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On partial derivatives

of multivariate Bernstein polynomials∗

A. Yu. Veretennikov†, E. V. Veretennikova‡

October 16, 2016

Abstract

It is shown that Bernstein polynomials for a multivariate function converge to

this function along with partial derivatives provided that the latter derivatives

exist and are continuous. This result may be useful in some issues of stochastic

calculus.

1 Introduction

Widely known is the proof of the polynomial Weierstrass theorem based on Bernstein
polynomials and on the Law of Large Numbers for Bernoulli trials proposed in [3].

This method is applicable for the approximation of multivariate functions, too.
In the literature it was noted that for a univariate function, Bernstein polynomials
approximate this function along with its derivatives assuming that they exist, see
for example [4, 5]. It turned out that this observation about an approximation
along with derivatives holds true for multivariate functions as well; however, the
authors were unable to find an exact reference and this was the reason for writing
the present paper. In particular, this property is very useful in one of the proofs of
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multi-dimensional Ito’s formula, which formula is the main tool in stochastic analysis(
cf. [6, Theorem 10.4]

)
.

The latter proof starts with a verification of Ito’s formula for the products; then it
is extended by induction from linear functions to arbitrary polynomials and finally to
all functions with two continuous and bounded derivatives; this approach essentially
follows the lines of one of the proofs of the Weierstrass theorem

(
cf. [16, ch.XVI,

§ 4]
)
. It is essential that not only the function itself, but also its derivatives up to

the second order were approximated on any compact. The latter requirement makes
this version of the Weierstrass theorem a bit non-standard. At least, the majority of
textbooks

(
cf. [16, 11]

)
where approximations by polynomials are discussed, usually

focus on functions themselves and not on their derivatives.
In the univariate case this nuance is not important because we can approximate

the n-th order derivative and then integrate it n times. But in the multivariate
case this trick does not help because integrals may depend on the paths. In [6] the
property of approximation of a function along with its derivatives is simply claimed
as widely known. The authors found it interesting to inspect whether celebrated
Bernstein polynomials, which gave rise to a notable branch of approximation theory(
cf. [9]

)
admit this property. The paper [14] presents briefly the main result and the

idea of approximation of partial derivatives in the case of d = 2. In this paper a full
proof of this fact in the general case of d ≥ 2 is provided. The case d = 1 is briefly
presented in the next paragraph for the sake of completeness.

This paper consists of five sections. The first is Introduction. In the second
some classical theorems and well-known generalizations in one-dimensional case are
recalled. The third contains the main results about multivariate Bernstein polyno-
mial derivatives convergence. The section 4 and 5 present the proofs of an auxiliary
lemma and of the main results, correspondingly.

2 The case d = 1

For any function f on [0, 1], approximating Bernstein polynomials are given by the
formula

Bn(f ; x) :=
n∑

j=0

f

(
j

n

)
Cj

nx
j(1− x)n−j, 0 ≤ x ≤ 1.

Theorem 1 (Bernstein) If f ∈ C([0, 1]), then Bn(f ; x) → f (x), n → ∞ and this
convergence is uniform [0, 1].

See [3], and some generalisations in [12]. The following similar result holds true for
the derivatives.
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Theorem 2 If f ∈ Ck([0, 1]), then B
(k)
n (f ; x) → f (k)(x), n → ∞ and convergence

is uniform on [0, 1].

The proof of the Theorem 2 see, e.g., in [8, 7]; the result was established by
I. N. Chlodovsky [4].

(
The latter reference [4] gives only the title of his talk at the

All-Unions Mathematical congress; the texts of most talks have not been published.
According to [13, Chapter 1], since then the result of the Theorem 2 became known
in the literature. However, the issue of correct references is a bit unclear.

)
There are

various bounds of convergence rate under additional assumptions about smoothness
or without them

(
cf. [15, 5, 10] et al.

)
, but they are not the goal of this paper. The

following identity for derivative will be useful in the sequel
(
cf., eg., [8, 7]

)
:

B′
n(f ; x) =

n−1∑

j=0

n∆1/nf

(
j

n

)
Cj

n−1x
j(1− x)n−1−j, (1)

where

∆zf

(
j

n

)
:= f

(
j

n
+ z

)
− f

(
j

n

)
, z ∈ R. (2)

Later for a multi-dimensional case we will use a more detailed notation ∆z,xi , which
emphasises that the increment corresponds to the variable xi; for a fixed z = 1/n we
will use a short notation ∆(xi). By induction the representation of the derivative of
order k follows:

B(k)
n (f ; x) =

n!

