
This is a repository copy of Path Patterns: Analyzing and Comparing Real and Simulated
Crowds.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/106101/

Version: Supplemental Material

Proceedings Paper:
Wang, H orcid.org/0000-0002-2281-5679, Ondřej, J and O'Sullivan, C (2016) Path
Patterns: Analyzing and Comparing Real and Simulated Crowds. In: Wyman, C, Yuksel, C
and Spencer, SN, (eds.) Proceedings. I3D '16: 20th ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, 26-28 Feb 2016, Redmond, WA, USA. ACM , pp.
49-57. ISBN 978-1-4503-4043-4

https://doi.org/10.1145/2856400.2856410

© 2016, The Authors. Publication rights licensed to ACM. This is the author's version of the
work. It is posted here for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, https://doi.org/10.1145/2856400.2856410.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Supplementary Material

Terms Notation Meaning

Agent State w w = {p, v} where p
and v are the position
and orientation of an
agent

Data Segments d Trajectory and velocity
data of the crowd. d =
{wi}.

Path Pattern β A mixture of paths.

DP Atoms hli , cdj
DP Weight Parameters vk, gl, ǫli , πdj

Dirichlet Parameter η

Beta Parameter a, b, ω, α

Component Indices j, i, l, k and their totals: J, I, L, K

Table 1: Terminology and Parameters

1 SV-DHDP Model

We first briefly review Dirichlet Processes (DPs) and Dependant
Dirichlet Processes (DDPs). A DP can be seen as a probabilistic
distribution over distributions, which means any draw from a DP is
a probabilistic distribution itself. In a stick-breaking representation
[Sethuraman 1994] of DP: G =

∑
∞

k=1 σk(v)βk, where σk(v) =

vk
∏k−1

j=1 (1− vj),
∑

∞

k=1 σk(v) = 1 and βk ∼ H(η).

βk are DP atoms drawn from some base distribution H. In our
problem, they are Multinomials drawn from a Dirichlet(η). The
σk(v)s are called stick proportions or DP weights because it mim-
ics breaking a stick iteratively in the following way. Assuming the
length of a stick is 1, in each iteration, a proportion vk of what is left

of the stick ,
∏k−1

j=1 (1− vj) , is broken away. v is Beta-distributed.

A DDP [MacEachern 1999] generalizes the concept of DP by re-
placing its weights and atoms with stochastic processes. In our
context, a DDP can be represented as: Gl =

∑
∞

i=1 σi(v)Gli ,
where everything is the same as the DP representation except that
the atoms are now {Gli}. Each Gli itself is a DP and all {Gli} are
draws from same base DP. Both DP and DDP are ideal priors for
modeling infinite clusters.

With terminologies defined in Table 1 and equiped with DP and
DDP, we are ready to fully define our model. In a standard hi-
erarchical Bayesian setting, a tree is constructed in attempt to ex-
plaining the observations through a hierarchy of factors. In our
problem, the observations are agent states. We segment them into
equal-length data segments along time domain. Our goal is to find a
set of path patterns {βk} that, when combined with their respective
weights, best describe all the segments in terms of their likelihoods.

As shown in the toy example in the paper, a subset of {βk} is
needed to describe a data segment. {βk} are shared across all seg-
ments. A two-layer tree is used to model this phenomenon. The
root node is {βk} governed by a global DP prior. Each leaf node
represents a data segment with a DP drawn from the global DP prior
to model its own pattern set {βk}d ⊂ {βk}. This is a standard two-
layer HDP.

Further, imagine some data segments share a bigger subset of {βk},
namely {βk}c, so that {βk}d ⊂ {βk}c ⊂ {βk} and they form
a segment cluster. Also, we have potentially infinitely many such

clusters. We need a middle layer to capture this effect. At this layer,
there is a nested clustering. First, each {βk}c can contain infinite
elements. Second, the number of clusters can be infinitely big. This
effect can be captured by adding a DDP layer immediately below
all {βk} but higher than leaf nodes. After constructing such a tree
structure, we can compute {βk} by clustering the agent states layer
by layer up to the top.

