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Abstract

A crucial issue in the current global warming debate is the effect of vegetation and soils on

carbon dioxide (CO2) concentrations in the atmosphere. Vegetation can extract CO2 through

photosynthesis, but respiration, decay of soil organic matter, and disturbance effects such as

fire return it to the atmosphere. The balance of these processes is the net carbon flux. In

order to estimate the biospheric carbon flux for England and Wales, we address the statistical

problem of inference for the sum of multiple outputs from a complex deterministic computer

code whose input parameters are uncertain. The code is a process model which simulates

the carbon dynamics of vegetation and soils, including the amount of carbon stored as a

result of photosynthesis and the amount returned to the atmosphere through respiration.

The aggregation of outputs corresponding to multiple sites and vegetation types in a region

gives an estimate of the total carbon flux for that region over a period of time. Expert

prior opinions are elicited for marginal uncertainty about the relevant input parameters

and for correlations of inputs between sites. A Gaussian process model is used to build

emulators of the multiple code outputs and Bayesian uncertainty analysis is then used to

propagate uncertainty in the input parameters through to uncertainty on the aggregated

output. Numerical results are presented for England and Wales in the year 2000. It is

estimated that vegetation and soils in England and Wales constituted a net sink of 7.61 MtC

(1 MtC = 1012g of carbon) in 2000, with standard deviation 0.61 MtC resulting from the

sources of uncertainty considered.

1 Introduction

The continual and accelerating rise in atmospheric CO2 concentrations, largely as a result of an-

thropogenic activities, underlies increasing concerns about global warming and climate change.

The potentially serious long-term effects of uncontrolled greenhouse gas (GHG) emissions moti-

vated the UN Framework Convention on Climate Change, under which parties to the Convention
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must take steps to reduce emissions, and in addition must periodically report national inven-

tories of anthropogenic emissions and removals by sinks of all GHGs. The principal terrestrial

sink for CO2 is through its take-up by vegetation or soils, although such biospheric systems can

also act as sources of CO2. Estimating the intensities of such carbon sinks or sources is difficult,

and no methodology for it has been agreed by the Intergovernmental Panel on Climate Change.

However, whatever estimation method is employed, it is imperative for rational discussion and

use that it should be accompanied by a realistic assessment of its uncertainty. An additional

consideration is that the Kyoto Protocol allows countries to use new carbon sinks (from af-

forestation and reforestation) to offset emissions. Estimating the effectiveness of such activities

in sequestering carbon is therefore a scientific matter of some importance, and again estimates

of uncertainty are needed for any well-founded assessment.

The UK Centre for Terrestrial Carbon Dynamics (CTCD) is a multi-disciplinary consor-

tium of researchers in British academic and governmental institutions, established to address

these issues. Its purpose is to advance scientific understanding of the role played by terrestrial

ecosystems in the carbon cycle, with particular emphasis on forest ecosystems. The ultimate

goals of the Centre are: to estimate carbon fluxes and their uncertainties at different space/time

resolutions; to further scientific understanding and, through new methodology, instrument ad-

vances and data acquisition (particularly from satellites) to reduce these uncertainties; and to

deliver relevant findings in accessible formats to the scientific community and to policy makers.

In pursuit of these objectives, a variety of computer models have been created for simulating

carbon dynamics over different geographical and climatic scenarios.

Carbon is exchanged in various chemical forms between vegetation, soils and the atmosphere,

and provides the basic unit to quantify such exchanges. Existing estimates of UK biospheric

carbon fluxes make use of a simple dynamic carbon-accounting model, as described in Milne and

Cannell (2005). The primary inputs to this model are forest inventories and annual planting

and felling information. Estimates of uncertainty from these approaches are not completely

established, the methods used provide limited understanding of the processes operating, and

they have no predictive power with respect to changes in climatic drivers and soil properties.

These factors have motivated the development of more detailed models that attempt to estimate

carbon fluxes by representing the processes that give rise to them. We present here an analysis

of the total biospheric carbon flux for England and Wales in the year 2000, based on a dynamic

vegetation model incorporating the latest scientific understanding of those processes that drive

carbon exchange between vegetation, soils and the atmosphere. The model-based approach is

embedded in a statistical framework that facilitates rigorous assessment of the uncertainty of

flux estimates, and in particular makes it possible to address such questions as: what are the

main sources of uncertainty?; what is the total uncertainty and can it be partitioned among its

various components?; and how can uncertainty be reduced? The paper describes the statistical

framework and the development of uncertainty estimates for aggregate quantities within it. The

discussion of aggregation is a novel technical contribution to Bayesian uncertainty analysis.