(n− k)!

n−k∑

j=0

∆k
1/nf

(
j

n

)
Cj

n−kx
j(1− x)n−k−j, (3)

where ∆k
z is defined also by induction as the operator ∆z applied k times. For

example for k = 2 we have,

∆2
zf(x) = ∆z

(
∆zf(x)

)
= f(x+ 2z)− 2f(x+ z) + f(x).

Note that the latter expression is one of the versions of a non-normalized finite
difference Laplacian for the one-dimensional case. Further, since nk∆k

1/nf(x) ⇉

f (k)(x)
n!

(n− k)!
/nk → 1, n → ∞, under any fixed k, then by virtue of (3) and due

to the main calculus in the proof of the Theorem 1 based on the law of large numbers
in the Bernoulli trials scheme with probability of success x (we recall that x ∈ [0, 1]),
the proof of convergence for the derivatives follows immediately, of course, under
the assumption f ∈ Ck(R). It should be noted that all convergences are uniform
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on [0, 1]. We do not show here the details of this well-known calculation
(
cf. [8,

Theorem 1.8.1] in the case k = 1
)
as for the main result of this paper in the multi-

dimensional case they all will be given in the next sections. Yet we want to point
out the development of the key Bernstein’s idea, which suggests to reformulate (1)
and (3), respectively, as

B′
n(f ; x) = En∆1/nf

(
n−1ξn−1(x)

)

and

B(k)
n (f ; x) = E

n!

(n− k)!
∆k

1/nf
(
n−1ξn−k(x)

)
,

where ξn(x) denotes a random variable with Binomial distribution Bin(n, x). These
representations clearly explain why in the case d = 1 the left hand sides of (1) and
(3) tend by the law of large numbers to their limits f ′(x) and f (k)(x), respectively,
under the assumptions of the Theorem 2.

3 The case d ≥ 2 — Main Result

Now let us consider d ≥ 2, x ∈ R
d, x = (x1, . . . , xd). There are at least two ways to

define Bernstein polynomials in the multi-dimensional case (actually, there are many
ways and we will describe them later): either on a simplex S

d := ((x1, x2, . . . , xd) :
0 ≤ x1, x2, . . . , xd, ‖x‖ ≤ 1) by the formula

Bn(f ; x) :=
∑

0≤j1+j2+···+jd≤n,
j1,j2,...,jd≥0

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj

nx
j1
1 x

j2
2 · · · xjd

d

(
1− ‖x‖

)n−|j|
, (4)

where j = (j1, j2, . . . , jd), and where a vector x norm, and the “modulus” of a multi-
index j, and the polynomial coefficient (“n choose j”) Cj

n are defined as ‖x‖ =
|x1|+ |x2|+ · · ·+ |xd|, |j| = j1 + j2 + · · ·+ jd, and

Cj
n ≡ Cj1,...,jd

n =
n!

j1!j2! . . . jd!
(
n− |j|

)
!
;

or on a “d-dimensional square” (cube, etc.) by a formula similar to but different
from (4),

B̃n(f ; x) :=
n∑

j1,j2,...,jd=0

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n Cj2
n · · ·Cjd

n

× xj1
1 (1− x1)

n−j1xj2
2 (1− x2)

n−j2 · · · xjd
d (1− xd)

n−jd . (5)
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Note that the degrees of the polynomials Bn and B̃n are different. The formulae
(4) and (5) allow probabilistic representation

Bn(f ; x) := Ef
(
n−1ηn(x)

)
(6)

and
B̃n(f ; x) := Ef

(
n−1ξn(x)

)
, (7)

where the distribution of the random vector ηn(x) of dimension d is the projection
onto the first d coordinates of the polynomial (multinomial) distribution of dimension
d+1 with parameters n (the number of trials) and the vector of “success probabilities”
(x1, . . . , xd, xd+1), which satisfy conditions xi ≥ 0 (i = 1, . . . , d+1) and

∑d+1
i=1 xi = 1,

while the random vector ξn(x) = (ξ1n, . . . , ξ
d
n) consists of independent components

distributed binomially Bin(n, xi) each.
Due to the law of large numbers for Bernoulli trials for each coordinate we have,

1

n
ξn(x) → x, n → ∞, (8)

both in probability and almost surely. For the sequence (ηn) the law of large numbers
also holds true:

1

n
ηn(x) → x, n → ∞, (9)

in probability and almost surely. The easiest way to show this is to use the law of
large numbers for each coordinate, which follows directly from the one-dimensional
version of this theorem for the binomial distribution.

