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An Energy-driven Motion Planning Method for
Two Distant Postures

He Wang, Edmond S. L. Ho, and Taku Komura

Abstract—In this paper, we present a local motion planning algorithm for character animation. We focus on motion planning
between two distant postures where linear interpolation leads to penetrations. Our framework has two stages. The motion
planning problem is first solved as a Boundary Value Problem (BVP) on an energy graph which encodes penetrations, motion
smoothness and user control. Having established a mapping from the configuration space to the energy graph, a fast and robust
local motion planning algorithm is introduced to solve the BVP to generate motions that could only previously be computed by
global planning methods. In the second stage, a projection of the solution motion onto a constraint manifold is proposed for
more user control. Our method can be integrated into current keyframing techniques. It also has potential applications in motion

planning problems in robotics.

Index Terms—Character Animation, Motion Planning

1 INTRODUCTION

YNTHESIZING movements that involve close in-
S teractions, such as those in wrestling, dancing,
carrying objects, and passing through constrained
environments, is essential for applications such as
computer animations, computer games, and robotics.
Collisions and contacts between individual body parts
and the body with objects in the environment are very
common, which makes the path planning problem
extremely difficult to solve.

One common practice in computer animation for
synthesizing such movements is keyframing. Key
postures are inserted manually between frames so
that every two consecutive postures can be smoothly
interpolated. If we see the generated motion as a func-
tion, this method finds the motion function passing
through the initial and end posture in the configura-
tion space. This assumes every two consecutive pos-
tures are close enough so that the motion function can
be approximated well by a piece-wise linear function.
However, due to the representation of postures based
on joint angles, which does not take into account the
spatial relationships between different body parts or
the body and objects in the environment, many key
frames are required to produce a penetration free,
natural motion. As a result, only very experienced
animators can produce a realistic motion that involves
such close interactions.
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Alternatively, global motion planning approaches
such as Rapidly-exploring Random Trees (RRT) [1]
or Probabilistic Road Maps (PRM) [2] are possible
solutions. These methods explore the configuration
space in a random fashion to find possible solutions
connecting postures. However, the computational ex-
pense is high due to the curse of dimensionality [3].
In addition, they become slow when there are narrow
passages in the configuration space, which is usually
the case when there are many body parts and objects
in close proximity.

In this paper, we propose a method to solve this
problem by composing an energy graph where dis-
tances between different body parts are taken into
account. Smooth motions are calculated as geodesic
lines between the start and end nodes on the energy
graph. Based on this concept, we form the motion
planning problem between two arbitrary postures of
a human skeleton character as a Boundary Value
Problem (BVP).

Besides the boundary conditions, the formulation of
the BVP needs to consider three factors: (1) Physical
plausibility, for instance, there should be no penetra-
tions. (2) Smoothness. (3) Incorporation of user con-
trol. First, we construct an energy graph that meets
these requirements. Next, we develop an iterative
algorithm to compute the geodesic line between the
two postures. Finally, we project the motion function
onto a constraint manifold incorporating factors such
as physical constraints and additional user control.

The structure of the rest of the paper is as follows.
We first review closely related work in computer
animation, robotics and computational geometry in
Section 2. Then we give an overview of our method
in Section 3, followed by detailed explanations of the
methodology in Section 4, Section 5 and Section 6.
Then, experimental results are presented and evalu-
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ated in Section 7. Finally, limitations are discussed in
Section 8 and the conclusion is drawn in Section 9.

2 RELATED WORK

Character animation has been an active field in the
past two decades. Although we are trying to target a
classic problem, we take a new perspective by mod-
eling the posture via interactions between different
body parts. It narrows our review scope down to
interaction simulation and path-planning for complex
movements. We first review some works of simulating
close interactions for character animation. Then we
move on to path-planning methods for synthesizing
movements of close interactions. Finally, we review
the work in computational geometry that handles
similar problems.

2.1

Character interactions have been attracting many re-
searchers. Liu et al. [4] simulate the close dense inter-
actions of two characters by repetitively updating the
motion of each character with spacetime constraints.
Lee and Lee [5] produce a boxing match by reinforce-
ment learning. Treuille et al. [6] use reinforcement
learning to simulate pedestrians avoiding each other.
Shum et al. [7] use interaction patches to synthesize
multi-character fighting. However, these interactions
do not include movements, such as Yoga, where body
parts are in proximity and penetrations cannot be
avoided by simple methods.

Kallmann et al. [8] propose a Probabilistic
Roadmap-based planning algorithm to synthesize
reaching and grasping motion while assuming prior
knowledge about the motion. Pan et al. [9] propose
an efficient method to plan the motion in constrained
environment by classifying body parts into groups
with low-correlation. Their method assumes that
some body parts can always be de-correlated, which
is not always the case in motions such as Yoga and
Contortion. Wang et al. [10], [11] suggest control
methods to interact with deformable objects. They
deal with a high number of degrees of freedom
but the character control is too simple to handle
impending penetrations.

Ho and Komura [12], [13] propose to use
topological measures to encode complex interactions
so that very close and continuous interactions can be
analyzed and synthesized. However, their methods
mainly encode tangling information which is only
useful when tangles are present.

Interaction in animation

2.2 Path-planning of close interactions

Early work in path planning [14] employs poten-
tial fields to compute collision-free paths efficiently.

Kuffner et al. [15] propose a fast distance determina-
tion method to detect self-collision of the body parts
of humanoid robots using Voronoi-clip algorithm.
Sugiura et al. [16] propose a method to avoid self-
collision for humanoid robots by adding virtual forces
between the body segments to maintain the minimum
distances while reaching the target configuration.

