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Abstract 

The assumption of local independence is central to all IRT models. Violations can lead to inflated 

estimates of reliability and problems with construct validity. For the most widely used fit statistic 

Q3 there are currently no well-documented suggestions of the critical values which should be used 

to indicate local dependence, and for this reason a variety of arbitrary rules of thumb are used. In 

this study, we used an empirical data example and Monte Carlo simulation to investigate the 

different factors that can influence the null distribution of residual correlations, with the objective of 

proposing guidelines that researchers and practitioners can follow when making decisions about 

local dependence during scale development and validation. We propose that a parametric 

bootstrapping procedure should be implemented in each separate situation in order to obtain the 

critical value of local dependence applicable to the data set, and provide example critical values for 

a number of data structure situations. The results show that for the Q3 fit statistic no single critical 

value is appropriate for all situations, as the percentiles in the empirical null distribution are 

influenced by the number of items, the sample size, and the number of response categories. 

Furthermore, our results show that local dependence should be considered relative to the average 

observed residual correlation, rather than to a uniform value, as this results in more stable 

percentiles for the null distribution of an adjusted fit statistic.  

Keywords: Local dependence, Rasch model, Yen’s Q3, Residual correlations, Monte Carlo 

simulation. 

  



Introduction 

Statistical independence of two variables implies that knowledge about one variable does not 

change our expectations about another variable. Thus, test items X1,…, XI are not independent, since 

a student’s giving a correct answer to one test item would change our expectation of her probability 

of also giving a correct answer to another item in the same test. A fundamental assumption in the 

Rasch (1960) model and in other IRT models is that item responses are conditionally independent 

given the latent variable  

 ܲሺܺଵ ൌ ଵǡݔ ǥ ǡ ܺூ ൌ ሻߠூȁݔ ൌ ς ܲሺܺ௜ ൌ ሻூ௜ୀଵߠ௜ȁݔ .  (1) 

 

The items should only be correlated through the latent trait that the test is measuring (Lord and 

Novick, 1968). This is generally referred to as local independence (Lazarsfeld & Henry, 1968).  

The assumptions of local independence can be violated through response dependency and 

multidimensionality, and these violations are often referred to under the umbrella-term of ‘local 

dependence’ (LD). Both of these situations yield inter-item correlations beyond what can be 

attributed to the latent variable, but for very different reasons. Response dependency occurs when 

items are linked in some way, such that the response on one item governs the response on another 

because of similarities in, for example, item content or response format. A typical example is where 

several walking items are included in the same scale. If a person can walk several miles without 

difficulty, then that person must be able to walk one mile, or any lesser distance, without difficulty 

(Tennant and Conaghan, 2007). This is a structural dependency which is inherent within the items, 

because there is no other logical way in which a person may validly respond. Another form of LD 

could be caused by a redundancy-dependency, where the degree of overlap within the content of 

items is such that the items are not independent (i.e. where the same question is essentially asked 



twice, using slightly different language or synonymous descriptive words). Yen (1993) offers an in 

depth discussion of ways that the format and presentation of items can cause LD.  

Violation of the local independence assumption through multidimensionality is typically seen 

for instruments composed of bundles of items that measure different aspects of the latent variable, 

or different domains of a broader latent construct. In this case the higher order latent variable alone 

might not account for correlations between items in the same bundle.  

Violations of local independence in a unidimensional scale will influence estimation of person 

parameters and can lead to inflated estimates of reliability and problems with construct validity. 

Consequences of LD have been described in detail elsewhere (Yen 1993; Scott and Ip, 2002; Lucke, 

2005; Marais, and Andrich, 2008b; Marais, 2009). Ignoring LD in a unidimensional scale thus leads 

to reporting of inflated reliability giving a false impression of the accuracy and precision of 

estimates (Marais, 2013). For a discussion of the effect of multidimensionality on estimates of 

reliability see Marais and Andrich (2008a). 

 

Detecting Local Dependence 

One of the earliest methods for detecting local dependence in the Rasch model is the fit measure Q2 

(van den Wollenberg, 1982), which was derived from contingency tables and used the sufficiency 

properties of the Rasch model. Kelderman (1984) expressed the Rasch model as a log linear model 

in which LD can be shown to correspond to interactions between items. Loglinear Rasch models 

have also been considered by Haberman (2007) and by Kreiner and Christensen (2004, 2007), who 

proposed to test for LD by evaluating partial correlations using approach similar to the Mantel-

Haenszel analysis of DIF (Holland and Thayer, 1988). The latter approach is readily implemented 

in standard software like SAS or SPSS. Notably, Kreiner and Christensen (2007) argue that the log 

linear Rasch models proposed by Kelderman (1984) that incorporate LD still provide essentially 



valid and objective measurement and describe the measurement properties of such models. 