Such a tree structure is shown in Figure 1. Each sharp-cornered
rectangle is a DP. G on the right is the global DP over {βk}. The
bottom-left segment-level distribution, Gd, is the local DP over
{βk}d. Gl is the DDP. The number of atoms in Gl is the num-
ber of segment clusters. Each atom Gli is a DP governing {βk}c
All stick proportions sum to 1, s.t.

∑
v = 1,

∑
g = 1,

∑
ǫ = 1

and
∑

π = 1. βk, hli and cdj are DP atoms.

Figure 1: SV-DHDP model. Sharp-corner rectangles (G, Gd, Gli

and Gl) are DPs in which squares are weights and circles are
atoms. Rounded rectangles are data samples or data segments.
Hexgons are pattern assignments. N is the number of agent states
in segment D.

This model explains how the observations, w (shaded), are gener-
ated from βk through a hierarchical factors between wn and βk.
This dependency is explained in Algorithm 1 in the supplementary
material. We explain, in Algorithm 1, the dependency between the
observed agent states and the latent path patterns we are solving for.

2 Variational Inference for SVDHDP

In this section we give details of the variational inference of our
SVDHDP model. Variational Inference (VI) [Bishop 2007] ap-
proximates a target distribution by solving an optimization prob-
lem. When the target distribution is intractable, VI uses a fam-
ily of tractable distributions (variational distributions) to approxi-
mate the target distribution. By optimizing for the parameters of
the variational distributions, the target distribution can be approx-
imated. The optimization is done by minimizing the Kullback-
Leibler (KL) divergence between the posterior distribution and the
variational distribution q(β,Ω), which amounts to maximizing the

• For the global DP, build G by:
• Drawing an infinite number of patterns, βk ∼ Dirichlet(η) for k∈{1, 2, 3, . . . }
• Drawing the stick proportions, σk(v) where vk ∼ Beta(1, ω) for k∈{1, 2, 3, . . . }
• For each segment cluster l, build a Gl by:

1. Drawing stick proportions, gl ∼ Beta(1, b) for l ∈{1, 2, 3, . . . }
2. Since the atoms of Gl are DPs, build each atom Gli by:

(a) Drawing an infinite number of pattern indices, hli ∼ Multinomial(σ(v)) for i∈{1, 2, 3, . . . }
(b) Drawing the stick proportions, σi(ǫ), where ǫli ∼ Beta(1, a) for i∈{1, 2, 3, . . . }
(c) For each data segment d, build Gd by:

i. Drawing an infinite number of data segment cluster indices, eld ∼ Multinomial(σ(g)) for l∈{1, 2, 3, . . . }
ii. Drawing an infinite number of group pattern indices, cdj ∼ Multinomial(σ(ǫl)) for j∈{1, 2, 3, . . . }

iii. Drawing the stick proportions, σj(π), where πdj ∼ Beta(1, α) for j∈{1, 2, 3, . . . }
iv. For each data sample w:

A. Draw a pattern assignment, zdn ∼ Multinomial(σ(π)).
B. Generate a data sample wn ∼ Multinomial(βhu), where u = ex, x = cy and y = zdn .

Algorithm 1: Data sample generation in SV-DHDP. Dirichlet, Beta and Multinomial stand for their eponymous distributions.

evidence lower bound (ELBO), a lower bound on the logarithm of
the marginal probability of the observations log p(w):

L(q) = Eq[log p(w, β,Ω)]− Eq[log q(β,Ω)] (1)

The mean-field family is the simplest for approximating the poste-
rior. It assumes each model parameter is only conditioned on its
own hyper-parameters:

q(β,Ω) =

K∏

k=1

q(βk|λk)(

M∏

m=1

R∏

r=1

q(Ωmr|ξmr)) (2)

where λ is the parameter governing the distribution of the global
parameter. Parameter ξmr governs the distribution of the local pa-
rameter Ωmr in the mth context (e.g., the mth data segment or the
mth cluster). Here, M and R do not have specific meanings and are
only for illustration purpose.

