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Abstract Severe geomagnetic disturbances can be hazardous for modern technological systems.
The reliable forecast of parameters related to the state of the magnetosphere can facilitate the mitigation
of adverse effects of space weather. This study is devoted to the modeling and forecasting of the
evolution of the Kp index related to global geomagnetic disturbances. Throughout this work the Nonlinear
Autoregressive with Exogenous inputs (NARX) methodology is applied. Two approaches are presented: (i) a
recursive sliding window approach and (ii) a direct approach. These two approaches are studied separately
and are then compared to evaluate their performances. It is shown that the direct approach outperforms
the recursive approach, but both tend to produce predictions slightly biased from the true values for low
and high disturbances.

1. Introduction

The operation of many modern technological systems is vulnerable to space weather disturbances. Severe
geomagnetic disturbances, such as magnetic storms, can have severe adverse effects on power grids, navi-
gation systems, and affect satellite drag. Forecasts of space weather hazards can assist reliable operation of
these technological systems. However, a physical model of the solar-terrestrial system that can be used to
forecast the evolution of the magnetosphere has not been developed yet, because of the complexity of the
dynamical processes involved.

The Kp index is one of the most widely used indices for quantifying geomagnetic activity. It stands for
planetarische Kennziffer, which means planetary index in German. Thomsen [2004] concluded that the Kp index
is a good measure of the strength of magnetospheric convection because of its dependence on the latitude
of the auroral current region. This index is computed by taking the weighted average of K indices at 13 ground
magnetic field observatories. The values of Kp range from 0 (very quiet) to 9 (very disturbed) in 28 discrete
steps, resulting in values of 0, 0+, 1−, 1, 1+, 2−, 2, 2+,… , 9 [Wing et al., 2005].

The Kp index is known to be correlated with solar wind observations [Newell et al., 2007; Elliott et al., 2013].
This has enabled the development of models that attempt to forecast Kp. The most popular models are based
on artificial neural networks, which are considered black-box models [Detman and Joselyn, 1999; Boberg et al.,
2000]. For instance, in Wing et al. [2005], three neural networks were trained with solar wind data and are now
used to nowcast Kp index, producing hourly and 4-hourly forecasts of the Kp, updated every 15 min. In Bala
and Reiff [2012], an improved neural network was trained using the Boyle index in order to generate 1, 3, and
6 h ahead predictions. The Liu Kp model consists of a neural network trained with autoregressive values of Kp
and solar wind data and is able to predict Kp values up to 3.5 h in advance [Liu et al., 2013]. A comparative study
between neural networks and support vector machines was done in Ji et al. [2013]. These authors found that
the best model is a neural network trained with the same inputs as the Liu Kp model. A probabilistic approach
was taken in Wang et al. [2015] where the Kp range is divided in four groups and 1268 models were compared
in terms of accuracy, reliability, discrimination capability, and forecast skill.

In general, there are two approaches for the modeling of magnetic disturbances. The first one consists of the
derivation of a mathematical model that contains comprehensive physical insight into all events and pro-
cesses that take part in space weather dynamics and disturbances [Wei et al., 2004a]. Such a model can then
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be used to analyze and forecast future events. Nevertheless, it is obvious that such a model is intractable to
obtain given the difficulty to fully describe the intrinsic mechanics. The second is a data-based modeling or
system identification approach. System identification is an interesting research area with important applica-
tions in science and engineering. It consists in finding a mathematical model from discrete-time observational
data in order to characterize the behavior of a system [Billings, 2013; Wei et al., 2004a].

Since the 1980s, several approaches have been developed in the nonlinear realm of system identification
given the fact that most real-world problems are nonlinear in nature and conventional linear modeling tech-
niques are not sufficient to characterize nonlinear processes of interest [Pope and Rayner, 1994; Billings, 2013].
One popular approach is the Nonlinear Autoregressive with Exogenous inputs (NARX) methodology, which
has been successfully used to identify nonlinear systems [Billings, 2013; Boaghe et al., 2001; Balikhin et al., 2011].
The NARX approach can detect an appropriate model structure and select the most important model terms
from a dictionary consisting of a great number of candidate model terms.