Furthermore, a way of quantifying local dependence has been proposed by Andrich and Kreiner 

(2010) for two dichotomous items. It is based on splitting a dependent item into two new ones, 

according to the responses to the other item within the dependent pair. Local dependence is then 

easily quantified by estimating the difference d between the item locations of the two new items. 

However, Andrich and Kreiner do not go on to investigate if d is statistically significant. For the 

partial credit model (Masters, 1982) and the rating scale model (Andrich, 1978) a generalized 

version this methodology exists (Andrich, Humphry and Marais, 2012)  

Beyond the Rasch model, Yen (1984) proposed the Q3 statistic for detecting LD in the 3PL 

model. This fit statistic is based on the item residuals ݀௜ ൌ ܺ௜ െ  ෠൯.  (2)ߠ൫ܺ௜หܧ

and computed as the Pearson correlation (taken over examinees) ܳଷǡ௜௝ ൌ  ௗ೔ௗೕ  (3)ݎ

where ݀ ௜ and ݀ ௝ are item residuals for items i and j, respectively. This method is often used for the 

Rasch model, the partial credit model and the rating scale model. 

Chen and Thissen (1997) discussed X2 and G2 LD statistics that, while not more powerful than 

the Q3, have null distributions very similar to the chi-squared distribution with one degree of 

freedom. Other methods for detecting LD are standardized bivariate residuals for dichotomous 

(Reiser, 1996) or multinomial IRT models (Maydeu-Olivares and Liu, 2015), the use of conditional 

covariances (Douglas et al, 1998), or the use of Mantel-Haenzsel type tests (Ip, 2001). Tests based 

on parametric models are also a possibility: Glas and Suarez-Falcon (2003) proposed Lagrange 

multiplier (LM) tests based on a threshold shift model, but bifactor models (Liu and Thissen, 2012; 

2014), specification of other models that incorporate local dependence (Hoskens and De Boeck, 



1997; Ip, 2002), or limited information goodness-of-fit tests (Liu and Maydeu-Olivares, 2013) is 

also possible.  

 

The use of the Q3 fit statistic 

Yen’s Q3 is probably the most often reported index in published Rasch analyses due to its 

inclusion (in the form of the residual correlation matrix) in widely used software like RUMM 

(Andrich, Sheridan and Luo, 2010). Yen (1984) argued that if the IRT model is correct then the 

distribution of the Q3 is known, and proposed that p-values could be based on the Fisher (1915) z-

transform. Chen and Thissen (1997) stated: “In using Q3 to screen items for local dependence, it is 

more common to use a uniform critical value of an absolute value of 0.2 for the Q3 statistic itself”. 

They went on to present results showing that, while the sampling distribution under the Rasch 

model is bell shaped, it is not well approximated by the standard normal, especially in the tails 

(Chen and Thissen, 1997, Figure 3). 

In practical applications of the Q3 test statistic researchers will often compute the complete 

correlation matrix of residuals and look at the maximum value ܳଷǡ௠௔௫ ൌ max௜ஷ௝ ܳଷǡ௜௝.  (4) 

 

Critical Values of Residual Correlations 

When investigating LD based on Yen’s Q3, residuals for any pair of items should be uncorrelated, 

and generally close to 0. Residual correlations that are high indicate a violation of the local 

independence assumption, and this suggests that the pair of items have something more in common 

than the rest of the item set have in common with each other (Marais, 2013). 

As noted by Yen (1984, p.127) a negative bias is built into Q3. This problem is due to the fact 

that measures of association will be biased away from zero even though the assumption of local 



independence applies, due to the conditioning on a proxy variable instead of the latent variable 

(Rosenbaum, 1984). A second problem is that the way the residuals are computed induce a bias 

(Kreiner and Christensen, 2011). Marais (2013) recognized that the sampling properties among 

residuals are unknown; therefore these statistics cannot be used for formal tests of LD. A third, and 

perhaps the most important, problem in applications, is that there are currently no well-documented 

suggestions of the critical values which should be used to indicate LD, and for this reason arbitrary 

rules of thumb are used when evaluating whether an observed correlation is such that it can be 

reasonably supposed to have arisen from random sampling. 

Standards often reported in the literature include looking at fit residuals over the critical value 

of 0.2, as proposed by Chen and Thissen (1997). For examples of this see, e.g., Reeve et al. 2007; 

Hissbach, Klusmann and Hampe, 2011; Makransky and Bilenberg, 2014; Makransky, Rogers and 

Creed, 2014. However, other critical values are also used, and there seems to be a wide variation in 

what is seen as indicative of dependence. Marais and Andrich (2008b) investigated dependence at a 

critical residual correlation value of 0.1, but a value of 0.3 has also often been used (see e.g. La 

Porta et al., 2011; Das Nair et al., 2011; Ramp et al. 2009; Røe, et al. 2014), and critical values of 

0.5 (ten Klooster et al. 2008; Davidson et al. 2004) and even 0.7 (González-de Paz et al., 2014) can 

be found in use.  

