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Abstract 

Projected global warming and population growth will reduce future water availability for 

agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop 

productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step 

towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model 

uncertainty and to estimate the relative changes and variability between models for simulated 

WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration 

efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop 

transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon 

dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential 

evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop 

transpiration was modelled and accounted for 50% of the total variability among models. The 

simulation results for the sensitivity to temperature indicated that crop WU will decline with 

increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, 

and in particularly due to uncertainties in simulating crop transpiration, were greater under 

conditions of increased temperatures and with high temperatures in combination with elevated 

atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop 

transpiration under higher temperature, needs to be improved and evaluated with field 

measurements before models can be used to simulate climate change impacts on future crop 

water demand. 

 

Keywords: multi-model simulation; transpiration efficiency; water use; uncertainty; sensitivity. 
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1. Introduction 

Globally, agriculture uses about 70% of all freshwater withdrawals for irrigation, although 

discrepancies exist in the quantified amount (Alcamo et al., 2007; Howell, 2001; Shen et al., 

2008). About 70% of the world’s wheat production comes from irrigated or high rainfall regions, 

with the majority of irrigation concentrated in developing countries with high population density, 

particularly large producers like China and India (Dixon et al., 2009; Reynolds and Braun, 2013). 

Projections that global food demand will double by 2050 highlight the challenges agriculture is 

facing with the need to produce more food with less land and less water (Foley et al., 2011; 

Godfray et al., 2010). Due to continued population growth, urbanization and industrialization, 

agriculture will increasingly compete with other sectors for freshwater (Godfray et al., 2010; 

Siebert and Doll, 2010; Tilman et al., 2011), and climate change may further limit water 

availability for irrigation in many cropping areas (Elliott et al., 2014). In rainfed agricultural 

environments, where crops rely on rainfall alone, future changes in rainfall patterns, temperature 

conditions, and increases in atmospheric carbon dioxide concentrations ([CO2]) will affect crop 

production (Challinor et al., 2014; Knox et al., 2012; Müller and Robertson, 2014; Rosenzweig 

and Parry, 1994; Rötter and Van de Geijn, 1999). 

Passioura (2006) discussed how the term “water productivity”, in the context of agriculture, 

has different meanings to different people in terms of significance and timescale of interest. 

Similarly, different aspects of the water used in agriculture are of interest to different actors and 

stakeholders. These aspects are often characterized in terms of crop water use (WU, known also 

as actual evapotranspiration), water use efficiency (WUE, defined in eq. 7), and transpiration 

efficiency (Teff, defined in eq. 8). For example, breeders use the ratio of agronomic performance 
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(e.g. grain yield) to cumulated WU (WUE) as a basis for identifying crop ideotypes with better 

productivity, agronomists use WUE as a benchmark for identifying management practices 

suitable for irrigated or rainfed cultivation, while farmers may be more interested in WUE from 

an economic point of view (e.g. the monetary outcome such as marketable yield, given a unit of 

input used to produce it) (Blum, 2005; Condon et al., 2002; Passioura, 2006; Passioura and 

Angus, 2010; Sadras and Angus, 2006; Semenov et al., 2014). The improvement of crop 

productivity through management and breeding for high WUE has been the subject of numerous 

studies (Condon et al., 2004; Condon et al., 2002; Sinclair and Muchow, 2001). Tools that 

extrapolate the effects of future temperature and [CO2] changes on how WU, WUE, and Teff are 

likely to respond can complement information from field/greenhouse-based experiments for 

developing guidance on suitable climate change adaptations.  

Crop simulation models (CSMs) are increasingly used to explore and assess climate change 

impacts on agriculture (Angulo et al., 2013; Osborne et al., 2013; White et al., 2011a). CSMs can 

account for multiple interactions among climate, crop, soil and management. CSMs differ in the 

way they simulate soil-plant-atmosphere processes and in the number of parameters and inputs 

required (Rötter et al., 2012; White et al., 2011a). Some CSMs have been developed, evaluated 

and applied in specific agro-environments, and these models don’t perform equally well across 

all environments.  

Single CSMs have usually been used to assess biophysical impacts due to climate change, but 

it is not possible to evaluate various sources of uncertainty with a single CSM (White et al., 

2011a). One method of studying uncertainties in climate models that has become common 

practice is to use ensembles of multiple global and regional climate models (Mearns et al., 1997; 

Tebaldi and Knutti, 2007). Until recently, model ensembles have seen limited use in modelling 
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climate change impact on agriculture (Rötter et al., 2011). Mean or median simulations from 

multi-model ensembles are usually more accurate than any individual model (Asseng et al., 

2013; Martre et al., 2015; Rötter et al., 2012). A further benefit of ensembles is that the 

variability among the simulations from an ensemble can be used to estimate the uncertainty 

range when using different CSMs. 

In this paper we used simulations from a recent multi-model study (Asseng et al., 2013) that 

focused solely on wheat grain yield, to explore simulations of crop WU, WUE, and Teff and their 

variability and sensitivity to temperature and [CO2] changes. 

The objectives of this study were to: i) quantify the contributions of sources of model 

uncertainty to calculations of crop transpiration, soil evaporation, and potential 

evapotranspiration; and to ii)  estimate the relative changes, the patterns and the variability 

between models for the simulated WU, WUE, Teff, yield, crop transpiration and soil evaporation 

at elevated temperatures and [CO2].  