In recent years, several variants have been proposed that improve the performance of the original NARX
algorithm. Such variations include the use of more complex and flexible predefined functions such as wavelets
[Alexandridis and Zapranis, 2013; Billings and Wei, 2005a, 2005b], radial basis functions [Billings et al., 2007;
Wei et al., 2007, 2004a], and ridge basis functions [Wei et al., 2015], together with an improved search mech-
anism such as the common model structure selection [Wei and Billings, 2008a; Li et al., 2013, 2015], iterative
search [Guo et al., 2015a], incorporation of weak derivatives information [Guo et al., 2015b], and other depen-
dency metrics [Koller and Sahami, 1995; Billings and Wei, 2007; Wei and Billings, 2008b; Wang et al., 2013; Speed,
2011; Reshef et al., 2011; Székely et al., 2007; Székely and Rizzo, 2013; Piroddi and Spinelli, 2003; Ayala Solares
and Wei, 2015].

The NARX approach produces transparent and interpretable models in which the contribution of each model
term to the output signal can be evaluated. This methodology has been previously used to model space
weather phenomena. For example, it was used to model the evolution of energetic electron fluxes at geosta-
tionary orbit [Balikhin et al., 2011], to obtain the most influential coupling functions that affect the evolution
of the magnetosphere [Boynton et al., 2011], to predict the Dst index using multiresolution wavelet models
[Wei et al., 2004a], to build a multiscale radial basis function network to forecast the geomagnetic activity of the
Dst index [Wei et al., 2007], and to unravel the time-varying relationship between the solar wind and the SYM-H
index [Beharrell and Honary, 2016], among others. Furthermore, NARX models can be used to compute the
generalized frequency response functions in order to perform frequency domain analysis [Billings, 2013]. This
technique has been used previously to study the spectral properties of the Dst index dynamics [Balikhin et al.,
2001] and to identify types of nonlinearities involved in the energy storage process in the magnetosphere
[Boaghe et al., 2001].

In this paper we investigate the use of NARX models to forecast the Kp index. In particular, we are interested
in forecasts at four different horizons: 3, 6, 12, and 24 h ahead. To do so, we explore two approaches. The first
one consists of a recursive sliding window scheme in which we employ a window period of 6 months to train
a model and use it to forecast future values based on previous predictions. The second approach involves the
identification of a specific model for each horizon of interest using a fixed data set of 6 months.

This paper is organized as follows. Section 2 contains a brief summary of the nonlinear system identification
methodology, together with a discussion of the Orthogonal Forward Regression algorithm. In section 3 the
data set used for the analysis is described. The NARX recursive approach is developed in section 4, while
section 5 is dedicated to the direct approach. Section 6 compares both approaches. The work is concluded in
section 7.

2. Nonlinear System Identification

The aim of the system identification modeling approach is to find a model from observational data that can
capture as close as possible the relationship between a system input and output [Söderström and Stoica, 1989;
Billings, 2013]. Linear system identification has been a popular, widely used approach. Nevertheless, the high
complexity of most real-life systems compromises the linearity assumption [Pope and Rayner, 1994]. To over-
come this issue, several studies have been performed in the nonlinear realm [Billings, 2013]. In particular,
the Nonlinear Autoregressive with Exogenous inputs (NARX) methodology has become a powerful tool for
nonlinear system identification problems [Billings, 2013; Wei et al., 2004a, 2004b; Rashid et al., 2012].
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Model structure detection is a challenging task in dynamic system identification. This topic has been studied
extensively, and a vast amount of information can be found in the literature. Model structure detection has
been tackled using different methods, such as clustering [Aguirre and Jácôme, 1998; Feil et al., 2004], the Least
Absolute Shrinkage and Selection Operator [Kukreja et al., 2006; Qin et al., 2012], elastic nets [Zou and Hastie,
2005; Hong and Chen, 2012], genetic programming [Sette and Boullart, 2001; Madár et al., 2005], the Orthogo-
nal Forward Regression (OFR) using the Error Reduction Ratio (ERR) approach [Wei et al., 2004b], and the bag-
ging methodology [Ayala Solares and Wei, 2015]. The second step is parameter estimation, which is typically
performed using the traditional least squares method, gradient descent, and the Metropolis-Hastings
algorithm [Baldacchino et al., 2012; Teixeira and Aguirre, 2011]. The final step is model validation, for which
several authors have developed different approaches. In Billings and Voon [1986], a set of statistical correlation
tests has been developed that can be used for validation of a nonlinear input-output model.