There are two fundamental problems with this use of standard critical values: (i) there is limited 

evidence of their validity and often no reference of where values come from, and (ii) they are not 

sensitive to specific characteristics of the data.  

Marais (2013) identified that the residual correlations are difficult to directly interpret 

confidently when there are fewer than 20 items in the item set, but also stated that the correlations 

should always be considered relative to the overall set of correlations. This is because the 

magnitude of a residual correlation value which indicates LD will vary depending on the number of 



items in a data set. Instead of an absolute critical value, Marais (2013) suggests that residual 

correlation values should be compared to the average item residual correlation of the complete data 

set to give a truer picture of the LD within a data set. It was concluded that when diagnosing 

response dependence, item residual correlations should be considered relative to each other and in 

light of the number of items, although there is no indication of a relative critical value (above the 

average residual correlation) that could indicate LD. 

Thus, under the null hypothesis the average correlation of residuals is negative (cf. Marias 

(2013, p.121)) and, ideally, observed correlations between residuals in a data set should be 

evaluated with reference to this average value. Marais proposes to evaluate them with reference to 

the average of the observed correlations rather than the average under the null hypothesis. Thus, 

following Marais, we could consider the average value of the observed correlations തܳଷ ൌ ൫ூଶ൯ିଵ σ ܳଷǡ௜௝௜ஷ௝   (5) 

where ൫ூଶ൯ is the number of item pairs and define the test statistic ܳଷǡכ ൌ ܳଷǡ௠௔௫ െ തܳଷ  (6) 

that compares the largest observed correlation to average of the observed correlations. 

The problem with the currently used critical values is that they are neither theoretically nor 

empirically based. Researchers and practitioners faced with making scale validation and 

development decisions need to know what level of LD could be expected, given the properties of 

their items and data.  

A possible solution would be to use a parametric bootstrap approach and simulate the residual 

correlation matrix several times under the assumption of fit to the Rasch model. This would provide 

information about the level of residual correlation that could be expected for the particular case, 

given that the Rasch model fits. To our knowledge, there is no existing research that describes how 

important characteristics such as the number of items, number of response categories, number of 



respondents, the distribution of items and persons, and the targeting of the items impact residual 

correlations expected, given fit to the Rasch model. In the current study we investigate the 

possibility of identifying critical values of LD by examining the distribution of ܳଷ under the null 

hypothesis, where the data fits the model. This is done using an empirical example along with a 

simulation study. 

Given the existence of the wide range of fit statistics with known sampling distributions 

outlined above it is surprising that Rasch model applications abound with reporting of Q3 using 

arbitrary cut-points without theoretical or empirical justification. The reason for this is that the 

theoretically sound LD indices are not included in the software packages used by practitioners. For 

this reason this article presents extensive simulation studies that will (a) illustrate that Q3 should be 

interpreted with caution (b) allow researchers to know what level of LD could be expected, given 

properties of their items and data. Furthermore these simulation studies will be used to study if the 

maximum correlation or the difference between the maximum correlation and the average 

correlation as suggested by Marais (2013). Thus, the objectives of this paper are: (i) to provide an 

overview of the influence of different factors upon the null distribution of residual correlations, (ii) 

to propose guidelines that researchers and practitioners can follow when making decisions about 

LD during scale development and validation. Two different situations are addressed: firstly, the 

situation where the test statistic is computed for all item pairs and only the strongest evidence (the 

largest correlation) considered, and secondly, the less common case, where only a single a priori 

defined item pair is considered. 

 

Simulation study 

Methods: Simulation Study 

The simulated data sets used (i) I dichotomous items simulated from  



ܲሺܺ௜ ൌ ሻߠȁݔ ൌ ୣ୶୮⁡ሺ௫ሺఏିఉ೔ሻሻଵାୣ୶୮⁡ሺఏିఉ೔ሻ ⁡⁡⁡⁡⁡⁡ሺ݅ ൌ ͳǡ ǥ ǡ  ሻ   (7)ܫ

with evenly spaced item difficulties ߚ௜ ranging from -2 to 2 ߚ௜ ൌ ʹ ቀ௜ିଵூିଵቁ⁡⁡⁡⁡⁡⁡⁡ሺ݅ ൌ ͳǡ ǥ ǡ  ሻ   (8)ܫ

or (ii) I polytomous items simulated from ܲሺܺ௜ ൌ ሻߠȁݔ ൌ ୣ୶୮⁡ሺσ ሺఏିఉ೔೓ሻ೓ೣసభ ሻଵାσ ୣ୶୮⁡ሺσ ሺఏିఉ೔೓ሻ೗೓సభ ሻయ೗సభ ⁡⁡⁡⁡⁡⁡ሺݔ ൌ Ͳǡͳǡʹǡ͵Ǣ ⁡݅ ൌ ͳǡ ǥ ǡ  ሻ   (9)ܫ

with item parameters defined by ߚ௜௛ ൌ ʹ ቀ௜ିଵூିଵቁ ൅ ሺ݄ െ ͳሻ⁡⁡⁡⁡⁡⁡ሺ݅ ൌ ͳǡ ǥ ǡ Ǣܫ ⁡݄ ൌ ͳǡʹǡ͵ሻ  (10) 