 

2. Materials and methods 

2.1 Experimental sites 

Experimental data from four locations with contrasting growing season rainfall and 

temperature were used which were described in details in Asseng et al. (2013). The locations 

were Wageningen–NL (Groot et al., 1991), Balcarce – AR (Travasso et al., 1995), New Delhi – 

IN (Naveen, 1986), and Wongan Hills – AU (Asseng et al., 1998). In particular, the experimental 

sites were defined in terms of yield and season length as high yielding and long season in the 

NL, high/medium yielding and medium season in AR, irrigated and short season in IN, and low 
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yielding, rainfed, short season in AU (Asseng et al., 2013). These locations were chosen to 

represent four different wheat mega-environments, a concept used by wheat breeders for testing 

cultivars (Monfreda et al., 2008) that accounts for about 80% of the wheat-growing area of the 

world (Additional details were provided in Tables S1 and S2).  

The data were quality controlled and standardized using the AgMIP data protocols 

(Rosenzweig et al., 2011). The management information used at each site was obtained from the 

experimentalists. The crops were kept weed and disease-free. Daily weather data of solar 

radiation, maximum and minimum temperature and rainfall were recorded at weather stations on 

site, with the exception of IN, where solar radiation was obtained from the NASA POWER 

dataset (White et al., 2011b). At NL, the average daily wind speed at 2-meter height was 

measured. At the three other locations daily wind speed was estimated using the NASA Modern 

Era Retrospective-Analysis for Research and Applications (MERRA) (Rienecker et al., 2011). At 

all locations dew-point temperature was estimated using MERRA. Atmospheric [CO2] was 

assumed to be at 360 ppm for all the locations, in line with measured atmospheric [CO2] for the 

mid-point (year 1995) of the baseline climate period 1980-2009. 

Measured experimental field data used for this study were harvested grain dry matter yield (Y, 

t ha-1), in-season measurements of total aboveground biomass (dry matter) (AGB; t ha-1), leaf 

area index (LAI, m2 m-2), water use (WU, mm), and soil water content to maximum rooting 

depth (SWC, Vol%). For each location soil the soil layers were supplied to all modelling groups 

(Table S2). For each soil layer (i for up to n layers) and from the layer-specific SWC, the plant 

available soil water content to maximum rooting depth (PAW, mm) was calculated using the 

lower limit of water extraction for each soil layer (LL, Vol%) which is similar to the soil 

moisture content at wilting point, and the thickness of each soil layer (st, m) as follows: 
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ܹܣܲ ൌ  σ ݐݏ כ ሺܹܵܥ െ ሻୀଵܮܮ         [1] 

At NL, the SWC was measured down to 1 m, so the SWC and PAW were calculated assuming 

that the soil between 1 m and maximum rooting depth of 2 m was similar to the 0.6-1 m layers. 

At AR, the SWC was measured down to 1.2 m and the maximum rooting depth was 1.3 m. 

While, in IN and AU the SWC was measured up to 1.5 m and 2.1m, and the maximum rooting 

depth was 160 and 210, respectively.  

Soil water balance (SWB) was calculated for each simulation run using the simulated drainage 

(mm), runoff (mm), crop transpiration (mm), soil evaporation (mm), and rainfall (mm) for NL, 

AR, AU, while for IN irrigation was also considered (mm). To calculate the ǻSoil Water Change 

(SWB) the following equation was used: 

SWB = Rain + Irrigation – Drainage – Runoff – Transpiration – Evaporation   [2] 

 

2.2 Crop Models 

Based on a twenty-six member multi-model ensemble study conducted by Asseng et al. 

(2013), sixteen crop models which simulate crop transpiration (Ta) and soil evaporation (Es) as 

separate fluxes were selected for detailed analysis of water use simulations (for more detailed 

information on the simulated processes see Table S3). The models, which varied in complexity 

and functionalities, have all been described and used in modelling wheat crops. Additional 

details on modelling procedures were described in Asseng et al. (2013), for this study we used 

the models calibrated against phenology and yield. At the beginning of the study a questionnaire 

was sent to the modelers to provide information on which type of ET0 was used in the crop 

models. Information on different implementations of the ET0 calculation in the 16 wheat models 
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using the Penman (P; Penman, 1948), Penman-Monteith (PM; Allen et al., 1998) or Priestley-

Taylor (PT; Priestly and Taylor, 1972) equations (Tab. S3). Analysis of variance (ANOVA) for 

unbalanced designs was used to test the differences among the three ET0 formulas at each 

location.  

 

2.4 Data analysis 

The partitioning of uncertainty of simulated WU was made to explore which component was 

responsible for most of the variability. WU can be expressed as follows, based on simulated 

cumulative ȈET0, ȈTa and ȈEs: 

 WU ൌ σ ܶܧ כ ቂ σ ா௦σ ா்  σ ்σ ா்ቃ        [3] 

The variance is calculated as follows: 

ሺWUሻݎܸܽ ൌ ݎܸܽ ቀ σ ்σ ா்ቁ כ ሺσܧ  ሻଶܶܧ  ݎܸܽ ቀ σ ா௦σ ா்ቁ כ ሺσܧ  ሻଶܶܧ  ሺσݎܸܽ  ሻܶܧ כ ቂܧ ቀ σ ா௦σ ா்  ்σ ா்ቁቃଶ
    [4] 

where σ ܶܽ Ȁ σ was transpiration as a fraction of evaporative demand and σ ܶܧ ݏܧ Ȁ σ  was soil ܶܧ

evaporation as a fraction of evaporative demand. A way of quantifying the contribution of σ ܶܽ Ȁ σ σ ,ܶܧ ݏܧ Ȁ σ  and ȈET0 to the overall uncertainty was through the first-order ,ܶܧ

sensitivity coefficients (S1): 

ܵͳሺܶܽሻ ൌ ሺσݎܸܽ  ܶܽ Ȁ σ ሻܶܧ כ ሺσܧ   ሻʹ [5]ܶܧ

ܵͳሺݏܧሻ ൌ ሺσݎܸܽ  ݏܧ Ȁ σ ሻܶܧ כ ሺσܧ   ሻʹ [6]ܶܧ

ܵͳሺܶܧሻ ൌ ሺσݎܸܽ  ሻܶܧ כ ሾܧሺσ ݏܧ Ȁ σ ܶܧ  σ ܶܽ Ȁ σ  ሻሿʹ [7]ܶܧ
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If there are no interactions among terms, S1(x) is the fraction of overall variance contributed by 

factor x and the sum of the S1 can be somewhat larger or smaller than 1, depending on whether 

there were positive or negative correlations between terms. The larger the values of S1(x), the 

greater the contribution of factor x to the overall variance. From the sum of the first-order 

sensitivity coefficients, we calculated the percentage contribution of each term. 