2.1. Appropriate Model Term Selection
Consider the NARX model:

y(k) = f
(

y(k − 1),… , y
(

k − ny

)
, u(k − 1),… , u

(
k − nu

))
+ e(k) (1)

where f (⋅) is a function to be determined from data, u(k) and y(k) are the system input and output signal,
respectively, e(k) is system noise (with k = 1, 2,… ,N), and the maximum lags for the input and output signals
are nu and ny [Wei and Billings, 2008b]. Most approaches assume that the function f (⋅) can be approximated
by a linear combination of a predefined set of functions 𝜙i (𝝋(k)); therefore, equation (1) can be expressed in
a linear-in-the-parameters form

y(k) =
M∑

i=1

𝜃i𝜙i (𝝋(k)) + e(k) (2)

where 𝜃i are the coefficients to be estimated,𝜙i(𝝋(k)) are the predefined functions that depend on the regres-
sor vector 𝝋(k)=

[
y(k − 1),… , y

(
k − ny

)
, u(k − 1),… , u

(
k − nu

)]T
of past outputs and inputs, and M is the

number of functions in the set.

The most popular algorithm for NARX modeling is the Orthogonal Forward Regression (OFR) algorithm
[Guo et al., 2015a; Billings, 2013]. OFR is a stepwise algorithm [Billings et al., 1989], which follows a recursive-
partitioning procedure [Dietterich, 2002] to identify a parsimonious NARX model [Wei and Billings, 2008b;
Aguirre and Letellier, 2009]. One of the most commonly used NARX models is the polynomial NARX represen-
tation, where equation (2) can be written as

y(k) = 𝜃0 +
∑n

i1=1 𝜃i1
xi1
(k) +

∑n
i1=1

∑n
i2=i1

𝜃i1 i2
xi1
(k)xi2

(k) + · · ·
+
∑n

i1=1 · · ·
∑n

i𝓁=i𝓁−1
𝜃i1 i2…i𝓁

xi1
(k)xi2

(k)… xi𝓁
(k) + e(k)

(3)

where

xm(k) =
{

y(k − m) 1 ≤ m ≤ ny

u(k − m + ny) ny + 1 ≤ m ≤ n = ny + nu
(4)

and 𝓁 is the nonlinear degree of the model. A NARX model of order 𝓁 means that the order of each term in
the model is not higher than 𝓁. The total number of potential terms in a polynomial NARX model is given by

M =
(

n + 𝓁
𝓁

)
= (n + 𝓁)!

n! ⋅ 𝓁!
(5)

The OFR algorithm performs a stepwise regression procedure to identify the most significant model terms.
To achieve this, it uses the Error Reduction Ratio (ERR) index to measure the significance of each candidate
model term [Billings, 2013]. This index can be evaluated by calculating the normalized energy coefficient
C (x, y) between two associated vectors x and y [Billings and Wei, 2007]

C (x, y) =
(

xT y
)2

(
xT x

) (
yT y

) (6)
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Table 1. Data Set Variables

Variable Symbol Description

Input V Solar wind speed (km/s)

Bs Southward interplanetary magnetic field (nT)

VBs Southward interplanetary magnetic field [VBs = V ⋅ Bs∕1000]
p Solar wind pressure (nPa)√

p Square root of solar wind pressure

Output Kp Kp index (variable of interest)

In recent years, several variants of the algorithm have been proposed that modify the predefined functions,
the dependency metric, or the search mechanism in order to enhance its performance. In particular, the ERR
index only detects linear dependencies, so new metrics have been proposed to capture nonlinear dependen-
cies [Billings and Wei, 2007; Wei and Billings, 2008b], i.e., entropy, mutual information [Koller and Sahami, 1995;
Billings and Wei, 2007; Wei and Billings, 2008b; Wang et al., 2013], simulation error [Piroddi and Spinelli, 2003],
and distance correlation [Ayala Solares and Wei, 2015].

Most of these variants are able to obtain good one-step ahead predictions,

ŷ(k) = f
(

y(k − 1), y(k − 2),… , y
(

k − ny

)
, u(k − 1), u(k − 2),… , u

(
k − nu

))
(7)

However, because the NARX model (1) depends on past outputs, a more reliable way to check the validity
of the model is through the model-predicted output (MPO), which uses past predicted outputs to estimate
future ones and to provide details about the stability and predictability range of the model,

ŷ(k) = f
(

ŷ(k − 1), ŷ(k − 2),… , ŷ
(

k − ny

)
, u(k − 1), u(k − 2),… , u

(
k − nu

))
(8)

Figure 1. Histogram of the Kp index for year 2000. High Kp values of 5 to 9 are relatively rare.
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Figure 2. Comparison between the measured Kp index and predictions made for (a) 3, (b) 6, (c) 12, and (d) 24 h
ahead using the sliding window approach. The black line represents the ideal case when the prediction is equal to
the measured Kp index. The points and bars correspond to the means and one standard deviations of the predictions
made for each of the 28 Kp values.