Global path-planning such as Rapidly-exploring
Random Trees (RRT) [1] or Probabilistic Road Maps
(PRM) [2] are often used in both animation and
robotics. Yamane et al. [17] simulate motions to move
luggage from one place to another by combining IK
and RRT. Hirano et al [18] and Berenson et al. [19] pro-
pose to use RRT to search the state space for grasping
objects. Zhang et al. [20] propose an approach similar
to [9] and blend the motion with MOCAP data to
produce realistic human motion. Ho and Komura [21]
use RRT to plan motions such as holding and piggy-
backing. Ladd and Kavraki [22] develop a variation of
RRT to untangle knots. Their work is similar to ours
in the way that they use an energy function to break
the global path-planing problem into local problems
that are manageable. There are two shortcomings for
these methods: 1. They are usually computationally
expensive. In order to search for collision-free paths, it
requires sampling in a large space and evaluation for
various factors. 2. Because the final path is built upon
random search, the motion style is not consistent. Be-
sides, post-processing is usually needed to ensure the
smoothness. Therefore, these approaches are not ideal
from the viewpoint of character motion synthesis and
editing.

The most similar work to ours is [23], which uses
linkage unfolding to plan the motions. However, their
method is solely based on linkage folding /unfolding.
The user does not have enough control over the
motion synthesis process.

2.3 Linkage unfolding in computational geometry

Since characters are commonly represented by tree-
structure skeletons, character motions can be seen as
motions by 3D polygonal trees, that have been inves-
tigated in computational geometry. More specifically,
a number of researchers have looked into the config-
uration space of linkages for folding/unfolding. One
main question in this area is what types of linkages
always have connected configuration spaces [24]. If
the configuration is connected, it is called unlocked,
and any two configurations can be interpolated. Oth-
erwise it is called locked. In 3D, a locked open chain
of five links is found by Cantarella and Johnson [25]
(see Figure 1). In [26], Connelly et al. prove that
there are no locked 2D polygonal linkages. Upon this
discovery, Cantarella et al. [27] propose an energy-
driven approach to unfold such linkages, and Iben et
al. [28] propose an extended approach to interpolate
arbitrary polygonal linkage configurations.
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Fig. 1: A locked linkage of five links. This linkage
cannot be unfolded into a flat one without
penetrations or change of link lengths.

The research of linkage folding/unfolding greatly
inspired our research. We show how we leverage
their techniques to facilitate the motion generation for
complex postures.

3 OVERVIEW

The whole framework of our system is shown in
Figure 2. Two key postures and the user control
signals are the inputs to our system. Then we generate
the motion via a two-stage process. The first stage is
a Boundary Value Problem solver, where we calculate
the valid motion between the two postures. The sec-
ond stage is a spatial-temporal solver which projects
the resulting motion onto a constraint manifold given
by the user.

3.1

o We propose an energy graph representation for
motion planning between distant postures as
Boundary Value Problems.

o We introduce a fast and robust local planning
scheme to solve BVPs which can produce motions
that could only previously be achieved by global
path-planning algorithms in the past.

Contributions

4 ENERGY GRAPH

The joint angle representation does not encode pene-
trations for human postures. It would be easier if we
can form this problem in a different space, denoted
by EG, where constraints are encoded into the repre-
sentation and path-planning can be performed locally.
The space should meet several requirements:

1) Valid postures are aggregated together while
invalid postures are marginalized. Here, the
validity mainly refers to no penetration. The
boundary between them should be clear so that
we can plan the motion in the subspace where
all postures are valid.

2) The global structure is simple so that the path-
planning between two points in EG is straight-
forward.

3) The mapping between the configuration space C
to EG should be injective and has at least first-
order continuity, so that a continuous motion in
C can be mapped continuously into EG.

4) The mapping can be easily calculated.

Finding an analytical form of EG is hard. But we can
establish the mapping between C' and EG as follows.

4.1

We first define a repulsive energy function E: C —
R*. A posture, ¢ € C, consists of global translation
and orientation plus joint angles. The skeleton of
every ¢ consists of a set of rigid body segment, or
links, which is denoted by { = {li,l2,...,1,}. Each
link, /;, is a bone segment with a neighborhood I’
consisting of all links that are directly connected to
it. The environment is denoted by E,,. The energy
function is defined as:

E(Qa E’rn) = Eint (Q) + Eea;t(Qa E’m,)7

Bie=2, ).

L€l Ly ebiF,
ljgl?b

1
> dist(l;, Op)? @

l;€l,0Or€E,
()

where dist(z,y) is the shortest distance between x
and y in 3D Euclidean space. We approximate the
link geometries with cylinders. d is an integer which
controls the fall-off rate between postures in C.

Intuitively, the further body parts are apart from
each other, the lower the energy is. All the postures
with energy smaller than +oo do not have penetra-
tions. Further, when the energy is very low, the limbs
are very stretched and apart from each other. So linear
interpolation of postures with low energy is more
likely to be successful. We first formally discuss some
properties of the energy function, then explain how
we construct EG.

Repulsive Energy Function

-
dist(li, lj)d ’

Eezt =

4.2 Properties of the Energy Function

The energy F is composed of two terms: the internal
(Fint) and external (F,,;) terms where F;,; monitors
the distances between different body links while E,;
monitors the distances between the links and the en-
vironment. There are several important properties of
this mapping that meet our requirements mentioned
in the beginning of this section:

o Computation efficiency. The energy function can
be computed quickly which meets requirement
4).

« Continuity. The mapping is infinitely continuous.
So locally a small change in the configuration
space C corresponds to a small change in RT.
This satisfies requirement (3).

o Repulsiveness. For the internal energy term,
when all the distances between every pair of
disjunct body links are maximized, the energy
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Fig. 2: System Overview. Our system takes two postures as input and generates the motion via two-stage
processing. The frames circulated by the red frame are the generated frames.

reaches the lowest value. It is similar for the exter-
nal energy. A typical low energy configuration is
a fully-stretched body in an empty environment
(Figure 3 d). This property helps with require-
ment (2) which will be explained in Section 5.

o Energy barrier. Given a non-penetrating initial
configuration, the energy is finite and reaches
+0o when penetrations happen. It means all the
valid postures are aggregated on Rt where E <
+oo. It draws a clear boundary between valid
and invalid postures, thus meets requirement (1).
In addition, any path that starts with a non-
intersecting configuration and does not increase
the energy will not cause penetrations.

o Controllable gradients. Note that we put a pa-
rameter, d, in Equation 1. We define d > 1, so
Equation 1 is actually a family of functions. The
higher d is, the larger the energy fall-off rate is.
Its function will be explained in Section 5.