We then optimize Equation 1 for λ and ξ. Since all the distribu-
tions in SV-DHDP are from the exponential family, we assume that
q(Ω|ξ) and q(β|λ) are also from the exponential family which has
the general form:

p(β|w,Ω, η) = h(β)exp{ρg(w,Ω, η)T t(β)−ag(ρg(w,Ω, η))}

(3)

where scalar functions h() and a() are base measure and
log − normalizer; the vector functions ρ() and t() are the
natural parameter and sufficient statistics. For optimizing
Equation 1 with respect to λ, we take the gradient:

▽λL = ▽
2
λag(λ)(Eq[ρg(w,Ω, η)]− λ) (4)

and we can set it to zero by setting:

λ = Eq[ρg(w,Ω, η)− λ] (5)

The optimization for ε is similar to Equation 5.

2.1 Natural Gradient

Since we are trying to optimize the parameters to minimize the KL-
divergence, it is more reasonable to compute the natural gradient
of the ELBO instead of the Euclidean gradient. The natural gradient
of a function accounts for the information geometry of its parameter
space, using a Riemannian metric to correct the traditional gradient.
According to [Amari 1998], a natural gradient can be computed

by pre-multiplying the gradient by the inverse of the Riemannian
metric G(ω)−1:

▽̂λf(λ) , G(λ)−1
▽fλ(λ) (6)

where G(λ)−1 is the Fisher information matrix of q(λ). When
q(β|λ) is from the exponential family, G(λ) = ▽2

λag(λ) and
▽̂λL = Eǫ[ρg(w,Ω, η)]−λ. The natural gradient of L with respect
to ξ is in a similar form, but only depending on its local contexts.

2.2 Stochastic Optimization

Optimizing Equation 1 for λ and ξ by a traditional coordinate ascent
algorithm involves nested iteration loops. The inner loop iterates on
all data segments to update ξ until it converges and jumps out to the
outer loop to make one update on λ, then the iteration starts over
again until λ also converges. This is very slow especially when the
number of data segments is large, because before updating λ for
one step, the inner loop has to compute the gradient at every data
segment in the dataset.

To further speed up the training, we employ Stochastic Optimiza-
tion. Stochastic optimization uses noisy gradient estimates with a
decreasing step size to discover good local optima. Noisy gradi-
ents are usually cheaper to compute and help avoid low quality lo-
cal optima. With certain conditions on the step size, it provably
converges to an optimum [Robbins and Monro 1951]. Stochas-
tic optimization uses a noisy gradient distribution B(λ) so that
Eq[B(λ)] = ▽λf(λ). It allows us to update λ:

λ
(t) = (1− ρt)λ

(t−1) + ρtbt(λ
(t−1)) (7)

where bt is an independent draw from the noisy gradient B, t is
time step and the step size ρt satisfies:

∑
ρt = ∞;

∑
ρ
2
t < ∞ (8)

Specifically, we use:

ρt = (t+ τ)−κ
(9)

where τ down-weights the early iterations and κ, the forgetting rate,
controls how much the new information is valued in each iteration.
From Equation 7, we can sample the gradient on one data segment
instead of all of them to compute the gradient.

We further extend Equation 7 to a mini batch version of Equa-
tion 7. In each iteration, we sample D data segments and compute

Equation 7 for each of them, then average the results as the final
update:

λ
(t) = (1− ρt)λ

(t−1) + ρt
1

D

∑

d

b
t
d(λ

(t−1)) (10)

where btd() is the stochastic gradient computed from sample d and
D is the sample number. Since the mini batch version is highly
parallelizable and gives better estimations of the gradient, we thus
further speed up the computation and improve the results.