The person locations were simulated from a normal distribution with mean  and SD 1. All 

combinations of the four conditions: (a) number of items (I = 10, 15, 20); (b) number of persons (N 

=200, 250, … , 1000); (c) number of response categories (two, four); and (d) mean value in the 

distribution of the latent variable  (= 0, 2) were simulated. This yielded 204 different setups, and 

for each of these we simulated 10,000 data sets and followed the steps 

(i) estimating item parameters using pairwise conditional estimation 

(Zwinderman, 1995; Andrich and Luo, 2003),  

(ii)  estimating person parameters using weighted maximum likelihood 

(WML; Warm, 1989),  

(iii)  computing the response residuals [formula (2)],  

(iv) computing the empirical correlation matrix,  

(v) extracting the largest value from the correlation matrix.  

in order to find the empirical 95th and 99th percentiles. Note that we only simulate data sets under 

the null hypothesis, there is no local dependence in the simulated data sets. 

 

Results: Simulation Study 



Figure 1 reports the empirical 95th and 99th percentiles in the empirical distribution of the maximum 

residual correlation for dichotomous items. The top panel shows = 0 (labeled ‘good targeting’) 

and the bottom panel shows = 2 (labeled ‘bad targeting’). The reason for this labeling is that the 

average of the item locations (the item difficulties) is zero. 

 

[Figure 1. The empirical 95th and 99th percentiles in the empirical distribution of Q3,max for 

dichotomous items (grey horizontal dashed lines indicate 0.2 and 0.3, respectively)] 

 

The percentiles decrease as the sample size increases, and they increase with the number of 

items. The latter finding is hardly surprising in a comparison of the maximum of 45, 105, and 190 

item pairs, respectively. However, it is evident that the targeting does not have an impact on the 

percentiles. Figure 2 reports the empirical 95th and 99th percentiles in the empirical distribution of 

the maximum residual correlation for polytomous items. Again the top panel labeled ‘good 

targeting’ shows = 0 the bottom panel labeled ‘bad targeting’ shows = 2.  

 

 [Figure 2. The empirical 95th and 99th percentiles in the empirical distribution of ܳଷǡ௠௔௫ for 

polytomous items (grey horizontal dashed lines indicate 0.2 and 0.3, respectively)] 

 

For N=200 some of these percentiles were very large. Again, the percentiles decrease as sample 

size increases and the mean had little impact on the percentiles.  

When we considered item pairs individually and computed the empirical distribution Q3 for 

selected item pair there was quite a big difference across item pairs and, again, the percentiles 

decrease as sample size increases while the mean had little impact on the percentiles. Comparing 



the percentiles in the distribution of the correlation for a single a priori specified item pair shows 

that percentiles increase with the number of items (results not shown). Thus, the above finding that 

the percentiles in the distribution of the maximum correlation increase with the number of items is 

not solely due to the increase in the number of item pairs. Figures 3 and 4 show the empirical 

distribution of ܳ ଷǡכ for dichotomous and polytomous items, respectively. 

 

[Figure 3. The empirical 95th and 99th percentile in the empirical distribution of ܳଷǡכ for 

dichotomous items (grey horizontal dashed lines indicate 0.2 and 0.3, respectively)] 

 

[Figure 4. The empirical 95th and 99th percentile in the empirical distribution of ܳଷǡכ for polytomous 

items (grey horizontal dashed lines indicate 0.2 and 0.3, respectively)] 

 

When using ܳ ଷǡכ rather than ܳଷǡ௠௔௫ there is a smaller effect of the number of items, but again 

the critical values decrease as sample size increases. 