In the literature, some authors have adapted the original OFR algorithm to optimize directly the MPO in
order to obtain a better long-term prediction. However, these modified versions tend to be computationally
expensive during the feature selection step, and a much better alternative is to use the iterative or ultraorthog-
onalization approach [Guo et al., 2015a, 2015b].

Furthermore, in many real applications, multiple step-ahead predictions are of interest. For an autonomous
system (e.g., a time series process without external input), the system output value at the current time instant
k, i.e., y(k), may be predicted using previous observations at time instants k−s, k−s−1, etc., and the predicted
value ŷ(k) is called the s-step ahead prediction. For an input-output system, the s-step ahead prediction ŷ(k)
is often estimated using previous output measurements y(k − s), y(k − s − 1), …, and previous input values
u(k − 1), u(k − 2), … , etc. So for an input-output system model, the s-step ahead prediction is defined with
respect to the system output; it is actually still one-step ahead prediction with respect to the system input.

3. Data Set Description

Every 3 h throughout the day, 13 ground-based magnetic field observatories located at geomagnetic latitudes
between 48∘ and 63∘ around the world record the largest magnetic change that their instruments measure.

Table 2. Evaluation Metrics for Each of the Four Horizons of Interest Obtained
With the Sliding Window Approach

Horizon RMSE 𝜌 PE

3 0.7935 0.8590 0.7359

6 0.9014 0.8159 0.6598

12 0.9513 0.7991 0.6225

24 0.9624 0.7972 0.6149
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Figure 3. Error time series for the four horizons of interest obtained with the sliding window approach.

This change is denoted as the K index, which is given on a quasi-logarithmic scale from 0 (<5 nT) to 9 (>500 nT)
[Boberg et al., 2000]. The average of these observations is known as the Kp index. This determines how dis-
turbed the Earth’s magnetosphere is on a scale that goes from 0 (very quiet) to 9 (very disturbed) in 28 discrete
steps, resulting in values of 0, 0+, 1−, 1, 1+, 2−, 2, 2+,… , 9 [Boberg et al., 2000; Wing et al., 2005] . In this paper,
these values are rescaled to be represented by the numbers 0, 0.3, 0.7, 1,… , 9.

In general, large Kp values can indicate a more active terrestrial magnetosphere due to a solar storm or a
sudden rearrangement of the Earth’s magnetosphere due to the solar wind.

The data sets used in this paper consist of the variables shown in Table 1. These were measured during the year
2000. The inputs are taken from the low-resolution OMNI data set, which consist of hourly average near-Earth
solar wind magnetic field and plasma data from several spacecraft in geocentric or L1 (Lagrange point) orbits.
The data period used for this study employed four spacecraft: IMP 8, WIND, Geotail, and ACE. The output is the
Kp index which, as mentioned before, is measured every 3 h. In order to match the time resolutions between
the input and output signals, the observed Kp values are interpolated to 1 h resolution by simply repeating
the last measured value during the next 2 h.

Given that the variable of interest is the Kp index, its distribution for year 2000 is shown in Figure 1. This
highlights that high values of Kp are rare, which makes their prediction a challenging task.

4. Sliding Window Models and Recursive Predictions

This approach uses a window of a fixed length to build a single model using the data within the window
frame as the training set. This model is used to make 3, 6, 12, and 24 h ahead predictions based on the
model-simulated values (i.e., the model-predicted outputs—MPOs) as shown in equation (8). Once this is
done, the window is moved forward by one time step, and a new model is built and subsequently used to
forecast the next 3, 6, 12, and 24 h ahead Kp values. This way, the training and validation sets are mutually
exclusive.

AYALA SOLARES ET AL. MODELING AND PREDICTION OF KP INDEX 6
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Figure 4. Predictions of the Kp index for the four horizons of interest during the middle of July 2000 using the sliding
window approach. The black line corresponds to the measured Kp values.