In practice, we cannot perform computations for an infinite number
of path patterns. So a truncation number is given at each level.
This number is the maximum cluster number modeled at its level.
It is set bigger than needed so that only a part of clusters are used
in the clustering. The truncation number for each layer is much
smaller than the one above it because we expect a much smaller
number of path patterns in a child node than its parent. We empha-
size that this is fundamentally different from giving a pre-defined
cluster number and the model can still automatically compute the
desirable number of clusters.

Given, D data segments, each containing N agent states, we as-
sume that the whole data set contains k path patterns where k < K.
Data segments can be clustered into l clusters where l < L, each
of which contain i path pattern indices where i < I . Finally, in
each data segment d, the agent states can be clustered into j groups
where j < J groups. We give the overall algorithm in Algorithm 2
and refer the readers to the supplementary material for the function
subroutines and the mathematical deduction.

Algorithm 2: VI Optimization

1 Initialize λ0, set o1 = 1 and o2 = ω, p1 = 1, p2 = b, q1 = 1, q2 = a;
Set up step size ρt, set init t = 0;

2 while not converged do
3 sample a data segment wd;
4 [ε′, µd, ζd, φd] = initLocal(wd, λ) (Algorithm 3);
5 [µd, ζd, φd] = opLocal(wd, ε, ζd, φd, β, g) (Algorithm 4);
6 [ǫ, ζd, φd] = updateCluster(wd, ε, ζd, φd, v, β)

Algorithm 5);

7 [λ(t), o1(t),o2(t)] = updateGlobal(wd, η, ε, ζd, φd, ρt,

λ(t−1), o1(t−1), o2(t−1)) (Algorithm 6);
8 t = t + 1;
9 update ρ with t (Equation 9);

10 end

2.3 Computational Details

Based on Figure 1 and the complete conditional in explained in
the paper Equation 2. However, Equation 2 is for the purpose of
explaining Variational Inference in the paper and does not contain
all the details. To do variational inference, we condition our model
parameters on their own hyper-parameters. Here we expand it into:

q(β,Ω) =(
K∏

k=1

q(βk|λk)q(vk|ωk))

(
L∏

l=1

q(gl|pl)(
I∏

i=1

q(ǫli |qli)q(hli |εli)))

(

D∏

d=1

q(ed|µd)

J∏

j=1

q(cdj |ζdj)q(πdj |αdj)

N∏

n=1

q(zdn|φdn))

(11)

This is the complete variational distribution . From this, we can
deduce the complete conditional for every parameter. A complete
conditional is the distribution of a parameter given all the other pa-
rameters. We also assume the conditional distribution of parameters
on their hyper-parameters are also from the same exponential fam-
ilies. So q(z|φ), q(c|ζ) and q(h|ε) are Multinomial distributions.
q(π|α1, α2), q(ǫ|q1, q2), q(g|p1, p2) and q(v|ω1, ω2) are Beta dis-
tributions. Finally, q(β|λ) is Dirichlet distribution.

We abuse the notation a bit here. We convert our denotations into
vector indicators. For instance, we treat w as a vector of size(S). So
if the nth agent state in dth data segment is v, it can be represented

by wv
dn

= 1. z
j

dn
= 1 means the nth agent state in the dth data

segment is classified into the jth group in this segment. Similarly,

c
li
dj

= 1 means the jth group in the dth data segment is assigned

to the ith component in cluster l. Finally, hk
li

= 1 means the ith
component in the lth cluster is assigned to the kth pattern. So the
complete conditionals for Multinomial nodes are:

P (zjdn = 1|πd, wdn , cd, ed, h, β)

∝ exp{logσj(πd) +

L∑

l=1

e
l
d

I∑

i=1

c
li
dj

K∑

k=1

h
k
li
logβk,wdn

}

(12)

P (clidj = 1|wd, zd, ed, h, ǫ, β)

∝ exp{logσi(ǫl) + e
l
d

N∑

n=1

z
j

dn

K∑

k=1

h
k
li
logβk,wdn

}
(13)

P (eld = 1|g, wd, zd, cd, h, β)