4.3 BVP and Energy Graph Construction

With these properties, we form a Boundary Value
Problem for motion generation. C' is a high-
dimensional vector field, Equation 1 assigns a scalar
from R* to every vector in C' and gives us a new space
EG. So we let EG = C x R*. Given two postures
Py, P, € C and their corresponding points EG(F:),
EG(P,) € EG, we look for a function f :t — C, t €
[0,1] bounded by f(0) = P; and f(1) = P,. Directly
solving such a BVP requires additional information
about f, such as higher-order information similar to
the classic Dirichlet Problem. In our problem, we
would like to find a f so that the following energy
is minimized:

Ey(f(t)) = /tzo | E'(F0)) I df

1
=~ EO) I
t=0

subject to
f0) =P f(1) =Py and By < 400 3)

Such an f essentially corresponds to the geodesic
path between EG(P;) and EG(P;) in EG. However,
Equation 1 is only injective, not diffeomorphic. So EG
is not necessarily a manifold.

In order to understand EG, we show the following
observations. Given a projection, EG(P), of a pos-
ture P, a key observation is that the energy is high
when there are body links in proximity. According
to Section 4.2, there are paths in EG starting from
EG(P) and decreasing the energy. In C, these paths
correspond to expanding posture P into a stretched
one P¢. The most stretched posture is associated with
the lowest energy and this posture is a canonical
posture into which other postures can be expanded.
A typical canonical posture is shown in Figure 3(d).
In addition, some postures with the similar energy
values cannot be linearly interpolated. This reveals
some information about the structure of EG.

Formally, Equation 1 is a Morse function which
maps the manifold C' to R*. So EG can be represented
by a Reeb graph [29] as follows:

E : C — R" is a continuous function defined
on C. Define an equivalent relation (Pi, E(Py)) ~
(P2, E(P2)) which holds if and only if:

. E(Pl) = E(Pg) and

e P, and P, are in the same connected component

if there is a path H C C passing through P; and
P, so that VP € H, E(P) = E(P,) = E(P).
The Reeb graph is the quotient space of the graph of
E in C x R* by the equivalent relation. We call this
graph the energy graph, denoted by EG.

In [29], the height function is used as the Morse
function for extracting the Reeb graph of a 2D mani-
fold. Nodes in this graph represent the inner space of
the mesh at a certain height. Edges are between nodes
if they are directly connected. Branching happens
when nodes at the same height are only connected
through nodes at a different height level. For exam-
ple, imagine given a T-pose character mesh, there
is a branch at the pelvis extending into both of the
thighs. This is because two nodes from two thighs
respectively are only connected through the pelvis
even if they are at the same height. Likewise, we
use the energy function as the Morse function instead
to extract the Reeb graph out of C. In this graph
(Figure 3), postures that can be transformed to each
other without changing the energy are grouped as
nodes. Postures form branches when they are only
connected via a node at a low energy level. In C, these
postures have to be expanded first to meet at a lower
energy level.
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Fig. 3: Posture a is gradually expanded to b, ¢ and
then to d when decreasing the energy. Posture d is a
canonical posture.

Then solving Equation 3 can be considered as a
problem of finding the shortest path in £G between
EG(Pl) and EG(PQ)

5 ENERGY-BASED INTERPOLATION
BOUNDARY VALUE PROBLEM

5.1

In this energy graph, there are four canonical postures
due to symmetry. One of them is shown in Figure 3(d).
As all the joints are fully stretched in these postures,
linearly interpolating any two of them will not result
in penetrations. We define a set P, to include all the
canonical postures. If we can expand P, and P, to
P! and P? where P!, P? € P., we consider that the
planning is successful. We search for f(t) = fi(t1) +
f2(t2) with boundary conditions f;(0) = Py, fi(t.) =
Pcl7f2(tc) = P02 and f2(1) = P, where ¢; € [Oatc]/
ty € [te, 1], te € [0,1].

Finding f; and f; is equivalent to finding the
geodesics between EG(P;) and EG(P!) as well as
EG(P) and EG(P?) on the graph. Because the path
between canonical postures are fixed, E; is lower-
bounded by E*" = E(f1) + Ej(f2). Note this is a
relaxation of the original BVP and it helps to find
a valid motion by a fast local algorithm explained
below.

Given a posture, we compute the geodesic to
EG(P.) by tracing the negative gradient flow of the
energy iteratively:

FOR

Energy-descent interpolation

D=-avE 4)

where D is the update direction, « is a small positive
number and 7 E is the normalized energy gradient. In
this way, we compute f; = {P}, P2, ..., /"', P}} and
fo={P2, Py~ Py"~2 .., P3} respectively, where the
superscript is the 1ndex of steps. On the graph, this
corresponds to monotonically decreasing the energy
until the postures become canonical. An example is
shown in Figure 3. We emphasize that P, is not fully
connected. Theoretically, it can cause failure when two
postures are expanded into two canonical postures
that are not connected. However, experimentally we

find linear interpolation between canonical postures
will not cause penetrations thus can be used. More
details are given in Section 5.2.2.

5.2 Relaxation by Linear Interpolation and Safe
Zone

5.2.1 Leveraging Linear Interpolation

Although the motion can be generated by energy-
descent planning as shown in Figure 3, sometimes the
synthesized movements include unnecessary expan-
sion, which is different from natural motions that usu-
ally take the shortest path. This is because the energy
of a canonical posture, E(P,,,,) where P, € P, is too
low and simply tracing the negative gradient flow is
too strict. To address this problem, we employ two
strategies: using linear interpolation and increasing
the fall-off rate d in Equation 1.