Water use efficiency (WUE) was calculated as: 

WUE ൌ ஊ         [8] 

where Y is the simulated grain dry matter yield and ȈWU was the cumulative evapotranspiration 

calculated from sowing to harvest. Transpiration efficiency (Teff) on a grain yield basis was 

calculated following the definition of Angus and van Herwaarden (2001): 

ܶୣ  ൌ σ ்         [9] 

where ȈTa is the cumulative water transpired from sowing to harvest. 

 

2.5 Sensitivity analysis 

In addition to the simulations based on the measured experimental conditions, simulations 

were conducted using daily weather data for the period 1980-2010 for all the locations to create a 

baseline. A sensitivity analysis of the sixteen models to temperature and [CO2] was done using a 

partly-factorial design. Daily minimum and maximum temperature were increased by either 3°C 

(+3C) or 6°C (+6C) and [CO2] was increased in 90 ppm increments from a baseline to a 

maximum of 720 ppm. Wind speed and relative humidity were kept unchanged with the 

increased temperatures, so vapor pressure was re-calculated using the modified temperatures. In 
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order to understand the effects of climate factors alone on crop responses, soil and crop 

management were kept the same for all the simulations except that dates of irrigation and 

fertilization were adapted to the changed phenology.  

The relative changes in Y, WU, Ta, Es, WUE, and Teff were calculated as: 

ݎ ൌ ௬തೞೞೡǡೖି௬ത್ೌೞǡೖ௬ത್ೌೞǡೖ כ ͳͲͲ               [10] 

where ݎ is the predicted relative change with respect to the 30-year baseline according to model 

k, ݕത௦௦௧௩௧௬ǡ is any of the above variables averaged over the 30 years of climate sensitivity 

according to model k, and ݕത௦ǡ are the variables averaged over the 30 years of baseline 

climate according to model k.  

More detailed analysis of the multi-model intercomparison in terms of decomposition of the 

mean square error and other statistical indicators can be found in Martre et al. (2015). 

 

3. Results  

3.1 Decomposition of the variability 

The simulated growing season ET0 using the three methods (PM, PT, and P) ranged from 786 

mm for AU to 483 mm for the NL (Fig. 1a). Total season ET0 values calculated by the three 

methods differed at each location (P < 0.05; Fig. 1a). 

When the uncertainty of simulated WU was partitioned between Ta, Es, and ET0, and 

following equations [2] to [6], the first-order sensitivity coefficient S1(Ta) contributed the most 

to the variability in WU among models (Fig. 1b-d). For the single year dataset the term S1(Ta) 

was 46% of the variability, S1(Es) was 30%, and (ET0) was 24% (Fig. 1b). For the simulations 
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averaged over the 30-year baseline, S1(Ta), S1(Es), and S1(ET0) were 51%, 28% and 21%, 

respectively (Fig. 1b). There was little change in the first order sensitivity coefficients as 

temperature increased. The S1(Ta),  S1(Es), and S1(ET0) values were 46, 37, and 18% at +3C 

and 50, 36 and 14% at +6C (Fig. 1c). Simulations with four [CO2] showed similar results with 

S1(Ta) ranging between 53 and 54% (Fig. 1d). 

 

3.2 Observed and simulated data  

The daily patterns of growing season rainfall, observed and simulated PAW, ET0, LAI, Es, 

Ta, WU, and AGB are shown for NL, AR, IN, and AU in Figs. 2-5, respectively. The four 

wheat-growing locations differed in terms of the evaporative demand of the atmosphere, soil 

conditions, and the temporal variability of growing season rainfall and temperature (Figs. 2-5). 

For example, at AU rainfall occurred frequently throughout the season with occasional days of 

heavy rainfall in spring and summer (Fig. 5a). In contrast, there was no rainfall at the IN site 

(Fig. 4a). NL and AR had frequent heavy rainfall during the growing season (Figs. 2a and 3a). 

The in-season observed values for the plant available soil water, aboveground biomass, water 

use, and LAI were within the range of the simulations in NL, AR, and AU (Figs. 2,3, and 5). 

There were some discrepancies between observed and simulated values in IN for the LAI, PAW 

and WU (Fig. 4).  

The end-of-season cumulative WU, WUE, Ta, Es, Teff, and Y for the single experimental year, 

and for the 30-year period from 1980 to 2009 are shown in Table 1. Simulated average values for 

WU was less variable than for WUE and Teff. The coefficient of variation (CV) across locations 

for the single experimental year varied between 14 and 23% for WU, and between 16 and 37% 
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for WUE. Average CV of simulated values varied between 20 and 33% for Ta, between 34 and 

73% for Es, and between 24 and 55% for Teff (Table 1).  