It apparently does not help too much to analyse partial derivatives where certain
series still need to be treated. However, after the differentiation of these series we
will get expressions, which admit representations via expectations of finite differences
for the function f with random vector arguments distributed either according to a
polynomial law – or, more precisely, its projection – or as a direct product of binomial
distributions, which will eventually lead to the desired result.

Remark 1 Other variants are possible, such as a combination of a “cube” and of a
simplex for different variables. For example, in case of d = d1 + d2 and d1 ≥ 2 one
more version of multivariate Bernstein polynomials has a form,
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B̂n(f ; x) :=
∑

0≤j1+j2+···+jd1≤n,
j1,j2,...,jd1≥0

f

(
j1
n
, . . . ,

jd1
n
,
jd1+1

n
, . . . ,

jd1+d2

n

)

× C
j1,...,jd1
n xj1

1 x
j2
2 · · · x

jd1
d1

(
1−

d1∑

i=1

xi

)n−j1−···−jd1

× C
jd1+1

n · · ·C
jd1+d2
n x

jd1+1

d1+1 (1−x1)
n−jd1+1 · · · x

jd1+d2

d1+d2
(1−xd1+d2)

n−jd1+d2 ,

where x = (x1, . . . , xd1 , xd1+1, . . . , xd1+d2), all xi are non-negative, x1 + · · ·+ xd1 ≤ 1,
and 0 ≤ xd1+1 ≤ 1, . . . , 0 ≤ xd1+d2 ≤ 1.

It is quite likely that for such representations analogous results about convergence
of polynomials and their derivatives may be established.

So, a multivariate analogue of the Theorem 1 for the polynomials Bn and B̃n may
be formulated as follows.

Theorem 3 If f ∈ C(Rd), then

B̃n(f ; x) → f(x), x ∈ K
d,

Bn(f ; x) → f(x), x ∈ S
d,

as n → ∞. All convergences are uniform on K
d and S

d, respectively.

Note that any continuous function on S
d or on K

d can be extended to a continuous
function on R

d (of course, not uniquely). Convergence of both versions towards a
continuous function f on the simplex or on the d-dimensional square/cube follows
from the (multivariate) law of large numbers: in the second case it is applied to a
sequence of independent and equally distributed random vectors with independent
components, while in the first case – with dependent components. The proof can be
easily found in may papers and textbooks

(
cf. e.g., [5]

)
and we omit it.

To state the main result, let us introduce the following notations: :

1. m — a natural number;

2. k = (k1, k2, . . . , kd) — a multi-index;

3. Ck with a multi-index k k denotes the class of functions that possess a mixed
partial derivative of order k = (k1, k2, . . . , kd), which is continuous.
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Recall that Cm(Rd)
(
Cm

b (Rd)
)
with m = 1, 2, . . . is a class of functions on R

d with all
well-defined mixed derivatives of order m, which are continuous (respectively, con-
tinuous and bounded). The notation f (m) stands for the set of all mixed derivatives
of the function f of order m.

Theorem 4 1. If m > 0, f ∈ Cm(Rd), then

B̃(m)
n (f ; x) → f (m)(x), x ∈ K

d,

B(m)
n (f ; x) → f (m)(x), x ∈ S

d,

as n → ∞, and all convergences are uniform on K
d and S

d, respectively.
2. If k = (k1, k2, . . . , kd) is a multi-index and f ∈ Ck(Rd), then

B̃(k)
n (f ; x) → f (k)(x), x ∈ K

d,

B(k)
n (f ; x) → f (k)(x), x ∈ S

d,

as n → ∞, and all convergences are uniform on K
d and S

d, respectively.