 

Makransky and Bilenberg data 

Methods: Makransky and Bilenberg data 

The empirical data example uses the ADHD rating scale (ADHD-RS-IV), which has been validated 

using the Rasch model in a sample consisting of 566 Danish school children (52% boys), ranging 

from 6 to 16 years of age (mean = 10.98) by Makransky and Bilenberg (2014). The parent and 

teacher ADHD-RS-IV (Barkley et al., 1999) which is one of the most frequently-used scales in 

treatment evaluation of children with ADHD consists of 26 items which measure across three 

subscales: inattention, hyperactivity/impulsivity and conduct problems. Parents and teachers are 

independently asked to rate children on the 26 items on a 4-point Likert-type scale, resulting in 6 



subscales (three with ratings from parents and three with ratings from teachers). In this study we 

will specifically focus on the nine items from the teacher ratings of the hyperactivity/impulsivity 

subscale. We attempted to find the empirical residual correlation critical value that should be 

applied to indicate LD. We did this by simulating data sets under the Rasch model, i.e. data sets 

without local dependence. Using an implementation in SAS (Christensen, 2006), the simulation 

study was conducted by simulating 10,000 data sets under the Rasch model and, for each of these, 

performing the steps (i)-(v) outlined above in order to find the empirical 95th and 99th percentiles. 

 

Results: Makransky and Bilenberg data 

In this section we describe an empirical example where we illustrate the practical challenge of 

deciding whether or not the evidence of LD provided by the maximum value ܳଷǡ௠௔௫ of Yen’s 

(1984) ܳ ଷ is large enough to violate the assumptions of the Rasch model. Makransky and Bilenberg 

(2014) report misfit to the Rasch model using a critical value of 0.2 to indicate LD. Using this 

critical value they identified LD between item 2 ("Leaves seat") and item 3 ("Runs about or climbs 

excessively") where Q3 was 0.26, and also between item 7 ("Blurts out answers") and item 8 

("Difficulty awaiting turn") where Q3 was 0.34 (Table 1). 

 

[Table 1. The observed residual correlation matrix in the Makransky and Bilenberg (2014) data for 

the teacher ratings of Hyperactivity/Impulsivity in the ADHD-RS-IV.] 

 

They were able to explain the LD based on the content of the items, e.g. that students would 

have to leave their seat in order to run about or climb excessively within a classroom environment, 

where students are usually required to sit in their seat, and they went on to adjust the scale based on 



these results. Thus, the observed value of Q3,max is 0.34, and since the average correlation തܳଷ in 

Table 1 is -0.12 the observed value of Q3,* is 0.46. 

As described above, there are examples in the literature where this procedure has been used 

with critical values of Q3 ranging from 0.1 to 0.7. The choice of the critical value has implications 

for the interpretation of the measurement properties of a scale. This will, in turn, impact upon any 

amendments that might be made, as well as the conclusions that are drawn. Using a critical value of 

0.3 would lead to the conclusion that the residual correlation value of 0.26 identified between items 

2 and 3 is not in violation of the Rasch model. A critical value of 0.7 would lead to the conclusion 

that there is no LD in the scale. Alternatively, a critical value of 0.1 would result in the conclusion 

that three additional pairs of items also exhibit LD within this data set.  

Based on the estimated item and person parameters in the Makransky and Bilenberg data, we 

simulated 10,000 data sets from a Rasch model without local dependence, computed residuals and 

their associated correlations. The empirical distribution of the maximum value Q3,max based on these 

10,000 data sets is shown in Figure 5.  

[Figure 5. The empirical distribution of Q3,max based on 10,000 data sets simulated using item and 

person parameters from the Makransky and Bilenberg (2014) data.] 

 

The 95th and 99th percentiles in this empirical distribution were 0.19, and 0.24, respectively 

indicating that Makransky and Bilenberg were correct in concluding that Q3,max =0.34 indicated 

misfit. Using the parametric bootstrap results reported in Figure 1, Makransky and Bilenberg could 

have rejected the assumption of no LD with a p-value of p<0.001. For nine items (as in the 

Makransky and Bilenberg data), there are 36 item pairs, and based on the simulated data sets we are 

able to determine critical values for Yen’s Q3 for each item pair. If a hypothesis about LD had been 

specified a priori for a single item pair (e.g. between items 2 and 3), then it would make sense to 



compare the observed correlation to a percentile in the empirical distribution of correlations for this 

item pair. In Table 2 we show the median and four empirical percentiles.  

 

[Table 2. Empirical 95th and 99th percentiles in the empirical distribution of the correlations of 

residuals. Based on 10,000 data sets simulated under the Rasch model using estimated parameters 

from the Makransky and Bilenberg (2014) data.] 

 

Table 2 illustrates that the median value of the Q3 test statistic for any item pair is negative. 

Table 2 further outlines the critical values that could be used for tests at the 5% and 1% level 

respectively, if the hypothesis about LD was specified a priori for an item pair. These values ranged 

from 0.05 to 0.07 with a mean of 0.06 for the 95th, and from 0.09 to 0.14 with a mean of 0.12 for the 

99th percentiles. Since no a priori hypotheses about LD were made in the Makransky and Bilenberg 

study, the results indicate that the conclusions made using a critical value of 0.2 were reasonable. 