 

3.3 Crop simulation models sensitivity to average daily air temperature and atmospheric CO2 

concentration  

The average simulated WU, Y, Ta, Es, WUE, and Teff decreased with increased temperature for 

all four locations (Fig. 6). However, the variability of the models increased as temperature 

increased for all the variables (Fig. 6). The models showed higher uncertainties for Australia, 

where except for the simulated WU which had little variability. In Australia simulated Teff varied 

between -100 and +100% when temperature was increased by +6C (Fig. 6). 

Simulated average WU, Ta, and Es decreased with increasing [CO2] while Y, WUE, and Teff 

increased with increasing [CO2] at all locations (Fig. 7). The simulated relative changes to [CO2] 

showed less variability than temperature. This outcome seemed to be consistent across the 

models, with the exception of few outliers. At 720 compared to 360 ppm [CO2] in the four 

locations, the overall simulated values changed by -4% for WU, +31% for Y, -2% for Ta, -9% for 

Es, +38% for WUE, and +34% for Teff (Fig. 7). Only the variability of WUE and Teff was higher 

at 720 ppm than at 360 ppm, ranging between 0 and 100% changes at 720 ppm (Fig. 7). 

The respective effects of changing temperature and [CO2] interact in generating model 

outputs of the 16 crop models. For simulated WU, increasing [CO2] to 720 ppm does not offset 

its reduction caused by temperature increase (Figure 8). The effects of [CO2] in compensating 

temperature-induced losses of WUE and Teff were larger than for simulated WU (Fig. 8). For 
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example, with a 6°C increase, WUE increased if [CO2] was above 450 ppm in NL and IN, or 

above 550 ppm in AR and AU (Fig. 8).  

Of particular interest is the variability in the direction of change in simulated responses to 

increased temperature or [CO2]. It was studied by counting how many models showed similar 

trend; for example how many models simulated a decrease in WU at +6C, and how many 

simulated an increase in WU at +6C. Overall, with a 6°C increase across the four locations, 94% 

of the models computed that WU decreased, 83% that Ta decreased, 52% that Es decreased, 78% 

that WUE decreased, and 63% that Teff decreased (Fig. 6). Modelling the effect of 720 ppm CO2, 

69% of the models agreed that WU decreased, 97% that Y increased, 56% that Ta decreased, and 

83% that Es decreased. All models projected that WUE and Teff would increase (Fig. 7).   

The calculated SWB using eq. [2] showed that for both baseline and sensitivity to temperature 

and CO2 the NL had a higher variability among the models with respect to the other locations 

(Fig. 9). The variability among the different components of eq. [2] showed that transpiration (Ta) 

was the component having the higher variability followed by the drainage (Fig. 10). For 

example, in the NL the simulated transpiration varied between 100 and 500 mm for the baseline 

runs (No temperature changes) and drainage between 0 and 400 mm, for the upper and lower 

hinge representing the 25th and 75th percentile, respectively. At +6C the variability of simulated 

crop transpiration among models ranged between 10 and 540 mm while simulated drainage 

ranged between 0 and 350 mm (Fig. 10a).  

 

4. Discussion 
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In this study, most of the variability in simulated WU was due to model differences in ܶܽȀܶܧ 

and ݏܧȀܶܧ rather than the choice of the ET0 formula. This is true for the experimental years, the 

30-year baseline and for the simulations with increased temperature or CO2. While differences in 

the choice of the ET0 formula have been shown to be important (Kingston et al., 2009; McAfee, 

2013; McKenney and Rosenberg, 1993; Utset et al., 2004; Xu and Singh, 2002), studies focusing 

on the ET0 formula have not analyzed how the partitioning of ET0 between Es and Ta would 

influence the simulations of crop WU. Other studies have focused on the partitioning within the 

growing season of the Es and Ta only, showing that Es can account for 20% to 40% of WU 

(Kool et al., 2014; French and Sculz, 1984).  

Although the overall first order effect of ܶܽȀܶܧ accounted for 51% of the total of first order 

effects on WU for both different temperature and CO2 changes across the four locations, no 

experimental data were available to validate these aspects of the simulation. Differences among 

models in simulating rooting depth/distribution and soil water extraction by roots could be an 

important reason for differences in Ta estimation (Wu and Kersebaum, 2008).  

Understanding the partitioning of WU between crop transpiration and soil evaporation is 

critical because of its implications for agricultural, ecological, and hydrological studies. In 

addition, considering the variability in the simulation of PAW, and particularly of simulated LAI, 

the differences in ܶܽ Ȁܶܧ are not surprising because the water is transpired by crops through 

stomata that are on leaves.  

Given the variability of the simulated SWB, and of the other components like drainage, 

further research into the reasons of variation of different sub-routines among models is 

necessary. The hardest part is to get detailed and accurate measurements of each sub-component 

in a single experiment.  
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The large variability between models indicates that there are major differences in the way the 

processes that affect water use are modeled. Differences among models in simulating soil water 

extraction by roots could be an important reason for differences in Ta estimation (Wu and 

Kersebaum, 2008). Variability in the simulation of PAW and LAI would have a direct effect on 

the differences in Ta/ETo. Since PAW was among the given soil parameters, causes are primarily 

related to differences in the models’ crop interfaces to soil (roots) and atmosphere (LAI). 

Models have been tested against the same limited set of CO2 response data, which are from 

open-top chamber or Free Air Carbon dioxide Enrichment Experiments (FACE) data. Models 

also typically include many processes that respond to temperature, while the response to CO2 is 

often lumped at a higher level of integration as discussed in details by Kersebaum and Nendel 

(2014). Some models used an empirical relationship between CO2 and radiation use efficiency 

while other models used the CO2 dependency of the photosynthesis light response curve 

(Tubiello and Ewert, 2002) or directly simulated stomatal conductance and rubisco-kinetics 

based photosynthesis.  