It is worth mentioning also the papers [1] and [2] devoted to asymptotic expan-
sions and Taylor’s expansions for Bernstein polynomials of two and many variables.
While being conceptually close, the results of the present paper do not follow di-
rectly from these papers, and we do not aim to get neither asymptotic nor Taylor’s
expansions here.

4 Auxiliary result

The following Lemma will be used in the proof of the main Theorem when a uniform
convergence of finite differences just under the condition of existence and continuity
of the limit expression is needed. While elementary, this Lemma is required for the
correctness of references and for a completeness of our presentation.

Let (z1, . . . , zd) ∈ R
d, and (x1, . . . , xd) ∈ R

d. Let

∆1/n,xi
f(x) := f(x1, . . . , xi−1, xi +

1

n
, xi+1, . . . , xd)

− f(x1, . . . , xi−1, xi, xi+1, . . . , xd),

∂kf(x1, . . . , xd) :=
∂|k|

∂k1
x1 . . . ∂

kd
xd

f(x1, . . . , xd).
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Lemma 1 For f ∈ Ck(Rd) with k = (k1, . . . , kd) and x = (x1, . . . , xd) the following
equality is valid

∆k1
z1,x1

. . .∆kd
zd,xd

f(x) =

∫ x1+z1

x1

dξ11

∫ ξ1
1
+z1

ξ1
1

dξ12 . . .

∫ ξ1
k1−1

+z1

ξ1
k1−1

dξ1k1

. . .

∫ xd+zd

xd

dξd1

∫ ξd
1
+zd

ξd
1

dξd2 . . .

∫ ξd
kd−1

+zd

ξd
kd−1

dξdkd∂
kf(ξ1k1 , . . . , ξ

d
kd
).

For example, for k1 = 0, integration over ξ11 , ξ
1
2 , etc. is just not performed, and

f(ξ1k1 , ξ
2
k2
, . . . , ξdkd) is treated as f(x1, ξ

2
k2
, . . . , ξdkd). In particular, if all ki = 0 then the

equality turns into the identity f(x) = f(x).
The equality for two variables x = (x1, x2) and k1 = k2 = 1 takes the form (for

the sake of simplicity we omit the lower indices in ξ11 , ξ
2
1):

∆z1,x1
∆z2,x2

f(x) =

∫ x1+z1

x1

dξ1
∫ x2+z2

x2

dξ2
∂2

∂x1∂x2

f(ξ1, ξ2).

The proof of the Lemma follows straightforward from the (one-dimensional) first
theorem of the calculus (also known as Newton-Leibniz formula) by induction.

5 Proof of the Theorem 4

0. It suffices to prove only the second part of the Theorem 4 because the first part
follows immediately due to the identity

Cm(Rd) =
⋂

k: |k|≤m

Ck(Rd).

1. Analogues of the formulae (1) and (2) in the multivariate case for B̃n for the
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multi-index k = (k1, . . . , kd) could be written as

∂|k|

∂xk
B̃n(f ; x) ≡

∂|k|

∂xk1
1 . . . ∂xkd

d

B̃n(f ; x)

=

(
n . . . (n− k1 + 1)× n . . . (n− k2 + 1)× · · · × n . . . (n− kd + 1)

n|k|

)

×
∑

0≤ji≤n−ki,
i=1,2,...,d

n|k|∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n−k1
Cj2

n−k2
· · ·Cjd

n−kd

× xj1
1 (1− x1)

n−k1−j1xj2
2 (1− x2)

n−k2−j2 · · · xjd
d (1− xd)

n−kd−jd , (10)

where
∂|k|

∂xk
:=

∂|k|

∂xk1
1 . . . ∂xkd

d

, ∆k :=
d∏

i=1

∆ki
(xi)

,

and where ∆(xi) means ∆(xi) ≡ ∆1/n,xi
.

The usage of the notation ∆k with a multi-index k is correct because all operators
∆(xi) commute. Indeed, let us denote (assume i < j for the sake of definiteness)

xi,j =
(
x1, . . . , xi−1, xi + 1/n, xi+1, . . . , xj−1, xj + 1/n, . . . , xd

)
,

xi =
(
x1, . . . , xi−1, xi + 1/n, xi+1, . . . , xd

)
,

xj =
(
x1, . . . , xj−1, xj + 1/n, . . . , xd

)
.