Linear interpolation follows the shortest path in C
thus should be applied when the synthesized motion
does not cause any penetrations. In each iteration, we
check if it will cause penetrations. If it does not, we
only use linear interpolation. Otherwise, we project
the linear interpolation direction to the null space of
the energy gradient so it does not increase the energy.
This requires to compute a safe zone which is explained
later as well as a modification of Equation 4.

We employ the same strategy proposed in [28].
At every step, instead of changing both postures,
we update the posture with the higher energy, P,
towards the other posture, ;. So D is first initialized
by & A P’LH, then Equation 4 is changed into:

b oD i DT-yE<0 o
T\ (I—-<vvE-vET)D otherwise

where « is the same parameter as in Equation 4.
Equation 5 essentially projects the linear interpolation
direction, %, so that it does not increase the
energy. In this way, unnecessary expansions can be
mitigated.

Incorporating linear interpolation into the energy-
descent approach results in actively finding a common
posture P/~ such that E(P] ) > E(Pow). In the
energy graph, EG(P/, ) is a common parent node that
is closer to EG(P;) and EG(P,) than EG(P,), thus
reduces the total distance that the two bodies have to
travel on the graph to meet each other. The higher
E(P},,) is, the less the two bodies have to travel,
thus decrease E;. An illustrative example is shown
in Figure 4.

Although using a posture with a lower energy
as a way point can reduce excessive expansion of
the bodies, some unnecessary expansion still happens
especially at the peripheral joints. This is because the
energy function traces the energy between all pairs
of body links and expands all parts almost equally.
To tackle this issue, we tune the energy fall-off rate
between postures by adjusting d in Equation 1. A
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Energy

Fig. 4: An illustrative example of the energy graph.
The two postures at the bottom are given. Without
relaxation, they take the black paths to A. With
relaxation, they meet at B by taking the green paths.

Fig. 5: Two postures (a and c) that can be linearly
interpolated at high energy postures without
penetrations.

high value makes the energy more dominated by the
closest pair of body links, therefore they are expanded
more. The user can change the style of the motion
by adjusting the value of d. Experimental results of
synthesized motions with different ds are shown in
Section 7.2.

5.2.2 Safe Zone

The second strategy to relax the BVP is to identify a
space in which postures can be linearly interpolated
without penetrations. A simple example of such a
space is P. where only canonical postures are in-
cluded. Actually, there are other postures that can
be linearly interpolated but have high energies. A
simple example is shown in Figure 5. A linear inter-
polation between Figure 5(a) and Figure 5(c) resulting
in Figure 5(b). It shows for every P € C, there is a
neighborhood around P so that linear interpolation
between P and any other posture in the neighborhood
will not cause penetrations. We call these postures
safe postures w.r.t. P. Every posture in P, is a safe
posture w.r.t any other postures in P.. Further, the
neighborhood of every posture together constitutes a
space S, and we call S the safe zone. If we can calculate
S, it will be helpful for interpolation.

Formally, we define a relation between safe postures
as P; ~ P; if P; can be linearly interpolated to P;
in the joint angle space without penetrations. Then a
subspace S, C C' is safe with respect to posture P iff :

e YP€S,, P~ P, where YP,,P, € S, \ P

The boundary of S, is 05, C C. So we have the safe
zone defined as:
Se = US; (©)

with its boundary 05, = UJS;. Intuitively, there is
a subspace of S, in C around every posture P. For
example, P,, P, and P, in Figure 5 are in S, NS, N S,
so any two of them can be linearly interpolated. Note
the relation is reflective, symmetric but not transitive.
So only postures within the same subspace of S can
be linearly interpolated. Figure 2 shows two represen-
tative postures. In the output, every two consecutive
postures are in the same subspace, but clearly the first
and last posture are not.

Safe zone allows us to further shorten the mo-
tion path. Previously, linear interpolation is only ap-
plied when it does not increase the energy. Intro-
ducing S changes the BVP in the following way.
Given two postures P, and P,, they can be ex-
panded into Pf and Ps5 where Py, Ps5 € 05;. Here
S; can be P, or any other subspace of S.. The
worst case is when S; = P, which means P; and
P, are fully expanded. However, this can happen
way before they meet each other by the method
explained in the last section. When it happens, linear
interpolation between P; and Pj5 further shortens
the path. The solution thus is changed to: f; =
{P},P},...P 1 PRy, fo = {Ps, Py P2 .. Ps}
and f = f1 + LinearInterpolation(Pg, P§) + fa.

Then the question comes down to how to recog-
nize if two postures are in the same subspace of
S. Accurately calculating S, is hard. However, we
can implicitly approximate S. by a method based on
tangle energy [13]. In [13], they use Gauss Linking
Integral (GLI) to compute the tangle energy between
two linkages. GLI is the average number of crossings
when viewing the tangle from all directions divided
by two. Here we consider the GLI value between
two directed curves. Simple examples of two directed
curves with different GLI values are given in Figure 6.
When the GLI value is equal to 1, the two curves twist
around one another once. If it is over 0.5 but smaller
than 1, it means two curves are tangled and cannot
be separated by a plane without cutting either one
of them. If it is smaller than 0.5, it means two curves
are untangled. Switching two curves only changes the
sign of the value. GLI can be calculated by:

/ / g1 ><592 91;92) @)
g1 v g2 ‘91 ||

where ¢g; and g, are two directed curves, x and -
are the cross and dot operator, d¢g; and dgs are two
infinitesimal segments of g; and g.

Approximating curves by linkages, we can calculate
GLI values for each pair of links between two link-
ages. Figure 7 shows such an example. The GLI value

GLI gl, gg
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o

|Gl =1

|GLI| <0.5

05<|GLl| <1

Fig. 6: Gauss Linking Integral between two linkages.