Every time the window frame moves forward, a new NARX model is trained. The training process uses the
adaptive orthogonal search algorithm described in Billings and Wei [2008]. A nonlinear model term and
variable selection procedure proposed in Wei et al. [2004b] was applied, and numerical experimental results
suggested that ny =4 and nu=2 were an appropriate choice. Accordingly, the NARX model structure is
given by

K̂p(k) = f
(

Kp(k − 1),… , Kp(k − 4),

V(k − 1), V(k − 2), Bs(k − 1), Bs(k − 2),
VBs(k − 1), VBs(k − 2), p(k − 1), p(k − 2),√

p(k − 1),
√

p(k − 2)
)

(9)

where f (⋅) is chosen to be a polynomial of nonlinear degree 𝓁=2, Kp(k) is the measured Kp index at time k,
and K̂p(k) is the predicted Kp index at time k. In our analysis, the window length is of 6 months; therefore, the

Table 3. Statistical Summary for the Error Time Series Shown in Figure 3

Forecast

Statistic 3 6 12 24

Minimum −3.1980 −2.7180 −2.5570 −2.4860

First quartile −0.5394 −0.6409 −0.7106 −0.7270

Median −0.0843 −0.1032 −0.1391 −0.1497

Mean −0.0303 −0.0491 −0.0711 −0.0830

Third quartile 0.4084 0.4440 0.4454 0.4447

Maximum 4.7170 5.7520 6.3050 6.3900
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Figure 5. Comparison between the measured Kp index and predictions made for (a) 3, (b) 6, (c) 12, and (d) 24 h ahead
using the direct approach. The black line represents the ideal case when the prediction is equal to the measured Kp
index. The points and bars correspond to the means and one standard deviations of the predictions made for each of
the 28 Kp values.

initial training and validation sets correspond to the first half and second half of year 2000, respectively. As

the window frame moves forward, the validation set size decreases. The reason to choose a window length

of 6 months is because for the NARX methodology typically just a few hundred data samples are required

to estimate a model, which can be important in many applications where it is unrealistic to perform long

experiments [Billings, 2013].

The results for this approach are shown in Figure 2. Here it can be seen that there is a bias for low and high

magnetic disturbances. Furthermore, for high values of Kp (Kp≥8) the error bars become odd and difficult to

interpret. This is due to the fact that there are very few occurrences of high-value Kp indexes, so few predictions

are made in such cases and hence they tend to be underpredicted. Such characteristics have been previously

reported in Detman and Joselyn [1999] and Boberg et al. [2000], where it is argued that a model will perform

well for the most common training values, while predictions for others will be poor.

Table 4. Evaluation Metrics for Each of the Four Horizons of Interest Obtained
With the Direct Approach

Horizon RMSE 𝝆 PE

3 0.7593 0.8711 0.7585

6 0.8328 0.8424 0.7096

12 0.8623 0.8305 0.6895

24 0.8719 0.8265 0.6824
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Figure 6. Error time series for the four horizons of interest obtained with the direct approach.

To quantify our results, the root-mean-square error (RMSE), correlation coefficient (𝜌), and prediction efficiency
(PE) are computed. The latter is defined as

PE = 1 −
𝜎2

error

𝜎2
measured

(10)

where 𝜎2
measured is the variance of the measured Kp values and 𝜎2

error is the variance of the error between the
measured Kp values and the predicted ones. These metrics are shown in Table 2.

The error time series for each of the four horizons of interest are shown in Figure 3. It can be seen that the error
is notoriously high at the middle of July. Figure 4 shows a glimpse of this period where it can be seen that high
activity of the terrestrial magnetosphere was recorded between 13 and 17 July 2000. Such an activity was not
properly forecasted by this approach. In addition, Table 3 shows a statistical summary of the error time series
in Figure 3. In general, it can be concluded that this approach tends to overpredict the Kp index given that
both the median and the mean are negative. Furthermore, as the number of hours to predict ahead increases,
the forecasts are less accurate because the interquartile range (first quartile to third quartile) increases.

5. Direct Approach

The second modeling technique investigated in this paper involves the use of what is termed the direct
approach. Instead of training a model many times and using it recursively to calculate forecasts, the direct
approach obtains a separate model for a horizon h of interest. In such a case, equation (1) becomes

y(k) = f
(

y(k − h), y(k − h − 1),… , y
(

k − h − ny

)
, u(k − 1), u(k − 2),… , u

(
k − nu

))
+ e(k)

The main advantage of the direct approach is that it only requires the computation of h-step ahead pre-
dictions. This means that the output at the present time k, y(k), is predicted using the past values y(k − h),

AYALA SOLARES ET AL. MODELING AND PREDICTION OF KP INDEX 9
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Figure 7. Predictions of the Kp index for the four horizons of interest during the middle of July 2000 using the direct
approach. The black line corresponds to the measured Kp values.

y(k−h−1),… ,
[

y
(

k − h − ny

)
,
]

u(k−1), [u(k − 2),… , ] u
(

k − nu

)
, where it is assumed that these are known

[Wei et al., 2007].