Since the simulation performed is based on the estimated item and person parameters in the 

Makransky and Bilenberg data it can be viewed as a parametric bootstrap approach.  

The empirical distribution of Q3,* (the difference between Q3,max and the average correlation തܳଷ) 

based on these 10,000 data sets is shown in Figure 6. 

 

 [Figure 6. The empirical distribution of Q3,* based on 10,000 data sets simulated 

using item and person parameters from the Makransky and Bilenberg (2014) data.] 

 

Since the average value തܳଷ is negative it is not surprising that the distribution of the ܳଷǡכ is 

shifted to the right compared to the distribution of ܳଷǡ௠௔௫. The relevant critical value for a test at 

the 5% level is 0.26 and the relevant critical value for a test at the 1% level is 0.31. The observed 



value of the average correlation being തܳଷ ൌ െͲǤͳʹ, as computed from Table 1, we see that ܳଷǡכ ൌͲǤͶ͸. Based on this Makransky and Bilenberg were correct in concluding that LD exists in the data. 

Formally the results in Figures 1 and 2 would enable us to reject the overall hypothesis about 

absence of LD and conclude that there is LD for the item pair 7 and 8. Of course a parametric 

bootstrap approach like this could be extended from looking at the maximum value Q3,max to 

looking at the empirical distribution of largest and the second largest Q3 value. Makransky and 

Bilenberg report that LD between the items was successfully dealt with by combining the item pairs 

with LD into single combination items, and evaluating fit for the resulting seven item scale. They 

further argue that item deletion is not desirable because the Hyperactivity/Impulsivity subscale in 

the ADHD-RS-IV is '… developed to assess the diagnosis in the DSM-IV and DSM-5, and the 

elimination of the items would decrease the content validity of the scale' (Makransky and Bilenberg, 

2014; p.702). A third alternative is to model the LD using log linear Rasch models (Kelderman, 

1984). Table 3 outlines the result obtained using item deletion and combining items, respectively. 

Item fit was evaluated using comparison of observed and expected item-restscore correlation 

(Kreiner, 2011), while Andersens (1973) conditional likelihood ratio test was used to evaluate scale 

fit. 

 

[Table 3. Evaluation of item and scale fit in four models with item deletion and a model with item 

combination the Makransky and Bilenberg data. Item fit evaluated using comparison of observed 

and expected item-restscore correlations, total fit based on Andersens (1973) conditional likelihood 

ratio test, P-values rapported.] 

 

Based on the results in Table 3 we see that combining items yields the best item and scale fit. The 

four models are also compared with respect to the test information function (Figure 7). 



 

[Figure 7. The test information in four models with item deletion and in the model with item 

combination.] 

Figure 7 shows that combining items yields the highest test information. 

 

Discussion 

Local independence implies that, having extracted the unidimensional latent variable, there should 

be no leftover patterns in the residuals (Tennant and Conaghan, 2007). We simulated the 

distribution of residuals that can be expected between two items when the data fit the Rasch model 

under a number of different conditions. In all instances, the critical values used to indicate LD were 

shown to be lower when there are fewer items, and more cases within a dataset. Similar patterns 

were observed for dichotomous and polytomous items.  

In the first part of this study, empirical percentiles were reported from the empirical distribution 

of the ܳ ଷǡ௠௔௫ test statistic and the ܳଷǡכ test statistic. We reported critical values across a number of 

situations with differing numbers of items, response options, and respondents and with different 

targeting. Each of these conditions was based on 10,000 data sets simulated under the Rasch model. 

The outlined parametric bootstrap method could be applied on a case by case basis to inform 

research about a reasonable choice of cut point for the maximum value of the ܳଷǡ௠௔௫ and for the ܳଷǡכ test statistics. The second part of this study made it clear that the critical value of the ܳଷǡ௠௔௫ 

test statistic depends heavily on the number of items, but that the ܳଷǡכ test statistics are more stable. 

In the second part of this study, the empirical 95th and 99th percentiles were reported from the 

empirical distribution of the maximum value ܳଷǡ௠௔௫ of Yen’s (ͳͻͺͶሻ⁡ܳଷ test statistic in 10,000 data 

sets, which were simulated under the Rasch model using the estimated item and person parameters 



from the Makransky and Bilenberg (2014) data. Based on this, a critical value of 0.19 was observed 

at the 95th percentile and a critical value of 0.24 was observed at the 99th percentile. Since the 

observed value was ܳଷǡ௠௔௫ ൌ ͲǤ͵Ͷ , it is reasonable to conclude that there is LD in the data set.  