However, there is no clear relationship between model results and model’s structure because 

models are complex and many elements of structure interact with each other (Bassu et al., 2014; 

Li et al., 2015; Martre et al., 2015). Further research into the sources of variation of different 

sub-routines among models is necessary. 

Increased [CO2] in field crops has led to decreases in WU of 3 to 8%, and an increase in Y of 

8 to 31% (Hatfield et al., 2011; Kimball et al., 2002; Long et al., 2006; Manderscheid and 

Weigel, 2007; Tao and Zhang, 2013). The variability in the experimental results depends on crop 

management, CO2 concentrations used in the experiments, the type of experiment (e.g. open-top 

chambers or field experiments), and the different scaling methods used to compare a crop 
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response to CO2 concentrations across different experiments (Long, 2012). A meta-analysis of 

wheat studies found that increasing [CO2] from 400 to 800 ppm increases WUE by between 5 

and 38% (Hatfield et al., 2011; Kimball et al., 2002; Long et al., 2006; Manderscheid and 

Weigel, 2007; Tao and Zhang, 2013; Wang et al., 2013). The results of this study regarding the 

simulated response at the four locations for WU, Y, and WUE to [CO2] was in line with these 

studies. This concordance contrasts with claims that on average models overestimate [CO2] 

effects (Ewert et al., 2007; Long et al., 2006; Tubiello et al., 2007).  

Another important outcome of our study is to have traced the average pattern of WU, WUE, 

and Teff change with temperature and [CO2] increases. Despite variability, the majority of models 

had the same direction of change in Y, WU, WUE, and Teff in the sensitivity to temperature and 

[CO2]. This allowed us to draw conclusions about general crop responses when temperature and 

[CO2] both change. The interaction between increase in temperature and increase in [CO2] 

showed that, depending on the location, Y, WUE, and Teff reductions due to temperature can be 

largely offset by increasing [CO2]. The response of WUE to temperature is of particular interest 

since this response may be driving yield changes in many regions with limited rainfall and water 

for irrigation (Pirttioja et al., 2015). 

The changes in temperature used in this study (+3°C and +6°C) caused more model output 

variability than the changes in atmospheric [CO2] (from 360 ppm to 720 ppm at 90 ppm 

intervals). But, the crop models’ agreement related to the magnitude of changes is variable-

specific. For example, crop models showed good agreement in terms of relative change of 

simulated Y under temperature and elevated [CO2] changes, WU showed good agreement under 

temperature changes and lower agreement under [CO2], while WUE, and Teff  showed less 

agreement under temperature changes and high agreement under elevated [CO2] (Fig. 6 and 7). 
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5. Conclusion 

The largest uncertainty in simulated crop WU among CSMs is due to differences in how 

models simulate crop transpiration. The simulated response to increased temperature caused a 

decline in WU. The sixteen models showed greatest uncertainty of simulated WUE, and Teff at 

increased temperatures and with interactions between temperature and [CO2]. To improve the 

simulated impacts of climate change on crop water dynamics, crop transpiration in CSMs needs 

to be improved with detailed experimental data. 
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Table 1. Average (AV), standard deviation (STD), and coefficient of variability (CV%) for the 

Netherlands (NL), Argentina (AR), India (IN), and Australia (AU) for seven parameters using 

the 16 crop simulation models.  

Variable Unit AV  STD CV% AV  STD CV% AV  STD CV% AV  STD CV% 
1-Year 

 
NL AR IN AU 

ET0a (mm) 548.8 92.7 16.9 516.7 56.4 10.9 590.1 92.6 15.7 647.2 68.4 10.6 
WUb (mm) 445.4 100.3 22.5 371.3 51.7 13.9 301.9 49.9 16.5 234 38.4 16.4 
Ta

c (mm) 301.7 85.7 28.4 271.6 53.9 19.8 232.5 66.3 28.5 132.1 43.8 33.2 
Es

d (mm) 143.7 60.6 42.2 99.6 33.4 33.5 69.4 50.7 73.1 101.9 39.8 39.1 
Yield (t ha-1) 7.7 0.4 5.7 6.1 0.5 9 4 0.4 10.4 2.2 0.5 21.9 
WUEe (kg ha-1 mm-1) 18.1 4.1 22.6 16.6 2.6 15.6 13.8 2.6 19 9.9 3.7 37.3 
Teff

f (kg ha-1 mm-1) 29.2 16 55 23.3 5.6 24 19.3 7.4 38.4 18.9 8.2 43.2  
 Baseline (30-years) 

  
  

  
  

  
  

   
ET0 (mm) 556.7 88.3 15.9 539.6 55.4 10.3 564.6 68.7 12.2 692.7 68.8 9.9 
WU (mm) 449.9 99.3 22.1 365.9 58.9 16.1 329.4 52 15.8 258.6 49.7 19.2 
Ta (mm) 297.9 75.3 25.3 257 50.1 19.5 244.8 62.9 25.7 154.4 46.9 30.4 
Es (mm) 152 56.9 37.5 109 35.9 33 84.7 46.7 55.1 104.2 44.2 42.4 
Yield (t ha-1) 7.4 0.9 12.3 5.5 0.4 8 5 0.6 12.2 2.8 0.6 21.4 
WUE (kg ha-1 mm-1) 17.3 4.9 28.1 15.6 3.2 20.5 15.4 1.8 11.6 11.3 4.2 36.7 
Teff (kg ha-1 mm-1) 27.5 13.4 48.6 22.5 5.8 25.9 21.9 6.7 30.5 20.4 10.1 49.3 

aPotential evapotranspiration; bWater use; cCrop transpiration; dSoil evaporation; eWater use efficiency; fTranspiration efficiency. 
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Figure Caption 

Figure 1. Simulated potential reference evapotranspiration (ET0) and percentage of simulated 

water use variance. (a) Simulated seasonal ET0 for the 30-year baseline calculated from the 

average of those models using Penman-Monteith (PM, 7 models), Priestley-Taylor (PT, 6 

models), and Penman (P, 3 models) equations. Different letters indicate significant differences at 

 = 0.05. (b-d) Simulated proportion of variance for water use explained by ET0 (light grey), 

crop transpiration (Ta; black), and soil evaporation (Es; white) for (b) the experimental year and 

the 30-year baseline, (c) average daily air temperature increases, and (d) increasing atmospheric 

CO2 concentrations. 