In similarity to the sliding window approach, ny = 4 and nu = 2 were chosen, and the training process uses
the adaptive orthogonal search algorithm described in Billings and Wei [2008]. Accordingly, the NARX model
structure is given by

K̂p(k) = f
(

Kp(k − h),… , Kp(k − h − 3),

V(k − 1), V(k − 2), Bs(k − 1), Bs(k − 2),
VBs(k − 1), VBs(k − 2), p(k − 1), p(k − 2),√

p(k − 1),
√

p(k − 2)
)

(11)

where f (⋅) is chosen to be a polynomial of nonlinear degree 𝓁 = 2, Kp(k) is the measured Kp index at time
k, and K̂p(k) is the predicted Kp index at time k. In this analysis, the first 6 months of year 2000 are used for
training, while the second half of the year is used for validation.

Table 5. Statistical Summary for the Error Time Series Shown in Figure 6

Forecast

Statistic 3 6 12 24

Minimum −2.3890 −2.6040 −2.8780 −3.5550

First quartile −0.4436 −0.4842 −0.4910 −0.5073

Median −0.0138 −0.0096 0.0068 −0.0107

Mean 0.0373 0.0433 0.0575 0.0446

Third quartile 0.4625 0.4950 0.5210 0.5005

Maximum 4.6880 5.6140 5.9440 5.7260
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Figure 8. Feature dynamics for a randomly selected 30 day period on the second half of year 2000. The variable sqrtp
corresponds to

√
p(t).

The models identified by the NARX methodology for each horizon are listed below:

1. Three hours ahead

K̂p(k) = 0.325543Kp(k − 3) − 0.000043V(k − 1)
√

p(k − 1) + 0.673034Bs(k − 1)

− 0.164093Bs(k − 1)
√

p(k − 1) − 0.000003V(k − 1)2 + 0.000217V(k − 1) ⋅ Bs(k − 2)
− 0.006701Bs(k − 1) ⋅ Bs(k − 2) − 0.005810Bs(k − 1) ⋅ p(k − 2) − 2.179360

+ 0.753122
√

p(k − 1) + 0.006105V(k − 1) − 0.387292VBs(k − 1)

+ 0.136271VBs(k − 1)
√

p(k − 1)

(12)

2. Six hours ahead

K̂p(k) = −0.000191V(k − 1)
√

p(k − 1) + 0.852464Bs(k − 1) + 0.158716Kp(k − 6)

− 0.172607Bs(k − 1)
√

p(k − 1) + 0.000340V(k − 1) ⋅ Bs(k − 2) − 0.000003V(k − 1)2

− 0.058229Bs(k − 1) ⋅ Bs(k − 2) − 0.007989Bs(k − 1) ⋅ p(k − 2)

+ 0.009495
√

p(k − 1)
√

p(k − 2) + 0.000962p(k − 1) ⋅ p(k − 2) − 2.749889

+ 0.007744V(k − 1) + 0.958020
√

p(k − 1) − 0.514336VBs(k − 1)

+ 0.113874VBs(k − 1)
√

p(k − 1) + 0.011219VBs(k − 1)2 + 0.009277VBs(k − 2)2

+ 0.032255Bs(k − 2) ⋅ VBs(k − 1)

(13)
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Figure 9. Comparison between the sliding window and direct approaches for 3 h ahead predictions of the Kp index
during a 30 day interval between September and October of year 2000. The black line corresponds to the measured
Kp values.