∝ exp{logσl(g) +

I∑

i=1

J∑

j=1

c
li
dj

N∑

n=1

z
j

dn

K∑

k=1

h
k
li
logβk,wdn

}

(14)

P (hk
li
= 1|v, w, z, e, c, β)

∝ exp{logσk(v) +
D∑

d=1

e
l
d

J∑

j=1

c
li
dj

N∑

n=1

z
j

dn
logβk,wdn

}

(15)

Aside from the Multinomial nodes, we also have Beta nodes:

P (vk|h,w) = Beta(1+

L∑

l=1

I∑

i=1

h
k
li
, ω+

L∑

l=1

I∑

i=1

∑

m>k

h
m
li
) (16)

P (gl|b, e) = Beta(1 +
D∑

d=1

e
l
d, b+

D∑

d=1

∑

m>l

e
l
d) (17)

P (ǫli |a, c) = Beta(1+

D∑

d=1

J∑

j=1

c
li
dj
, a+

D∑

d=1

J∑

j=1

∑

m>i

c
lm
dj

) (18)

P (πdj |α, zd) = Beta(1 +

N∑

n=1

z
j

dn
,

N∑

n=1

∑

m>j

z
m
dn) (19)

Finally, the path patterns are Dirichlet distributions:

P (βk|w, z, c, e, h, η)

= Dirichlet(η +

D∑

d=1

L∑

l=1

e
l
d

I∑

i=1

h
k
li

J∑

j=1

c
li
dj

N∑

n=1

z
j

dn
wdn)

(20)

Given the complete conditionals, now we can compute the hyper-
parameters. We first give the distributions of hyper-parameters of
the Multinomial distributions:

φ
j

dn
= E[zjdn] ∝ exp{logσj(πd)+

L∑

l=1

µ
l
d

I∑

i=1

ζ
li
dj

K∑

k=1

ε
k
li
E[logβk,wdn

]}
(21)

ζ
li
dj

= E[clidj] =

∝ exp{logσi(ǫl) + µ
l
d

N∑

n=1

φ
j

dn

K∑

k=1

ε
k
li
E[logβk,wdn

]}
(22)

µ
l
d = E[eld] ∝ exp{logσl(g)+

I∑

i=1

J∑

j=1

ζ
li
dj

N∑

n=1

φ
j

dn

K∑

k=1

ε
k
li
E[logβk,wdn

]}
(23)

ε
k
li
= E[hk

li
] ∝ exp{logσk(v)+

D∑

d=1

µ
l
d

J∑

j=1

ζ
li
dj

N∑

n=1

φ
j

dn
E[logβk,wdn

]}
(24)

(25)

We also give the distributions of hyper-parameters of the Beta dis-
tributions:

ok = (1 +

L∑

l=1

I∑

i=1

ε
k
li
, ω +

L∑

l=1

I∑

i=1

∑

m>k

ε
m
li
) (26)

pl = (1 +
D∑

d=1

µ
l
d, b+

D∑

d=1

∑

m>l

µ
l
d) (27)

qli = (1 +
D∑

d=1

J∑

j=1

ζ
li
dj
, a+

D∑

d=1

J∑

j=1

∑

m>i

ζ
lm
dj

) (28)

γdj = (1 +

N∑

n=1

φ
j

dn
, α+

N∑

n=1

∑

m>j

φ
m
dn) (29)

Finally, for the sake of completeness, we give the equations to cal-
culate E[logσi(v)] and E[logβ]:

E[logvk] = Ψ(o1k)−Ψ(o1k + o
2
k)

E[log(1− vk)] = Ψ(o2k)−Ψ(o1k + o
2
k)

E[logσk(v)] = E[logvk] +

k−1∑

l=1

E[log(1− vk)] (30)

E[logβkv] = Ψ(λkv)−Ψ(
∑

v′

λkv′) (31)

where Ψ is digamma function.