For i 6= j we get elementary identities:

∆(xi)

(
∆(xj)f(x)

)
= ∆(xi)

(
f(xj)− f(x)

)

= f(xi,j)− f(xi)−
(
f(xj)− f(x)

)

= f(xi,j)− f(xi)− f(xj) + f(x)

and similarly,

∆(xj)

(
∆(xi)f(x)

)
= ∆(xj)

(
f(xi)− f(x)

)

= f(xi,j)− f(xj)−
(
f(xi)− f(x)

)

= f(xi,j)− f(xi)− f(xj) + f(x).

9



Analogously to the representation (6), the equality (10) admits the following proba-
bilistic meaning:

∂|k|

∂xk
B̃n(f ; x) =

(
n . . . (n−k1+1)× n . . . (n−k2+1)× · · · × n . . . (n−kd+1)

n|k|

)

× En|k|∆kf(n−1ξn−k(x)); (11)

the definition of the random vector ξn(x) = (ξ1n, . . . , ξ
d
n) see in § 3).

2. Let us prove the equality (10) by induction. For k = (0, · · · , 0) (a multi-index
of order d) the desired equality (3) is equivalent to the definition of the polynomial
B̃n(f ; x); this will serve as the basis of induction. It should be noted that for several
variables (d in our case) induction can be carried in turn for the first variable up to
k1, then for the second one up to k2, and so on.

In other words, “double” induction (it can be also named multivariate) over each
of the variables xi, and then over the indices i = 1, . . . , d may be applied in our
situation. For the induction step, it actually suffices to verify that the formula (3)
remains valid when any component of the multi-index k = (k1, · · · , kd) increases by
one. For the sake of definiteness let us check the step ki 7→ ki + 1 for i = 1. Recall
that

B̃n(f ; x) :=
n∑

j1,j2,...,jd=0

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n Cj2
n · · ·Cjd

n

× xj1
1 (1− x1)

n−j1xj2
2 (1− x2)

n−j2 · · · xjd
d (1− xd)

n−jd .

Because of a certain clumsiness of the formulae and for the sake of clarity we
shall start with ki = 0 and then proceed to the general case. (The same approach
will be used for the polynomials Bn). We get,
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∂x1
B̃n(f ; x) = ∂x1

n∑

j1,j2,...,jd=0

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n Cj2
n · · ·Cjd

n

× xj1
1 (1−x1)

n−j1xj2
2 (1−x2)

n−j2 · · · xjd
d (1−xd)

n−jd

=
∑

0<j1≤n,
0≤j2,...,jd≤n

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n Cj2
n · · ·Cjd

n

× j1x
j1−1
1 (1−x1)

n−j1xj2
2 (1−x2)

n−j2 · · · xjd
d (1−xd)

n−jd

−
∑

0≤j1<n,
0≤j2,...,jd≤n

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n Cj2
n · · ·Cjd

n

× xj1
1 (n−j1)(1−x1)

n−j1−1xj2
2 (1−x2)

n−j2 · · · xjd
d (1−xd)

n−jd

=
∑

0≤j1<n,
0≤j2,...,jd≤n

f

(
j1 + 1

n
,
j2
n
, . . . ,

jd
n

)
Cj1+1

n Cj2
n · · ·Cjd

n

× (j1 + 1)xj1
1 (1−x1)

n−(j1+1)xj2
2 (1−x2)

n−j2 · · · xjd
d (1−xd)

n−jd

−
∑

0≤j1<n,
0≤j2,...,jd≤n

f

(
j1
n
,
j2
n
, · · · ,

jd
n

)
Cj1

n Cj2
n · · ·Cjd

n

× xj1
1 (n−j1)(1−x1)

n−j1−1xj2
2 (1−x2)

n−j2 · · · xjd
d (1−xd)

n−jd

=
∑

0≤j1<n,
0≤j2,...,jd≤n

n∆(x1)f

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n−1C
j2
n · · ·Cjd

n

× xj1
1 (1−x1)

n−1−j1xj2
2 (1−x2)

n−j2 · · · xjd
d (1−xd)

n−jd ,

due to the identities

(j1 + 1)Cj1+1
n =

(j1 + 1)n!