3. Twelve hours ahead

K̂p(k) = 0.001618V(k − 1)
√

p(k − 1) + 0.748665Bs(k − 1) − 0.268901Bs(k − 1)
√

p(k − 1)
− 0.000229Kp(k − 12) ⋅ V(k − 1) + 0.203764Bs(k − 2) − 0.017656Kp(k − 12) ⋅ p(k − 1)
− 0.007676Bs(k − 1) ⋅ Bs(k − 2) − 1.606480 − 0.000324V(k − 1) ⋅ p (k − 1)

− 0.003098p(k − 1)
√

p(k − 1) + 0.000312V(k − 1) ⋅ Bs(k − 1) + 0.265301Kp(k − 12)
+ 0.003683V(k − 1) + 0.286045p(k − 1) − 0.012219Kp(k − 12) ⋅ VBs(k − 2)

− 0.531734VBs(k − 1) + 0.195865VBs(k − 1)
√

p(k − 1)

(14)

4. Twenty-four hours ahead

K̂p(k) = 0.000066V(k − 1)
√

p(k − 1) + 0.838922Bs(k − 1) − 0.213375Bs(k − 1)
√

p(k − 1)
+ 0.011558Kp(k − 24) ⋅ Bs(k − 2) − 0.000004V(k − 1)2 + 0.269300Bs(k − 2)

− 0.066312Bs(k − 1) ⋅ Bs(k − 2) − 3.080364 + 1.023429
√

p(k − 1)
+ 0.008776V(k − 1) + 0.014446Bs(k − 1)2 − 0.573961VBs(k − 1)

+ 0.120880VBs(k − 1)
√

p(k − 1) + 0.007968Kp(k − 25)2 + 0.012127Bs(k − 2)2

+ 0.034862VBs(k − 1) ⋅ VBs(k − 2) − 0.121102VBs(k − 2)
+ 0.000240V(k − 2) ⋅ VBs(k − 1)

(15)

The results of this approach are shown in Figure 5. They display a similar pattern to the sliding window
approach; i.e., there is a bias for low and high magnetic disturbances, and the error bars for high values of
Kp (Kp≥ 8) become less meaningful. Once again, these characteristics are due to the uncommon number of
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Figure 10. Comparison between the sliding window and direct approaches for 6 h ahead predictions of the Kp index
during a 30 day interval between September and October of year 2000. The black line corresponds to the measured
Kp values.

cases of high values of the Kp index compared with the most common Kp values related with quiet activity
periods of the magnetosphere.

To quantify our results, the root-mean-square error (RMSE), correlation coefficient (𝜌), and prediction efficiency
(PE) are computed. These metrics are shown in Table 4.

The errors for each of the four horizons of interest are respectively shown in Figure 6. Once again, there is a
notoriously high error at the middle of July, corresponding to a period of high geomagnetic activity, as men-
tioned above. A glimpse of this period is shown in Figure 7. In addition, Table 5 shows a statistical summary
of the error time series in Figure 6. In general, it can be concluded that on average, this approach tends to
slightly underpredict the Kp index given that the means are positive. Furthermore, as the number of hours to
predict ahead increases, the forecasts are less accurate because the interquartile range (first quartile to third
quartile) increases, as expected.

6. Model Comparison

A quick view to Tables 3 and 5 shows that the direct approach provides better forecasts than the sliding
window approach because the means and medians are closer to zero, and the interquartile ranges are smaller.
To better visualize this difference, a randomly selected 30 day interval on the second half of year 2000 is taken.
The features dynamics are shown in Figure 8.

The model forecasts using both approaches during this 30 day interval are shown in Figures 9–12.

To quantify our results, the root-mean-square error (RMSE), correlation coefficient (𝜌), and prediction efficiency
(PE) are computed. These metrics are shown in Table 6.

These results show that better forecast accuracy is obtained by the direct approach. This is an expected result
given that the sliding window approach uses model-predicted outputs from a single model, and long-term
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Figure 11. Comparison between the sliding window and direct approaches for 12 h ahead predictions of the Kp index
during a 30 day interval between September and October of year 2000. The black line corresponds to the measured
Kp values.

forecasts tend to deviate from true values as time goes on. On the other hand, the direct approach uses a
separate model for each horizon and relies on single calculations for h-step ahead predictions. However, both
approaches show that predictions for low and high disturbances are slightly biased from the true values.
This observation is coincident with previous findings reported in Detman and Joselyn [1999] and Boberg et al.
[2000], where a model will perform well for the most common training values, while predictions for others
will be poor. Another explanation is that this comes as a trade-off for using a regression model to predict a
categorical output variable.