Having disclosed evidence of LD when it is found to exist, several ways of dealing with it have 

been suggested. These include the deletion of one of the LD items or by fitting the partial credit 

model to polytomous items resulting from summation locally dependent Rasch items (Andrich, 

1985; Kreiner and Christensen, 2007; Makransky and Bilenberg, 2014). Other approaches include 

using testlet models (Wilson and Adams, 1995; Wang and Wilson, 2005) or a bi-factor model 

(Reise, 2012). In our analysis of the Makransky and Bilenberg (2014) data we found that combining 

items yielded the best item and scale fit and the highest test information. 

 

Summary and Recommendations  

In summary, several methods for identifying LD have been suggested, but the most frequently used 

one appears to be Yen’s Q3 based on computing residuals (observed item responses minus their 

expected values), and then correlating these residuals. Thus, in practice, LD is identified through the 

observed correlation matrix of residuals based on estimated item and person parameters, and 

residual correlations above a certain value are used to identify items that appear to be locally 

dependent. 

It was shown that a singular critical value for the ܳଷǡ௠௔௫ test statistics is not appropriate for all 

situations, as the range of residual correlations values is influenced by a number of factors. The 

critical value which indicates LD will always be relative to the parameters of the specific dataset, 

and various factors should be considered when assessing LD. For this reason, the recommendation 

by Marais (2013) was that LD should be considered relative to the average residual correlation and 



thus that the ܳଷǡכ test statistic should be used. For neither of the test statistics a single stand-alone 

critical value exists.  

Despite no single critical value being appropriate, our simulations show that the ܳଷǡכ critical 

value appears to be reasonably stable around a value of 0.2 above the average correlation. Within 

the parameter ranges that were tested, any residual correlation >0.2 above the average correlation 

would appear to indicate LD, and any residual correlation of independent items at a value >0.3 

above the average would seem unlikely. 

Finch and Jeffers (2015) proposed a permutation test for local dependence based on the Q3 and 

found it to have good Type I error control, while also yielding more power for detecting LD than 

the use of the 0.2 cut-value. Bootstrapping and determining critical values for the Q3 is one option, 

but using one of the statistics with known null distribution listed in the introduction is a better 

option. For researchers for whom these tests are not available the results presented in Figures 3 and 

4 yield guideline for choosing a critical value of the ܳଷǡ௠௔௫ and the results presented in Figures 5 

and 6 yield guideline for choosing a critical value of the ܳଷǡכ for certain data structure situations and 

the parametric bootstrap approach outlined illustrates how a precise critical value can be 

ascertained. A complete summary of our simulation studies is available online on the homepage 

http://publicifsv.sund.ku.dk/~kach/Q3/critical_values_Yens_Q3.html 

  

http://publicifsv.sund.ku.dk/~kach/Q3/critical_values_Yens_Q3.html
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Figure 1. The empirical 95th and 99th percentiles in the empirical distribution of ܳଷǡ௠௔௫ for 

dichotomous items (grey horizontal dashed lines indicate 0.2 and 0.3, respectively) 

 

  



Figure 2. The empirical 95th and 99th percentiles in the empirical distribution of ܳଷǡ௠௔௫ for 

polytomous items (grey horizontal dashed lines indicate 0.2 and 0.3, respectively) 

 

  



Figure 3. The empirical 95th and 99th percentiles in the empirical distribution of ܳଷǡכ for 

dichotomous items (grey horizontal dashed lines indicate 0.2 and 0.3, respectively) 

 



Figure 4. The empirical 95th and 99th percentiles in the empirical distribution of ܳଷǡכ polytomous 

items (grey horizontal dashed lines indicate 0.2 and 0.3, respectively) 

 

  



Figure 5. The empirical distribution of the maximum correlation ܳଷǡ௠௔௫ between residuals based on 

10000 data sets simulated using item and person parameters from the Makransky and Bilenberg 

(2014) data. 

 

  



Figure 6. The empirical distribution of the ܳଷǡכ test statistic (difference between ܳଷǡ௠௔௫ and the 

average correlation) based on 10000 data sets simulated using item and person parameters from the 

Makransky and Bilenberg (2014) data. 

 

  



Figure 7. The test information in four models with item deletion and in the model with item 

combination. 

 

  



Table 1. The observed residual correlation matrix in the Makransky and Bilenberg data for the 

teacher ratings of Hyperactivity/Impulsivity in the ADHD-RS. 