RIVZON

04 01 0.0
0.1 04 041
00 01 04
0.0 0.0 0.1

Fig. 7: The GLI Matrix of two linkages.

between two links has an analytical solution proposed
in [30]. By integration over the matrix, we get the total
GLI value for the two linkages.

We use GLI due to the following reasons. Firstly,
our tree structure skeleton can be easily decomposed
into linkages for tangle energy calculation. Secondly,
the encoding of spatial relations between linkages is
continuous and can be computed quickly. It does not
only give information about how close two individual
links are, but also how one linkage as a whole is
placed around another, thus can discover the potential
penetrations between body limbs well.

Since directed curves can be approximated by di-
rected linkages, we decompose the skeleton into 5
linkages shown in Figure 8. Given a posture P, we
can calculate a GLI matrix M, whose entries are GLI
values between linkages. This GLI matrix is similar to
the one in Figure 7 except that its rows and columns
are the body linkages shown in Figure 8 and the
diagonal only contains zeros. Given P, and P, we can
calculate Mp, and Mp,. Take the GLI value between
LeftLeg and RightLeg in Figure 9 for example. The
absolute difference between posture a and b, and

Fig. 8: The skeleton is decomposed into 5 linkages
shown in five colors. They are LeftArm, RightArm,
Torso, LeftLeg and RightLeg

X

b GLI=-0.05 ¢ GLI=-04

Fig. 9: GLI values between LeftLeg and RightLeg

between b and ¢ are small. So linear interpolation is
less likely to cause penetrations. While the difference
is high between posture a and c so linear interpolation
will cause penetrations.

We define our safe zone energy barrier as follow:

Eg;(P1, Py) = maxAbs(Mp, — Mp,) (8)

where maxAbs(A) returns the largest absolute value
in matrix A. We have a threshold which is empirically
set to 0.3. If Eg;(P,P,) < 0.3, then there is no
impending penetrations between any linkages when
we linearly interpolate the two postures. Note this is a
conservative approximation of 9S., but it works well
in our experiments.

In each iteration, if both postures are safe w.r.t each
other, they are linearly interpolated unless there are
external obstacles. Overall, the whole interpolation
algorithm is given in Algorithm 1.

6 CONSTRAINED PLANNING FOR USER
CONTROL

Algorithm 1 is a very basic version of the energy-
based planning. To further enhance our algorithm and
allow more user control over generated motions, we
establish a two-stage framework. In the first stage, we
generate penetration-free motions with constraints.
Then in the second stage, we enforce constraints by
projecting the motion onto a new constraint manifold.
The user control is implemented as positional con-
straints in this framework.

6.1

In the first stage, we incorporate constraints into the
energy interpolation in the same way as [28]. Without
loss of the generality, constraints can be linearized as:

KAq=C )

Constrained Planning

where K is the Jacobian matrix, Aq = ¢;11 — ¢; in ith

iteration and C' is the deviation of the current value

from the target one. Given a Ag, we project it onto
the null space of the constraint:

A¢d =Aq— KTl

= (KK")"Y(KAq + ~0) (10)

where v is set to 0.01 for all our experiments and
o = KAq — C. However, this only ensures that Ag/
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Algorithm 1 Energy-based Interpolation

Algorithm 2 Constrained Planning

Require: Two postures P, and P,, the environment
O, Parameters «.
Require: Motion sequence M; = and M, =0
repeat
Calculate energies F; and E; for P and P by
Equation 1.
if E1 > E2 then
Py, <+ P, P+ Py, VE — VEl

else

Py < Py, P« P, VE < VE»
end if
D+ L=Du

[P —Pu]l
Calculatle nh1aximal GLI value difference E,; for
Py, and P, by Equation 7.
if Ey; < 0.3 and O = () then

Py, +— P, +aD
else if DT - 7E < 0 then
D+ aD
else
D+« (I-vE-vET)D
end if
P, «— P, +aD
if E1 > E2 then
P+ P,
add P; to My
else
P2 — P}L
add P2 to M2
end if

until P, is similar to P
return M, + reverse(Ms)

satisfies the constraints and sometimes it can increase
the energy, Ag/-\7E > 0. When this happens, we need
to include an energy term into the constraints:

A¢' = Aqg— KT,
le = (JJT) Y JAG + ~e)

= {VKE] T Uv}

where w is set to -0.01 in all our experiments. After
projection, Ag¢” is in the null space of the constraints
and it decreases the energy. J can be under-ranked,
full-ranked or over-ranked. Essentially, this projection
satisfies the constraints in a least-square-error sense
thus it handles the constraints as soft constraints. The
enhanced version of Algorithm 1 is shown in Algo-
rithm 2. Various constraints used in our experiments
are as follows.

(11)

6.1.1

Positional constraints for joints are formed as:

Positional Constraints

JposAq = Ctar - Ccu'r (12)

Require: two postures P; and P;, the environment O,
Parameters .
Require: Motion sequence M; = ) and M, =0
repeat
Calculate energies F; and E; for P, and P by
Equation 1.
if E1 > E2 then
Py, <+ P, P+ P, VE — VEl

else

Py < Py, PP« P, VE < VEs
end if
D «— P —Py

| Pr—Prl| .
Evaluate constraints.

if Constraints violated then
Form constraints by Equation 9
Solver for A¢’ by Equation 10
if A¢7 - <7E <0 then
D+ Aq
else
Project Ag/ and solver for Ag¢” by Equa-
tion 11
D+ Aq”
end if
else
Calculate maximal GLI value difference E,;; for
Py, and P, by Equation 7.
if Fy; < 0.3 and O = 0 then
D+ aD
else
D+ (I -<E-yET)D
end if
end if
P, <+ P,+D
if E1 > EQ then
P+ Py
add P1 to M1
else
P, P,
add P, to My
end if
until P; is similar to P,
return M, + reverse(Ms)

where Jp,s is the Jacobian matrix. Cto, and Cqy, are
the target and current positions of the joint of interest.