Comparing the results obtained with those presented in Wing et al. [2005], the values of the two model per-
formance metrics (i.e., prediction performance and correlation coefficient) calculated from our results are
slightly lower. This may be explained from several factors: (i) all the data for all input and output variables
used for model estimation in this study are raw data sampled hourly where no preprocessing (e.g., smooth-
ing and interpretation) was performed; (ii) the model input variables used in this work are not exactly the
same as those used in previous studies; and (iii) some coefficients required by the models, for example, the
maximum lags of the input and output variables, may need to be optimized further. Note that one of the objec-
tives of this work is to generate compact transparent models to show how Kp index depends on solar wind
parameters and geomagnetic field indices and then use such models to do further analysis including forecast.
As shown in models (12)–(15), an important contribution obtained from the direct approach is that there are
three significant model terms that are shared by all the models. These are shown in bold in the equations
above. The values of the three terms, together with the Kp index, are normalized, and the associated scatter-
plots are shown in Figure 13 (note that the normalization of the values is just to facilitate the visualization and
comparison of the scatterplots). The importance of the first selected common model term V(k − 1)

√
p(k − 1)

may be roughly explained by its relevance with Kp when measuring the correlation coefficient (𝜌=0.6149).
Model terms ranked later would normally not be so important as the top ones, and their correlation with the
Kp signal becomes very weak.
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Figure 12. Comparison between the sliding window and direct approaches for 24 hour ahead predictions of the
Kp index during a 30 day interval between September and October of year 2000. The black line corresponds to
the measured Kp values.

The importance of the model terms selected in the equations above is not always measured by the values or
amplitude of these model terms. A model term with a high (or low) value does not necessarily mean a high
(or low) value in Kp index, as its change is an outcome of combined and weighted interactions of many lagged
input variables. Experience shows that top model terms can reflect the major varying trend of the output
signals, while model terms ranked later can be useful in revealing local and relatively minor changes. While
the role of solar wind speed and dynamic pressure as drivers of the Kp index has been confirmed by previous
studies, this work provides some further information with an explicit format of these input variables, showing
what kind of interactions of these drivers make a contribution to the change of the Kp index. This is important
for further understanding and analysis of the dependent relationship of the Kp index on solar wind speed and
dynamic pressure, etc.

Table 6. Evaluation Metrics for Each of the Four Horizons of Interest Using the
Sliding Window and Direct Approaches During a 30 Day Interval Between
September and October of Year 2000

Horizon Approach RMSE 𝝆 PE

3 Window 0.8308 0.8874 0.7828

Direct 0.7582 0.9156 0.8287

6 Window 0.9298 0.8628 0.7283

Direct 0.8053 0.9071 0.8105

12 Window 0.9546 0.8728 0.7138

Direct 0.8537 0.9054 0.7919

24 Window 0.9569 0.8804 0.7125

Direct 0.8588 0.8875 0.7831
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Figure 13. Top three significant model terms shared by all models in the direct approach. The correlation coefficients
are (a) 0.6149, (b) 0.5571, and (c) 0.5437.

7. Conclusion

In this paper, we have applied the NARX modeling methodology to the forecasting of the Kp index. We have
obtained a number of models using two different implementation approaches: namely, recursive prediction
approach based on sliding windows and a direct approach which can directly generate h hour ahead predic-
tions (h =3, 6, 12 and 24 in our case studies). In general, good forecasts were obtained for both short- and long-
term predictions using the estimated NARX models, but the direct approach outperforms the recursive
approach. Nevertheless, both approaches tend to show that predictions for low and high disturbances are
slightly biased from the true values. As previously reported, such a bias is a result of the uneven distribution
in the output signal, and in this paper, the use of a regression model to predict a categorical output variable
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Space Weather 10.1002/2016SW001463

may also play a role on this matter. An interesting property obtained from the direct approach is a set of sig-
nificant model terms that are shared by all the models, regardless of the time horizon of interest. While the
role of the solar wind speed and dynamic pressure as drivers of the Kp index has been confirmed by previous
studies, the present work produced some further information showing the relative contributions made by
these drivers to the changes in the Kp index. This is useful for further understanding the relationship of the Kp
index to solar wind. It was noticed that the values of prediction performance and correlation coefficient relat-
ing to our models are slightly lower than those reported by Wing et al. [2005] and possible reasons were briefly
discussed. To improve the overall performance of the proposed models, the following investigations will be
considered: (i) in dynamic regression modeling, the choice of maximum lags for both input and output vari-
ables is important; therefore, it is highly desirable to introduce an adaptive maximum lag selection scheme
to accommodate the nonstationary features of both the input and output sequences, and (ii) the raw Kp data
are categorical; the recently developed logistic-NARX model may be more appropriate to deal with the Kp
prediction problem where the output signal is categorical while the input variables are time continuous.
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