Algorithm 3: initLocal

Data: wd

Result: ε, ζd, φd

1 for l ∈ {1, . . . , L} do
2 for i ∈ {1, . . . , I} do

3 εkli ∝ exp{
∑N

n=1 E[logβk,wdn
]}, k ∈ {1, . . . ,K};

4 end

5 end
6 for l ∈ {1, . . . , L} do

7 µl
d ∝ exp{

∑I

i=1

∑K

k=1 ε
k
li

∑N

n=1 E[logβk,wdn
]};

8 end
9 for j ∈ {1, . . . , J} do

10 for l ∈ {1, . . . , L} do

11 ζ
li
dj

∝ exp{µl
d

∑K

k=1 ε
k
li

∑N

n=1 E[logβk,wdn
]},

i ∈ {1, . . . , I};

12 end

13 end
14 for n ∈ {1, . . . , N} do

15 φ
j

dn
∝ exp{

∑L

l=1 µ
l
d

∑I

i=1 ζ
li
dj

∑K

k=1 ε
k
li
E[logβk,wdn

]},

j ∈ {1, . . . , J};

16 end

3 Additional Patterns

3.1 Bi-directional Flows

Here, we show some data segments of the simulations done for our
Bi-directional flow example. They are shown in Figure 2.

3.2 Park

Trajectories and data segments of the park dataset is shown in Fig-
ure 3.

3.3 Train Station

3.3.1 Patterns learned by SVDHDP

Figure 4 shows some snapshots of the data segments of the train
station dataset. Some additional patterns for the train station dataset
shown in Figure 5.

3.3.2 Patterns learned by Gibbs Sampling

The top 32 patterns learned by Gibbs Sampling for the train station
dataset shown in Figure 6 and Figure 7.

Algorithm 4: opLocal

Data: wd, ε, ζd, φd, β, g
Result: ζd, φd, µd

1 while µd not converged do
2 while γd, ζd, φd not converged do
3 for j ∈ {1, . . . , J} do

4 γ1
dj

= 1 +
∑N

n=1 φ
j

dn
;

5 γ2
dj

= α +
∑N

n=1

∑
m>j

φm
dn

;

6 ζ
li
dj

∝ exp{E[logσl(g))] + E[logσi(ǫl)] +
∑N

n=1 φ
j

dn

∑K

k=1 ε
k
li
E[logβk,wdn

], l ∈ {1, . . . , J},

i ∈ {1, . . . , I} ;

7 end
8 for n ∈ {1, . . . , N} do

9 φ
j

dn
∝ exp{E[logσj(πd)] +∑L

l=1

∑I

i=1 ζ
li
dj

∑K

k=1 ε
k
li
E[logβk,wdn

]},

j ∈ {1,J};

10 end

11 end

12 µl
d ∝ exp{E[logσl(g)] +∑I

i=1

∑J

j=1 ζ
li
dj

∑N

n=1 φ
j

dn

∑K

k=1 ε
k
li
E[logβk,wdn

]},

l ∈ {1, . . . , L}
13 end

4 Similarity

4.1 Park Simulation

Here we show, in Figure 8, some data segments of the four simula-
tions we used in similarity computation in the park example.

4.2 Train Station Simulation

Here we show, in Figure 9, some data segments of the four simula-
tions we used in similarity computation in the train station example.
Learned patterns can be found in the main paper.

References

AMARI, S.-I. 1998. Natural Gradient Works Efficiently in Learn-
ing. Neural Comp. 10, 2, 251–276.

BISHOP, C. 2007. Pattern Recognition and Machine Learning.
Springer, New York.

MACEACHERN, S. 1999. Dependent Nonparametric Processes. In
ASA Bayesian Stat. Sci.

ROBBINS, H., AND MONRO, S. 1951. A Stochastic Approxima-
tion Method. Ann. Math. Statist. 22, 3, 400–407.

SETHURAMAN, J. 1994. A constructive definition of Dirichlet
priors. Statistica Sinica 4, 639–650.