(j1 + 1)!
(
n− (j1 + 1)

)
!
=

n!

j1!(n− 1− j1)!
= nCj1

n−1,

(n− j1)C
j1
n =

(n− j1)n!

j1!(n− j1)!
=

n!

j1!(n− 1− j1)!
= nCj1

n−1.

Now, assuming that the formula (3) holds true for some k = (k1, . . . , kd), let
us differentiate it once more in variable x1 so as to get a similar formula for the

11



multi-index (k1 + 1, k2, . . . , kd). For the sake of brevity let us denote

αj1,j2,...,jd
k1,k2,...,kd

:= Cj1
n−k1

· · ·Cjd
n−kd

xj1
1 (1− x1)

n−k1−j1 · · · xjd
d (1− xd)

n−kd−jd ,

αj2,...,jd
k2,...,kd

:= Cj2
n−k2

· · ·Cjd
n−kd

xj2
2 (1− x2)

n−k2−j2 · · · xjd
d (1− xd)

n−kd−jd .

Note that since we are interested in the statement of the Theorem for n → ∞,
we can assume that all ki ≤ n

(
although, for ki > n we have ∂ki

xi
B̃n(x) = 0, and the

right side of (3) also equals zero by definition of the number of combinations with
negative n− ki

)
.

Derivative of a constant being equal to zero, we have,

12



∂

∂x1




∑

0≤ji≤n−ki,
i=1,...,d

∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)
αj1,...,jd
k1,...,kd




=
∂

∂x1




∑

0≤ji≤n−ki,
i=1,...,d

∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n−k1
xj1
1 (1−x1)

n−k1−j1αj2,...,jd
k2,...,kd




=
∂

∂x1

n−k1∑

j1=0

∑

0≤ji≤n−ki,
i=2,...,d

∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n−k1
xj1
1 (1−x1)

n−k1−j1αj2,...,jd
k2,...,kd

=

n−k1∑

j1=1

∑

0≤ji≤n−ki,
i=2,...,d

∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1

n−k1
j1x

j1−1
1 (1−x1)

n−k1−j1αj2,...,jd
k2,...,kd

−

n−k1−1∑

j1=0

∑

0≤ji≤n−ki,
i=2,...,d

∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1
n−k1

xj1
1 (n−k1−j1)(1−x1)

n−k1−j1−1αj2,...,jd
k2,...,kd

=
∑

0≤ji≤n−ki,
i=2,...,d

n−k1−1∑

j′
1
=0

∆kf

(
j′1+1

n
,
j2
n
, . . . ,

jd
n

)

× C
j′
1
+1

n−k1
(j′1+1)x

j′
1

1 (1−x1)
n−k1−j′

1
−1αj2,...,jd

k2,...,kd

−
∑

0≤ji≤n−ki,
i=2,...,d

n−k1−1∑

j1=0

∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1
n−k1

xj1
1 (n−k1−j1)(1−x1)

n−k1−j1−1αj2,...,jd
k2,...,kd

=
∑

0≤ji≤n−ki,
i=2,...,d

αj2,...,jd
k2,...,kd

(
n−k1−1∑

j1=0

∆kf

(
j1+1

n
,
j2
n
, . . . ,

jd
n

)

× Cj1+1
n−k1

(j1+1)xj1
1 (1−x1)

n−k1−j1−1−∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1
n−k1

xj1
1 (n−k1−j1)(1−x1)

n−k1−j1−1

)

=
∑

0≤ji≤n−ki,
i=2,...,d

αj2,...,jd
k2,...,kd




n−k1−1∑

j1=0

(n−k1)C
j1
n−(k1+1)x

j1
1 (1−x1)

n−(k1+1)−j1

×

(
∆kf

(
j1+1

n
,
j2
n
, . . . ,

jd
n

)
−∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

))


≡
∑

0≤ji≤n−ki,
i=2,...,d

αj2,...,jd
k2,...,kd

n−k1−1∑

j1=0

(n−k1)

j j

(
j1 j2 jd

)

13



as required. We have used the identities

Cj1+1
n−k1

(j1 + 1) =
(n− k1)!(j1 + 1)

(j1 + 1)!(n− k1 − j1 − 1)!