Figure 2. Daily variability in plant water use and crop growth-related variables for an 

experimental site in the Netherlands (NL). (a) Daily growing season rainfall. (b-h) Average of 16 

crop models (black line) with the interval between the 20th and 80th percentiles (shaded grey area) 

for plant available water (PAW), daily potential evapotranspiration (ET0), leaf area index (LAI), 

soil evaporation (Es), plant transpiration (Ta), water use (WU), and aboveground biomass 

(AGB). Observed values (closed symbols) are shown for plant available soil water, LAI, and 

above-ground biomass. 

Figure 3. Daily variability in plant water use and crop growth-related variables for an 

experimental site in Argentina (AR). (a) Daily growing season rainfall. (b-h) Average of 16 crop 

models (black line) with the interval between the 20th and 80th percentiles (shaded grey area) for 

plant available water (PAW), daily potential evapotranspiration (ET0), leaf area index (LAI), soil 

evaporation (Es), plant transpiration (Ta), water use (WU), and aboveground biomass (AGB). 

Observed values (closed symbols) are shown for plant available soil water, LAI, and above-

ground biomass. 

Figure 4. Daily variability in plant water use and crop growth-related variables for an 

experimental site in India (IN). (a) Irrigation. (b-h) Average of 16 crop models (black line) with 

the interval between the 20th and 80th percentiles (shaded grey area) for plant available water 

(PAW), daily potential evapotranspiration (ET0), leaf area index (LAI), soil evaporation (Es), 

plant transpiration (Ta), water use (WU), and aboveground biomass (AGB). Observed values 

(closed symbols) are shown for plant available soil water, LAI, water use, and above-ground 

biomass. 
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Figure 5. Daily variability in plant water use and crop growth-related variables for an 

experimental site in Australia (AU). (a) Daily growing season rainfall. (b-h) Average of 16 crop 

models (black line) with the interval between the 20th and 80th percentiles (shaded grey area) for 

plant available water (PAW), daily potential evapotranspiration (ET0), leaf area index (LAI), soil 

evaporation (Es), plant transpiration (Ta), water use (WU), and aboveground biomass (AGB). 

Observed values (closed symbols) are shown for plant available soil water, water use, and above-

ground biomass. 

Figure 6. Effects of higher temperatures, respect to the 30 years historical data, on simulated 

water use related variables and grain yield. Boxplot of the relative change of multi-model 

simulations with increases in average daily air temperature of 3°C and 6°C for water use (WU), 

grain yield (Y), cumulative crop transpiration (Ta), cumulative soil evaporation (Es), water use 

efficiency (WUE), and transpiration efficiency (Teff), for experimental sites in the Netherlands 

(NL), Argentina (AR), India (IN), and Australia (AU). The percentage of individual models that 

predict the same trend is shown above each set of points.  

Figure 7. Effects of increases in atmospheric CO2 concentrations on simulated water use related 

variables and grain yield. Boxplot of the relative change of multi-model simulation with 

increased atmospheric CO2 concentrations for water use (WU), grain yield (Y), cumulative crop 

transpiration (Ta), cumulative soil evaporation (Es), water use efficiency (WUE), and 

transpiration efficiency (Teff), for experiment sites in the Netherlands (NL), Argentina (AR), 

India (IN), and Australia (AU). The percentage of individual models that predict the same trend 

as the multi-model mean is shown above each set of points. 

Figure 8. Interaction patterns between temperature and atmospheric CO2 concentration on 

simulated water use related variables and grain yield. Relative change in (a, f, k, and p) water use 

(WU), (b, g, l, and q) grain yield (Y), (c, h, m, and r) cumulative crop transpiration (Ta), (d, i, n, 

and s) water use efficiency (WUE), and (e, j, o, and t) transpiration efficiency (Teff) simulations 

for experimental sites in (a-e) the Netherlands, (f-j) Argentina, (k-o) India, and Australia (p-t) 

with increases in average daily air temperature versus atmospheric CO2 concentration. 

Figure 9. Boxplots of the simulated Soil Water Balance (SWB) calculated using eq. [2] for the 

Netherlands (NL), Argentina (AR), India (IN), and Australia (AU); (a) Effect of temperature on 

each of the model simulation of the baseline 30-years period (Base), the increases in average 
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daily air temperature of 3°C (T3) and 6°C (T6); (b) for the increases in atmospheric CO2 

concentrations.   

Figure 10. Boxplots of the simulated components of the Soil Water Balance (SWB) calculated 

using eq. [2]. Simulated Drainage (Drain), Runoff (Runoff), crop transpiration (Ta), and soil 

evaporation (Es) are shown for the Netherlands (NL), Argentina (AR), India (IN), and Australia 

(AU); (a) Effect of temperature on each of the model simulation of the baseline 30-years period 

(Base), the increases in average daily air temperature of 3°C (T3) and 6°C (T6); (b) for the 

increases in atmospheric CO2 concentrations.  
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SUPPLEMENTAL INFORMATION 

Table S1. Field experiments, crop management and climate characteristics of the four sites where models were 

calibrated modified after Asseng et al. (2013).  