Algorithm 5: updateCluster

Data: wd, εd, ζd, φd, v, β
Result: ε, p, q

1 Set initial step size ρt
′

l , set initial t′ = 0;
2 while p not converged do

3 Set initial step size ρ
t′o
i , set initial t′o = 0;

4 while q, ε not converged do
5 [ζd, φd] = opLocal(wd, εd, ζd, φd, p, q)(Algorithm 4);
6 for l ∈ {1, . . . , L} do
7 for i ∈ {1, . . . , I} do

8 q̂1li = 1 + D
∑J

j=1 ζ
li
dj

;

9 q̂2li = a + D
∑J

j=1

∑
m>i

ζlmdj ;

10 ε̂kli ∝ exp{E[logσk(v)] +

Dµl
d

∑J

j=1 ζ
li
dj

∑N

n=1 φ
j

dn
E[logβk,wdn

]},

k ∈ {1, . . . ,K};

11 end

12 end

13 t′o = t′o + 1;

14 update ρ
t′o
l with t′o (Equation 9). for l ∈ {1, . . . , L} do

15 for i ∈ {1, . . . , I} do

16 q
(1,t′)
li

= (1− ρt
′

l)q
(1,t′−1)
li

+ ρ
t′o
l q̂1li ;

17 q
(2,t′)
li

= (1− ρt
′

l)q
(2,t′−1)
li

+ ρ
t′o
l q̂2li ;

18 ε
(k,t′)
li

=(1− ρt
′

l)ε
(k,t′−1)
li

+ ρ
t′o
l ε̂kli ,

k ∈ {1, . . . ,K};

19 end

20 end

21 end

22 t′ = t′ + 1;

23 update ρt
′

l with t′ (Equation 9). for l ∈ {1, . . . , L} do

24 p̂1l = 1 + D
∑I

i=1 E(ǫli)
∑J

j=1 ζ
li
dj

;

25 p̂2l = b + D
∑I

i=1 E(ǫli)
∑J

j=1

∑
m>l

ζ
mi

dj
;

26 end
27 for l ∈ {1, . . . , L} do

28 p
(1,t′)
l = (1− ρt

′

l)p
(1,t′−1)
l + ρt

′

l p̂1l ;

29 p
(2,t′)
l = (1− ρt

′

l)p
(2,t′−1)
l + ρt

′

l p̂2l ;

30 end

31 end

Algorithm 6: updateGlobal

Data: wd, η, ε, µd, ζd, φd, ρt, λ
(t−1), o1,(t−1), o2,(t−1)

Result: λ(t), o1,(t), o2,(t)

1 for k ∈ {1, . . . ,K} do

2 λ̂kv = η + D
∑L

l=1 µ
l
d

∑I

i=1 ε
k
li

∑J

j=1 ζ
li
dj

∑N

n=1 φ
j

dn
wv

dn
;

3 ô1k = 1 +
∑L

l=1

∑I

i=1 ε
k
li

;

4 ô2k = ω +
∑L

l=1

∑I

i=1

∑
m>k

εmli ;

5 end

6 λ(t) = (1− ρt)λ
(t−1) + ρtλ̂;

7 o1,(t) = (1− ρt)o
1,(t−1) + ρtô1;

8 o2,(t) = (1− ρt)o
(2,t−1) + ρtô2;

9 return λ(t), o1,(t), o2,(t)

Figure 2: Data segment samples from PARIS07, ONDREJ10,
PETT09 and MOU09

Figure 3: a: All trajectories. The red dots are cameras. The blue
circles are exts/entrances. b-d:data segments. All data segments
span 5 seconds.

Figure 4: Two data segments in train station dataset.

Figure 5: Additional patterns learned by SVDHDP from train sta-
tion dataset.

Figure 6: Patterns learned Gibbs Sampling from train station
dataset.

Figure 7: Patterns learned Gibbs Sampling from train station
dataset.

Figure 8: Data segment samples for park simulation from
PARIS07, ONDREJ10, PETT09 and MOU09

Figure 9: Data segment samples for train station simulation from
PARIS07, ONDREJ10, PETT09 and MOU09