6.1.2 Joint Limits

these limits are violated, the following constraint is
formed:

Joint angles are bounded by ¢min < ¢ < ¢maz- When

JjointAq = Chound — Ceur (13)

where Jjoin: is the Jacobian. Cyouna and Ce,, are the
bound value and current joint angle.
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6.2 Constraints Enforcement

After Algorithm 2, constraints can be violated by
small amounts. We build a second stage to enforce the
constraints and incorporate additional user control.
These constraints and user control signals form a
constraint manifold E,,,. We project the motion onto
Econ to get a solution motion f by minimizing:

arg){nin | Econ(f) ”2 (14)

There are several concerns regarding this motion
adaptation. Firstly, the original motion should be kept
as much as possible. This is to prevent new penetra-
tions as well as keeping the motion style. Secondly,
user control must be enforced. Lastly, physical con-
straints should be considered too. We introduce Lapla-
cian energy, momentum preservation and positional
constraints into our iterative optimization. We first
explain every single energy term then give details of
the optimization.

6.2.1

The motion projection can cause new penetrations
or change the motion style. The first constraint we
need to enforce is the Laplacian energy of the motion.
Laplacian energy is widely used in many areas. For
motion adaptation, Ho and Komura [31] used it for
modeling the interactions between characters. In their
work, the space between characters involved in close
interactions is encoded by the tetrahedralization of
joints of the characters. When morphing the motion,
the Laplacian energy is maintained so the spatial re-
lations are kept. Visually, it preserves the motion style
and prevents penetrations when adapting the motion.
We employ the same idea for modeling interactions
between different body parts for a single character. A
tetrahedralization of joint positions gives a volumetric
mesh. Let P,(q) = {p1,p2, ..., pn} be the vertices of the
mesh. The Laplacian coordinates of each joint can be
computed as:

Laplacian Energy

L(p) =pi— Y w;p; (15)

J=1jEN;

where N; is the set of vertices in p;’s 1-ring neighbor-
hood. w; is the normalized weights that are inversely
proportional to the distance between p; and p;.

The relation between the joint positions and the
skeleton degrees of freedom can be linearized as
AP, = J,Aq. Let P, ¢* and J be the vector of the
vertex positions of the volumetric mesh, the vector of
the skeleton Dofs and the Jacobian matrix at frame t
respectively. We define a deformation energy of this
volumetric mesh as:

n 1 9
Eiap = Y 5 LULAG + P =T |

t=1

(16)

where I'" is the Laplacian coordinates at frame ¢.
Preserving this energy preserves the spatial relations
between different body parts for each frame.

6.2.2 Momentum Preservation

For synthesizing highly dynamic motions, physically-
based constraints should also be considered. Our
framework can incorporate physically-based con-
straints, such as preserving the linear and angular mo-
mentum. As an example, we show how the angular
momentum preservation can be done.

We compute the angular momentum of the Center
of Mass (CoM), Pt,,,(g), with respect to the rotation
axis. By linearization, we have APcoy = J;Ag.
At frame t, we define the angular momentum as
ALy (Phoa (@), P (64Y)) and define a momen-
tum deviation energy:

n—1

1
Eat = Z iH AtCoM -
t=2

2
A |
Ay =T ! (17)

where I' is the inertia tensor and w! is the angular ve-
locity at frame ¢. Linear momentum can be preserved
in a similar fashion:

n—1
1 2
Eum =" 51 Lbors = Liih |
t=2

LtCoM =m- UtCoM (18)

where m is the mass and v}, is the velocity of the
CoM at frame t.

6.2.3 lterative Solver

Given the initial motion m = {P, P, ..., P,}, joint
limits and positional constraints are hard constraints
formed as H;Ag; — h; = 0 at frame i (see Equation 12
and Equation 13). So far, we have constructed a con-
straint manifold E.ons = Ejap+Ear+Eim+Y,(HiAgi—
hi). We iteratively project m onto E.,s. In each itera-
tion, projecting m onto E,,,s is equivalent to solving
the following quadratic programming problem:

1
argmin iAqTMTMAq + WiapElap + Wam Eat
Agq

Wi Bim + Y Ai(HiAg; — i) (19)

7

where M, wiqp, Wam and wy, are a weight matrix
and three real weights respectively. ); is the Lagrange
multiplier. For the sake of simplicity, we omit the
linear momentum below. Finding the stationary point
is equivalent to solving the following linear system:

MTM+J£leap+wamng,Jam’ H'] [Aq
H, 0J[A

. JlapF + Jom®
- h

(20)
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Fig. 10: Yoga posture interpolation. With d = 5 and
safe zone

where M is identity matrix. A is vector including all
the multipliers. I" includes all the I'; in Equation 16
and @ is a vector of angular momentum differences
JL/‘AlCoM_142001\/17 A%OM_A%OM7 ty AZ’;]}/I_Ag'oM}' His
a block matrix stacking Jacobian matrices of Laplacian
energy and angular momentum on its diagonal. Jq,
and Jg,, are the block Jacobian matrices of E,, and
Eom.

We run the solver until constraints are satisfied
within a threshold or the maximum iteration has been
reached. This solver is similar to the spatial-temporal
solver used in [4]. Although in our experiments we
do not have timing constraints, incorporating them is
straightforward.

7 EXPERIMENTAL RESULTS

In this section, we first show motion planning be-
tween complex postures. Then we show how the
motion generation is done for interactions with the
environment. Next, we evaluate how the fall-off rate
and safe zone affect the motion generation. Finally,
we perform evaluations of different factors in our
framework and comparisons with existing methods.
The readers are referred to the supplementary video
for details.

Our character has 63 degrees of freedom and only
the first and last frame are given in each experiment
unless specified otherwise.

7.1

Complex motions Two examples are given to show
complex path-planning. The first one is generated
from two yoga postures with both arms and legs
entwined in opposite directions. The result is shown
in Figure 10.