 Experiment  
Location Wageningen Balcarce New Delhi Wongan Hills 
Country The Netherlands Argentina India Australia 
Latitudea 51.97 -37.5 28.38 -30.89 
Longitudea 5.63 -58.3 77.12 116.72 

Environment 
High-yielding 
long-season 

High/medium-
yielding 

medium-season 

Irrigated short-
season 

Low-yielding 
rain-fed short-

season 
 Soils 

Soil type Silty clay loam Clay loam Sandy loam Loamy sand 
Maximum root depth (cm) 200 130 160 210 
Plant available soil water content (mm to 
maximum rooting depth) 

354 205 121 125 

 Crop management 
Cultivar Arminda Oasis HD 2009 Gamenya 
Sowing date (day of year) 294 223 328 164 
Total applied N fertilizer (kg N ha-1) 160 120 120 50 
Total irrigation (mm) 0 0 383 0 

 Phenology 
Anthesis (day of year) 178 328 49 275 
Maturity (day of year) 213 363 93 321 
Growing Season Length (days) 284 140 130 157 

 Environmental Characteristics 
Experimental year 1982/1983 1992 1984/1985 1984 
Mean growing season air temperature (°C) 8.8 13.7 17.3 14.0 
Mean growing season rainfall (mm) 595 336 0 164 
30 years average 1981-2010 1981-2010 1981-2010 1981-2010 
Mean growing season air temperature (°C) 8.5 12.0 18.9 16.2 
Mean growing season rainfall (mm) 716 395 84 246 
aGeographical degrees and minutes – the latter expressed in decimals; the minus sign before latitude and 

longitude indicates South of equator and West of Greenwich (0) meridian. 
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Table S2. Soil depth, hydraulic limits, bulk density, organic carbon, and soil pH provided to the modelling group 

for each site.  

Location Depth LL DUL SAT  BD OC pH 

 
(cm) (cm3 cm-3) (cm3 cm-3) (cm3 cm-3) (g cm-3) (%) 

 the Netherlands 5 0.18 0.39 0.49 1.35 2.80 6 

 
10 0.18 0.39 0.49 1.35 2.80 6 

 
20 0.18 0.39 0.49 1.35 2.80 6 

 
30 0.18 0.39 0.49 1.35 2.80 6 

 
40 0.18 0.37 0.49 1.35 1.40 6 

 
60 0.20 0.37 0.49 1.35 1.40 6 

 
80 0.20 0.37 0.49 1.35 1.20 6 

 
100 0.20 0.37 0.49 1.35 1.20 6 

 
130 0.20 0.37 0.49 1.35 1.00 6 

 
200 0.20 0.37 0.49 1.35 1.00 6 

    Argentina 5 0.16 0.38 0.47 1.05 3.15 6.2 

 
20 0.17 0.35 0.45 1.10 3.30 5.9 

 
40 0.18 0.36 0.43 1.15 1.20 6.0 

 
60 0.18 0.38 0.48 1.30 0.70 6.4 

 
80 0.26 0.40 0.49 1.35 0.30 6.6 

 
100 0.14 0.30 0.40 1.30 0.10 6.5 

 
120 0.14 0.30 0.40 1.30 0.10 6.5 

India 15 0.11 0.17 0.37 1.56 0.45 7.9 

 
30 0.11 0.17 0.37 1.59 0.35 8.0 

 
60 0.11 0.18 0.37 1.50 0.31 8.0 

 
90 0.11 0.18 0.37 1.50 0.20 8.2 

 
120 0.12 0.19 0.37 1.55 0.19 8.5 

 
150 0.12 0.19 0.37 1.54 0.19 8.6 

 
180 0.12 0.19 0.37 1.58 0.19 8.6 

 Australia 5 0.07 0.13 0.35 1.31 1.23 4.70 

 
10 0.07 0.13 0.35 1.31 0.43 5.10 

 
20 0.08 0.14 0.35 1.45 0.37 5.10 

 
30 0.09 0.14 0.35 1.48 0.26 6.00 

 
40 0.09 0.15 0.35 1.51 0.24 6.00 

 
50 0.09 0.15 0.35 1.53 0.21 6.00 

 
70 0.09 0.15 0.35 1.50 0.20 6.00 

 
90 0.10 0.16 0.35 1.50 0.19 6.00 

 
120 0.10 0.16 0.35 1.50 0.18 6.00 

 
150 0.11 0.18 0.35 1.50 0.18 6.00 

 
180 0.12 0.18 0.35 1.50 0.18 6.00 

 
210 0.13 0.18 0.35 1.50 0.17 6.00 
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Table S3. Modeling approaches of 26 wheat simulation models used in this study, modified after Asseng et al. (2013). 
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APSIM-Nwheat S RUE Prt T/DL/V EXP W/N/A S V C PT CN/P(3)/B RUE/TE 7 R/Tx/Tn/Rd C P 

APSIM-wheat S RUE Prt/Gn/B T/DL/V/O O W/N/A E - C/R PT/PM CN/P(3)/B RUE/TE
/CLN 

7 R/Tx/Tn/Rd/e/W C P 

AquaCrop S TE HI/B T/DL/V/O EXP W/N/H E/S V/R C FAO 
PM 

none TE 2 R/Tx/ETo none P 

CropSyst S TE/RUE HI/B T/DL/V EXP W/N/H E R C/R PM N/P(4) TE/RUE 16 R/Tx/Tn/Rd/RH/W none P 

DSSAT-CROPSIM-CERES S RUE B/Gn T/DL/V EXP W/N E/S - C PT CN/P(4)/B RUE/TE 7 R/Tx/Tn/Rd/RH/W C P 
DSSAT-CROPSIM S RUE Prt T/DL/V LIN W/N E/S V C PT CN/P(4)/B RUE/TE 21 R/Tx/Tn/Rd/ none p 