=
(n− k1)(n− k1 − 1)!

j1!(n− k1 − j1 − 1)!
= (n− k1)C

j1
n−(k1+1),

Cj1
n−k1

(n− k1 − j1) =
(n− k1 − j1)(n− k1)!

j1!(n− k1 − j1)!
= (n− k1)C

j1
n−(k1+1).

Hence, it follows by induction that the formula (3) holds true.

3. As for B̃n, it remains to note that for f ∈ Ck(Rd) due to the Lemma 1,
appropriately normalized finite differences are uniformly close to the corresponding
partial derivatives, that is,

n|k|∆kf(x) ⇉
∂|k|f

∂xk
(x) x ∈ K

d, n → ∞.

So, the statement of the Theorem for the polynomials B̃n follows from (11) and
from the law of large numbers (8).

4. The analogue of the formula (3) for the polynomials Bn has a form,

B(k)
n (f ; x) ≡

∂|k|

∂xk
Bn(f ; x) ≡

∂|k|

∂xk1
1 ∂xk2

2 . . . ∂xkd
d

Bn(f ; x)

=
∑

0≤j1+j2+···≤n−|k|

n!(
n− |k|

)
!
∆k1

(x1)
∆k2

(x2)
. . .∆kd

(xd)

× f

(
j1
n
,
j2
n
, . . . ,

jd
n

)
Cj1,j2,...,jd

n−|k| xj1
1 x

j2
2 · · · xjd

d

(
1−‖x‖

)n−|k|−|j|
. (12)

For the seequel, let us recall the following notation,

∆k1
(x1)

∆k2
(x2)

. . .∆kd
(xd)

= ∆k.

The formula (12) also has a simple probabilistic meaning. Similarly to the rep-
resentation (7) we write,

B(k)
n (f ; x) = E

n!(
n− |k|

)
!
∆kf

(
n−1ηn−k(x)

)
; (13)

for the definition of a random vector ηn(x) see § 3.
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5. For the proof by induction of the relations (12) and (13), let us note that the
basis of induction (k = 0) coincides with the definition of the polynomial Bn(f ; x);
as for the inductive step, for the sake of clarity of the following bulky computations
let us first differentiate once the function Bn(f ; x). we have,

∂x1
Bn(f ; x) :=

∑

0≤j1+j2+···+jd≤n,
j1,j2,...jd≥0

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj
n∂x1

xj1
1 x

j2
2 · · · xjd

d (1−x1−x2− · · · −xd)
n−|j|

=
∑

0≤j1+j2+···+jd≤n,
j1>0, j2,...,jd≥0

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj
nj1x

j1−1
1 xj2

2 · · · xjd
d (1−x1−x2− · · · −xd)

n−|j|

−
∑

0≤j1+j2+···+jd<n,
j1,j2,...,jd≥0

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj
n

(
n−|j|

)
xj1
1 x

j2
2 · · · xjd

d (1−x1−x2− · · · −xd)
n−|j|−1

=
∑

0≤j1+j2+···+jd≤n−1,
j1,j2,...,jd≥0

f

(
j1+1

n
,
j2
n
, . . . ,

jd
n

)

× Cj1+1,...,jd
n (j1+1)xj1

1 x
j2
2 · · · xjd

d (1−x1−x2− · · · −xd)
n−|j|

−
∑

0≤j1+j2+···+jd<n,
j1,j2,...,jd≥0

f

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1,...,jd
n

(
n−|j|

)
xj1
1 x

j2
2 · · · xjd

d (1−x1−x2− · · · −xd)
n−1−|j|

=
∑

0≤j1+j2+···+jd<n,
j1,j2,...,jd≥0

n∆(x1)f

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1,...,jd
n−1 xj1

1 x
j2
2 · · · xjd

d (1−x1−x2− · · · −xd)
n−1−|j|,
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due to the identities

Cj1+1,j2,...,jd
n (j1 + 1) =

n!(j1 + 1)

(j1 + 1)!j2! . . .
= n

(n− 1)!

j1!j2! · · · jd!
= nCj1,j2,...,jd

n−1 ,

Cj1,j2,...,jd
n (n− j1 − · · · − jd) =

n!(n− j1 − · · · − jd)

j1!j2! · · ·
(
n− |j|

)
!