The second example is a synthesized motion of
a contortion in Figure 11. Contortion is an unusual
form of physical display which involves the dramatic
bending and flexing of the human body. In this ex-
ample, our system is fed with a common contortion
posture (the last frame in Figure 11). The character
starts lying face-down and ends up in a complete

Motion planning

-

Fig. 11: Contortion motion. With d = 5 and safe zone

Fig. 12: Thomas flare. With d = 5 and safe zone

folded configuration. The final configuration is very
sophisticated due to the 7 tangles made by body
linkages. It is difficult for methods proposed in [12],
[13] to deal with such a situation. Because they model
and interpolate each tangle independently, they can
suffer from local minima with a group of entwined
tangles.

Movements involving interaction with the envi-
ronment To show how our framework can easily
incorporate user control, we show how a Thomas flare
can be synthesized from two pairs of postures, shown
as the first and last posture in each row of Figure 12.
It is done in two phases. We first apply Algorithm 2
on every pair of postures. To make it look realistic,
we add a floor plane under the character. We also fix
the left hand when planning between posture 1 and
posture 4 in the first row of Figure 12, and the right
hand for posture 1 and posture 4 in second row of
Figure 12. In both scenario, the non-supporting hand
is automatically raised to let the legs pass.

In the second phase of motion synthesis, we en-
force Laplacian energy and angular momentum con-
straints as well as positional constraints for hands
then optimize the motion by Equation 19. Since the
last postures of the two motions are the same, the
two motions can be easily concatenated into a whole
motion.

7.2 Evaluations and Comparisons

Fall-off rate control and safe zone Firstly, we use
the Leg Cross example here to compare our method
with the one in [23]. We show how the planning
works with a fixed fall-off rate (d = 2 in Equation 1).
The input consists of two postures with legs crossed
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in opposite directions, shown in Figure 13 (The first
and last frame). During planning, only joint limits
are considered. The generated motion is shown in
Figure 13(a).

Although the motion can be planned successfully,

the arms are expanded excessively. This is caused by
the reason mentioned in Section 5.2.1. In this example,
the two legs tend to get closer initially because the
solution follows the direction of the linear interpo-
lation. The arms also have to move away from the
body so that the total energy decreases. This problem
is mitigated by increasing d as well as adding the
safe zone interpolation, as shown in Figure 13(b). We
show another series of Yoga motions synthesized with
different d values and safe zone in the supplementary
video.
Performance Our algorithm is implemented on a
machine with a Intel 2.40GHz i7-2760QM CPU, 8GB
Ram and Windows 8 64-bit. We use boost 1.47 [32],
UMFPack [33] and GotoBlas [34] for interpolation and
optimization. Table 1 gives detailed performances of
different motion planning.

Arm Leg Yoga Contortion | Thomas

Fold Cross Flare
Stage 1 11.415 41.874 | 85.108 | 224.923 23.726
Stage 1* | 10.722 39.671 | 81.258 | 138.106 n/a
Stage 2 n/a n/a n/a n/a 142.45

TABLE 1: All units are in seconds. Stage 1 and Stage
1* are the first stage without and with safe zone
detection respectively. n/a means not available
because we do not need to do it.

Table 1 shows how the safe zone detection signifi-
cantly improves the performance, especially if there is
a large safe zone detected during the motion planning
stage (see Contortion in Table 1).

The current performance bottle neck is the stiffness
of the energy function. Although each iteration can
be computed quickly, computing the whole motion
requires many iterations. This is because small steps
are used for complex postures, similar to the problem
of advancing a stiff ODE system. Adaptive step sizes
might mitigate the problem. Another possibility is to
use a backward Euler scheme but this involves solving
another linear equation in each iteration.

Next, we show detailed timing information of dif-
ferent energy term evaluations in each iteration at
stage 2 when planning a Thomas flare (half cycle).
We show the results of applying optimization with
and without Laplacian constraints. We set w4, = 0.02,
Wem = 0.2. And the maximum iteration is 30.

As shown in Table 2, the evaluation of Laplacian
energy takes quite a big fraction of the computa-
tional time. However, since there is no dependence
between frames for Laplacians, this computation can
be boosted by parallelization. It is the same for joint
limits and positional constraints. In addition, Lapla-

Lap JL Pos AM | Solving
1 [ 1.34 | 0.013 | 0.048 | 0.653 2.278
2 0 0.013 | 0.048 | 0.653 0.217

TABLE 2: Evaluation timing for different energy
terms. All units are in seconds. 1: With Laplacian
energy. 2: Without Laplacian energy. Lap: Laplacian
energy. JL: Joint limits. Pos: Positional constraints.
AM: Angular momentum.

cian energy is crucial in preserving motion validity
and style during optimization.

Comparison We compare our method with RRT and
PRM variants. Due to the stochasticity of RRT and
PRM variants, we do 10 runs for each experiment and
set it as a failure if no results are computed within
5 minutes. For implementations, we use the Open
Motion Planning Library (OMPL) [35].

To cope with the irregular movements, we apply
the smoothing method in [17] to all motions except
ours. This method iteratively smooths the trajectory
by connecting two frames using linear interpolation.
If successful, it replaces the original trajectory with
linear interpolation, then starts the next iteration. The
algorithm runs until no further linear interpolation is
possible. We chose a set of values (e.g. interpolation
resolution and self-collision) conservatively for all
experiments in order to produce movements without
any self-collisions and pass-throughs. A boxplot that
compare the performance are shown in Figure 14.

Our method outperforms the other methods. For
the first three experiments, sometimes the best results
of RRTConnect, PRM and PRM?* are still comparable
to ours but worse in general. Although they can find
a solution much faster than our method for simple
scenarios, the smoothing process takes a long time. In
addition, our method has a higher success rate (espe-
cially the contortion example where all other methods
failed). We also compare the quality of the motions
synthesized out of similar amount of computational
time. Although the computational time is comparable
and the success rates are similar, the quality of the
movements by other methods are far worse than those
by ours. The readers are referred to the supplementary
video for details.