EPIC wheat S RUE HI T/V EXP W/N/H E V C P/PM/P
T/HAR 

N/P(5)/B RUE/TE
/GY 

16 R/Tx/Tn/Rd/RH/W E P 

Expert-N – CERES S RUE B/Gn T/DL/V EXP W/N E/S - R PM CN/P(3)/B RUE 7 R/Tx/Tn/Rd/RH/W C P 

Expert-N – GECROS D P-R/TE Gn/Prt T/DL/V EXP W/N E/S - R PM CN/P(3)/B RUE/TE 10 R/Tx/Tn/Rd/RH/W S P 

Expert-N – SPASS D P-R Gn/Prt T/DL/V EXP W/N E/S - R PM CN/P(3)/B RUE 5 R/Tx/Tn/Rd/RH/W C/S P 

Expert-N – SUCROS D P-R Prt T EXP W/N E/S - R PM CN/P(3)/B RUE 2 R/Tx/Tn/Rd/RH/W S P 

FASSET D RUE HI/B T/DL EXP W/N E/S - C MAK CN/P(6)/B RUE 14 R/Tx/Tn/Rd none P 

GLAM-Wheat S RUE/TE B/HI T/DL/V LIN W/H E R C PT none RUE/TE 22 R/Tx/Tn/Td/Ta/e none G 

HERMES D P-R Prt T/DL/V/O EXP W/N/A E/S - C PM/TW
/PT 

N/P(2) RUE/F 6 R/Tx/Tn/Rd/e/RH/W S/C P 

InfoCrop D RUE Prt/Gn T/DL EXP W/N/H E V/R C PM/PT CN/P(2)/B RUE/TE 10 R/Tx/Tn/Rd/W/E S P 

LINTUL-4 D RUE Prt/B T/DL LIN W/N/A E - C P N/P(0)/-* RUE/TE 4 R/Tx/Tn/Rd/e/W L P 

LINTUL -FAST  D RUE Prt T/DL/V EXP W E  C P CN/P(3) RUE/TE 4 R/Tx/Tn/Rd/RH L P 

LPJmL S P-R HI_mws/B T/V EXP W E - C PT none F 3 R/Ta/Rd/Cl E G 

MCWLA-Wheat S P-R HI/B T/DL/V EXP W/T/H E V/ R R PM none F 7 R/Tx/Tn/Rd/e/W none G 
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MONICA S RUE Prt T/DL/V/O EXP W/N/A/H E V C PM CN/P(6)/B F 15 R/Tx/Tn/Rd/RH/W S/C P 

O’Leary-model S TE Gn/Prt T/DL SIG W/N/H E/S V C P N/P(3)/B TE 18 R/Tx/Tn/Rd/RH/W none P 

Table A2. Continued 
SALUS S RUE Prt/HI T/DL/V EXP W/N/H E V C PT CN/P(3)/B

(2) 
RUE 18 R/Tx/Tn/Rd C P 

Sirius D RUE B/Prt T/DL/V EXP W/N E - C P/PT N/P(2) RUE 14 R/Tx/Tn/Rd/e/W  P 

SiriusQuality D RUE B/Prt T/DL/V EXP W/N S - C P/PT N/P(2) RUE 14 R/Tx/Tn/Rd/e/W I P 

STICS D RUE Gn/B T/DL/V/O SIG W/N/H E/S V/R C P/PT/S
W 

N/P(3)/B RUE/TE 15 R/Tx/Tn/Rd/e/W C P 

WOFOST D P-R Prt/B T/DL LIN W/N*  E/S - C P P(1) RUE/TE 3 R/Tx/Tn/Rd/e/W S G 

a S, simple approach (e.g. LAI); D, detailed approach (e.g. canopy layers). 
b RUE, radiation use efficiency approach; P-R, gross photosynthesis – respiration; TE, transpiration efficiency biomass growth. 
c HI, fixed harvest index; B, total (above-ground) biomass; Gn, number of grains; Prt, partitioning during reproductive stages; HI_mw, harvest index modified by 
water stress. 

d T, temperature; DL, photoperiod (day length); V, vernalization; O, other water/nutrient stress effects considered. 
e LIN, linear, EXP, exponential, SIG, sigmoidal, Call, carbon allocation; O, other approaches. 
f W, water limitation; N, nitrogen limitation; A, aeration deficit stress; H, heat stress. 
g E, actual to potential evapotranspiration ratio; S, soil available water in root zone. 
h V, vegetative organ (source); R, reproductive organ (sink). 
i C, capacity approach; R, Richards approach. 
j P, Penman; PM, Penman-Monteith; PT, Priestley –Taylor; TW, Turc-Wendling; MAK, Makkink; HAR, Hargreaves; SW, Shuttleworth and Wallace (resistive 
model), (“bold” indicates approached used during the study). 

kCN, CN model; N, N model; P(x), x number of organic matter pools; B, microbial biomass pool. 
l RUE, radiation use efficiency; TE, transpiration efficiency; GY, grain yield; CLN, critical leaf N concentration; F, Farquhar model. 
m Cl, cloudiness; R, rainfall; Tx, maximum daily temperature; Tn, minimum daily temperature; Ta, average daily temperature; Td, dew point temperature; Rd, 
radiation; e, vapor pressure; RH, relative humidity; W, wind speed. 

n C, CERES; L, LINTUL; E, EPIC; S, SUCROS; I, Sirius. 
o P, point model; G, global or regional model (regarding the main purpose of model). 
* nitrogen-limited yields can be calculated for given soil nitrogen supply and N fertilizer applied, but model has no N simulation routines. 

 

 