Item 1 2 3 4 5 6 7 8 9 
1 (Fidgets or squirms) 1.00                 
2 (Leaves seat) 0.12 1.00               
3 (Runs about or 
climbs excessively) 

0.03 0.26 1.00             

4 (Difficulty playing 
quietly) 

-0.05 -0.04 0.04 1.00           

5 (On the go) -0.09 -0.25 -0.02 -0.14 1.00         
6 (Talks excessively) -0.20 -0.25 -0.26 -0.21 0.03 1.00       
7 (Blurts out answers) -0.34 -0.26 -0.23 -0.25 -0.18 0.00 1.00     
8 (Difficulty awaiting 
turn) 

-0.29 -0.21 -0.23 -0.24 -0.19 -0.12 0.34 1.00   

9 (Interrupts) -0.20 -0.12 -0.14 -0.14 -0.24 -0.32 0.12 0.12 1.00 
 

  



Table 2. The empirical median, 25th, 75th, 95th, and 99th percentiles in the empirical distribution of 

the correlations of ܳଷǡ௜௝ for all item pairs. Based on 10.000 data sets simulated under the Rasch 

model using estimated parameters from the Makransky and Bilenberg data. 

Item1 item2 Median (IQR) 
Percentile 
95th 99th 

1 2 -0.07 (-0.11 to -0.02) 0.06 0.12 
 3 -0.06 (-0.11 to -0.02) 0.06 0.12 
 4 -0.08 (-0.13 to -0.02) 0.06 0.12 
 5 -0.07 (-0.12 to -0.02) 0.06 0.13 
 6 -0.07 (-0.11 to -0.02) 0.07 0.14 
 7 -0.07 (-0.12 to -0.02) 0.06 0.12 
 8 -0.07 (-0.12 to -0.02) 0.06 0.13 
 9 -0.07 (-0.12 to -0.02) 0.06 0.13 
2 3 -0.08 (-0.12 to -0.03) 0.05 0.10 
 4 -0.09 (-0.15 to -0.04) 0.05 0.10 
 5 -0.08 (-0.13 to -0.03) 0.06 0.13 
 6 -0.08 (-0.13 to -0.03) 0.06 0.12 
 7 -0.08 (-0.13 to -0.03) 0.05 0.12 
 8 -0.08 (-0.12 to -0.03) 0.05 0.12 
 9 -0.08 (-0.13 to -0.03) 0.05 0.12 
3 4 -0.10 (-0.15 to -0.05) 0.03 0.09 
 5 -0.08 (-0.13 to -0.03) 0.05 0.11 
 6 -0.07 (-0.13 to -0.02) 0.06 0.12 
 7 -0.08 (-0.13 to -0.03) 0.05 0.11 
 8 -0.08 (-0.13 to -0.03) 0.05 0.11 
 9 -0.08 (-0.13 to -0.03) 0.05 0.11 
4 5 -0.09 (-0.15 to -0.04) 0.05 0.12 
 6 -0.08 (-0.14 to -0.03) 0.06 0.12 
 7 -0.10 (-0.15 to -0.04) 0.04 0.11 
 8 -0.09 (-0.15 to -0.04) 0.05 0.10 
 9 -0.09 (-0.15 to -0.04) 0.05 0.12 
5 6 -0.08 (-0.13 to -0.02) 0.06 0.13 
 7 -0.08 (-0.13 to -0.03) 0.06 0.12 
 8 -0.08 (-0.13 to -0.03) 0.06 0.13 
 9 -0.09 (-0.14 to -0.03) 0.06 0.13 
6 7 -0.08 (-0.13 to -0.02) 0.06 0.13 
 8 -0.08 (-0.13 to -0.02) 0.06 0.13 
 9 -0.08 (-0.13 to -0.02) 0.06 0.13 
7 8 -0.08 (-0.13 to -0.03) 0.06 0.12 

 
9 -0.08 (-0.13 to -0.03) 0.06 0.12 

8 9 -0.08 (-0.13 to -0.03) 0.06 0.12  
 

  



Table 3. Evaluation of item and scale fit in four models with item deletion and a model with item 
combination the Makransky and Bilenberg data. Item fit evaluated using comparison of observed 
and expected item-restscore correlations, total fit based on Andersens (1973) conditional likelihood 
ratio test, P-values rapported. 

 
 
 
 

Original 
scale 

Deleting items 
Combining 

Items 2 and 7 3 and 7 2 and 8 3 and 8 

Item 
fit* 

1 (Fidgets or 
squirms) 

0.981 0.880 0.251 0.697 0.428 0.297 

2 (Leaves seat) 0.989  0.558  0.695 
0.650 3 (Runs about or 

climbs excessively) 
0.005 0.008  0.009  

4 (Difficulty playing 
quietly) 

0.001 0.010 0.016 0.005 0.010 0.037 

5 (On the go) 0.716 0.123 0.208 0.180 0.319 0.168 
6 (Talks excessively) 0.030 0.124 0.171 0.108 0.150 0.345 
7 (Blurts out 
answers) 0.023   0.116 0.095 

0.735 
8 (Difficulty 
awaiting turn) 

0.394 0.761 0.613   

9 (Interrupts) 0.772 0.996 0.782 0.854 0.906 0.196 
Scale 
Fit** 

 0.036 0.019 0.218 0.002 0.045 0.081 

 

 

 

 