8 DISCUSSIONS AND LIMITATIONS

Relation to Previous Work Wang and Komura [23]
also use a repulsive energy function to do motion
planning between distant postures. Our energy func-
tion is an augmented version of theirs. The augmen-
tation involves adding a new parameter to control
the energy fall-off rate and a new energy term to
model the energy between the character and the en-
vironment. We also include the global translation and
orientation so that more complex motions with posi-
tional constraints can be synthesized. These changes
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Fig. 13: Leg cross interpolation. The first and last postures are given. d=2, no safe zone for a. In b, d = 5 and
safe zone is computed.
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Fig. 14: In each figure from the left to the right: Our method. RRT [1]. RRT Connect [1]. Ball Tree RRT* [36],
[37]. PRM [2]. PRM* [37]. Success rates are shown as percentages for each method. “+“s are outliers.

Fig. 15: An example where multi-linkages falling
into local minimum. The red straight line goes
through the center of the blue ring and is
perpendicular to the plane spanned by the blue ring.

not only enable us to synthesize more complex mo-
tions but also control the motion style.

Simplicity of Human Skeleton Our method is mainly
designed for human skeleton, because it cannot form
complex or dead-locked knots due to the simplicity
of its topology and geometry. The success of our
method heavily depends on the expandability of the
skeleton. For linkages in general, this is not the case.
Firstly, dead locks are disconnected components in
the configuration space. No method can jump from
one component to another without penetrations, or
changes of the geometry or topology of the struc-
ture (e.g. shortening links or breaking connections).
Secondly, the energy of multiple linkages in general
can easily fall into local minima. A simple example is
shown in Figure 15. No matter how we move the bar
w.r.t. the ring, the energy does not decrease. Thirdly,
even if there is no dead lock and the linkage in interest
is a single tree, there is still no guarantee it can be
expanded thus cannot be handled by our method; it

is proven that 3D linkage expansion is not guaranteed
in general [38], [39].

Possible Local Minima As mentioned before, due
to the simplicity of the human skeleton, we do not
observe failures even for very complex postures in our
experiments. However, there are certain parameter
settings that can cause local minima.

In practice, when d in Equation 1 is very large,
local minima can happen. This is because when d
is very large, the energy is solely dominated by the
closest pair of body links. We use a simple heuristic
to detect possible local minimum. We use a small
energy window and monitor the postures during
motion planning. The energy window starts from the
higher energy value of the two initial postures. In each
iteration, we examine if the lower energy value of the
two postures falls out of this window. If it does, we
slide the window to contain it. If two postures stay
in the same energy window for a certain number of
iterations (50 in our experiment), we regard it as a
local minimum. Nevertheless, d is set between 2 and
5 in all our experiments and no local minima were
observed.

Subspace of the Solution Space Our method ex-
plores only a subspace of the valid motion space. This
is due to the constraint that the energy cannot be
increased. In Figure 5, linear interpolation brings the
left hand into the air (Figure 5 (b)). Imagine the user
wants the left hand to slide over the surface of the
body, see Figure 16. It is a valid motion between the
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Fig. 16: A modified version of Figure 5, with a
different intermediate posture of very high energy.

two postures at a very high energy level (Figure 16 (b))
and linear interpolation cannot generate this motion.
This motion is not explored in our framework. Such
a case can be handled by introducing proper control
(adding extra constraints) in the second stage.
Limited Interaction with the Environment Although
we allow the user to add environmental objects, we
assume there are only simple interactions between
the body and the environment. Firstly, the planning
needs to be done in a relatively open area. Highly
confined spaces can cause local minima. Secondly
the contact should be invariant or subject to small
changes. A complex motion sequence where contacts
change greatly cannot be directly synthesized by our
method. However, it is easy for the user to divide
the whole sequence into contact invariant segments,
similar to what we did in the Thomas flare demo.
Motion Naturalness The movements synthesized by
our system can sometimes appear unnatural due to
the monotonic velocity profile and the simultaneous
movements of the limbs. Humans tend to move body
parts sequentially for some motions such as dressing,
and also the velocity profile follows a bell-shape
trajectory [17]. Due to the simplicity of our approach,
such effects are not considered. However, those ef-
fects can be easily added by passing the movements
through an intermediate layer without increasing the
complexity of the system.

9 CONCLUSION

In this paper, we present a framework to solve motion
planning between two postures as a Boundary Value
Problem. We assume that the solution is a bounded
continuous function on an energy graph. We pro-
pose an fast constrained bidirectional motion plan-
ning method. To further incorporate user control, we
project the motion function to a constraint manifold.

10 FUTURE WORK

We use geometric primitives such as cylinders and
planes for approximating the body and the environ-
ment. Because our energy function is calculated by
the shortest distance between geometries, the current
approximation facilitates the computation. In the fu-
ture, we would like to explore methods that handle
more complicated geometries.

In addition, we plan to incorporate more complex,
close interactions between the character and objects or
the environment, such as grabbing objects or getting
into a car. This requires updating the energy rep-
resentation and designing a better motion planning
algorithm. One possible solution is to expand the
environment together with the character in a similar
fashion as discussed in this paper.

Another good direction is to compare our generated
motion with motion capture data and motion made by
animators. By learning features and relations between
these three groups of motions, we can learn a model
of natural motion on the energy graph and help ani-
mators to synthesize motions biased towards natural
motions.

Also, another direction to explore is planning the
optimal sequence of movements by different body
parts. Currently, the motion planning is done for all
the body parts at the same time. In many situations,
not all body parts move together. A proper sequenc-
ing may help to make the motion more realistic. For
instance, in the yoga example in Figure 10, we can
first interpolate the legs then the arms.

Finally, although local minima exist for free fold-
ing/unfolding of 3D trees in general, we intend to
look into humanoid skeletons for theoretical proof of
the applicability of our method. We would like also to
apply our work to robotics for controlling humanoids
or robotic arms for complex path-planning problems.
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