= nCj1,j2,...,jd
n−1 .

6. The “full” induction step: under the assumption that the formula (12) holds
true for some multi-index k = (k1, . . . , kd), let us differentiate this expression again,
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say, with respect to x1. We get,

∂x1
B(k)

n (f ; x) = ∂x1

∑

0≤j1+j2+···+jd≤n−|k|

n!(
n− |k|

)
!
∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1,j2,...,jd
n−|k| xj1

1 x
j2
2 · · ·

(
1−‖x‖

)n−|k|−|j|

=
∑

0≤j1+j2+···+jd≤n,
j1>0,j2,...,jd≥0

n!(
n− |k|

)
!
∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj
n−|k|j1x

j1−1
1 xj2

2 · · · xjd
d (1−x1−x2− · · · −xd)

n−|k|−|j|

−
∑

0≤j1+j2+···+jd<n,
j1,j2,...,jd≥0

n!(
n− |k|

)
!
∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj
n−|k|

(
n−|k|−|j|

)
xj1
1 x

j2
2 · · ·x

jd
d (1−x1−x2−· · ·−xd)

n−|k|−|j|−1

=
∑

0≤j1+j2+···+jd≤n−1,
j1,j2,...jd≥0

n!(
n− |k|

)
!
∆kf

(
j1 + 1

n
,
j2
n
, . . . ,

jd
n

)

× Cj1+1,...,jd
n−|k| (j1+1)xj1

1 x
j2
2 · · ·x

jd
d (1−x1−x2−· · ·−xd)

n−|k|−|j|

−
∑

0≤j1+j2+···+jd<n,
j1,j2,...jd≥0

n!(
n− |k|

)
!
∆kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1,...,jd
n−|k|

(
n−|k|−|j|

)
xj1
1 x

j2
2 · · ·x

jd
d (1−x1−x2−· · ·−xd)

n−|k|−1−|j|

=
∑

0≤j1+j2+···+jd<n,
j1,j2,...jd≥0

(
n− |k|

) n!(
n− |k|

)
!
∆(x1)∆

kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1,...,jd
n−|k|−1x

j1
1 x

j2
2 · · · xjd

d (1−x1−x2− · · · −xd)
n−|k|−1−|j|

=
∑

0≤j1+j2+···+jd<n,
j1,j2,...jd≥0

n!(
n− |k| − 1

)
!
∆(x1)∆

kf

(
j1
n
,
j2
n
, . . . ,

jd
n

)

× Cj1,...,jd
n−|k|−1x

j1
1 x

j2
2 · · · xjd

d (1−x1−x2− · · · −xd)
n−|k|−1−|j|,

by virtue of the identities
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Cj1+1,j2,...,jd
n−|k| (j1 + 1) =

(n− |k|)!(j1 + 1)

(j1 + 1)!j2! · · ·
(
n− |k| − |j| − 1

)
!

=
(
n− |k|

) (n− |k| − 1)!

j1!j2! · · ·
(
n− |k| − 1− |j|

)
!

=
(
n− |k|

)
Cj1,j2,...,jd

n−|k|−1 ,

Cj1,j2,...,jd
n−|k|

(
n−|k|−j1− · · · −jd

)
=

(
n− |k|

)
!
(
n− |k| − |j|

)

j1!j2! · · · , jd!
(
n− |k| − |j|

)
!

=
(
n− |k|

)
Cj1,j2,...,jd

n−|k|−1 .

Hence, by induction the formula (12) holds true along with (13).
7. Again having in mind how Bernstein’s method for the Theorem 1 was applied

in the proof of the Theorem 4 for the polynomials Bn, and similarly to what was
done earlier for B̃n, let us recall that for f ∈ Ck(Rd) the normalized finite differences
are uniformly close to the corresponding partial derivatives, namely,

n!(
n− |k|

)
!
∆kf(x) ⇉

∂|k|f

∂xk
(x), for x ∈ S

d, n → ∞

(cf. the Lemma 1). Hence statement of the Theorem for the polynomials Bn follows
from the law of large numbers (9) and from the representation (13).

The Theorem 4 is proved
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[2] Bernstein, S. N. Complement à l’article de E. Voronovskaja “Determination de
la forme asymptotique de l’approximation des fonctions par les polynômes de S.
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