This paper specifically addresses model-based estimation of carbon flux as represented by

net biome productivity (NBP). NBP is the net uptake of CO2 by the land surface (vegetation

and soils) from the atmosphere, with positive NBP indicating a carbon sink. It can be expressed
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as

NBP = GPP − plant respiration − soil respiration − disturbances,

where Gross Primary Production (GPP) is photosynthetic fixation by vegetation, and the dis-

turbances include carbon released by fire, harvesting, etc. Transport effects can also be absorbed

into the disturbance term.

1.1 The Sheffield Dynamic Global Vegetation Model

The Sheffield Dynamic Global Vegetation Model (SDGVMd, where ‘d’ indicates the daily ver-

sion) is a dynamic vegetation model designed to calculate the carbon fluxes and pools in the

biosphere, and especially variations under changing climate (Woodward et al. (1995), Cramer

et al. (2001), Woodward and Lomas (2004)). It incorporates modules describing photosynthesis,

evapotranspiration, hydrology, nitrogen cycling, disturbances, and soil carbon respiration and

storage. The model represents the growth and decay of generic plant functional types (PFTs),

rather than individual species, in discrete grid-cells that together can cover large areas, up to

the whole land surface.

For the study reported in this paper, which is restricted to England and Wales (henceforth

E&W), only four PFTs are needed, namely grassland, which accounts for 42.0% of the land

cover, crops (32.1%), deciduous broadleaf trees (DcBl) (10.9%), and evergreen needleleaf trees

(EvNl) (3.1%). Common species of DcBl are oak, beech, birch, ash and sycamore, and of EvNl,

Sitka spruce, Scots pine and larch. In the land cover map we use, shrubland is represented as

DcBl. Each of these PFTs is characterised by a vector of 25 parameters. A fifth non-productive

PFT is included to account for urban and barren areas. Every grid-cell in the model contains

a proportion of each PFT, determined by the land cover, with the proportions summing to 1.

The explicit region occupied by each PFT within a grid-cell is not exploited.

In addition to the PFT parameters, the model needs several types of input data, including:

1. Climate data: for model runs representing the past the climate inputs use interpolated

climate records or climate models, while runs into the future rely on predictions from global

circulation models. In this study, monthly temperature, precipitation, air humidity and

cloudiness for the year 2000 from the CRU/UEA dataset (Mitchell et al. (2004)) were used.

Monthly data are downscaled to a daily time-step with a weather generator developed by

Forest Research, UK (Evans et al. (2002)), based on an approach similar to that used in

other weather generators e.g., Sharpley and Williams (1990). Precipitation is simulated

using a Markov chain and a gamma distribution, while humidity and temperature are

taken from Gaussian distributions.

2. Soil texture and bulk density (see §3.2).

3. Land cover from the LCM2000 (see §3.4).

A single simulation consists of a spin-up over 600 years to stabilize the various carbon pools,

followed by a proper run from 1901 to 2000. We primarily concentrate on NBP and GPP for

the year 2000, which is the most recent year for which full climate and land cover data are

available to us. NBP is highly dependent on climate and can vary significantly between years,
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even changing from a sink to a source at any given pixel. The same map of NBP could therefore

look very different for a different year. The aggregate NBP and maps of GPP are expected to

show less variation between years. We concentrate on England and Wales rather than the whole

of Great Britain because of restrictions on the use of Scottish soils data.

Kennedy et al. (2005) applied Bayesian sensitivity analysis to SDGVMd during development

of the computer code. In the present paper we use the same sensitivity analysis tools to identify

the parameters that are important in generating uncertainty in model outputs. We in fact

restrict our attention to a subset of the input variables used by the model, namely the PFT and

soil texture parameters, and do not discuss uncertainties from the land cover map or the climate

data. The phrase ‘input parameters’ hereafter refers to this subset.
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Figure 1: NBP and GPP plug-in estimates (gC/m2) for England and Wales in the year 2000,

using SDGVMd with fixed inputs. The dots indicate 33 sample sites at which uncertainty in

these estimates will be assessed in detail.

The maps shown in Figure 1 are calculations by SDGVMd at 707 grid-cells, at 1/6th of a

degree resolution. The maps show estimated NBP and GPP over E&W, in gCm−2, for the year

2000. Each map is actually a weighted sum of four maps in which the weights are the proportions

of land covered by the four relevant PFTs. In these calculations, the input parameters were fixed

at their mean values (based on expert elicitation, described in §3.1), so that we refer to them

as plug-in maps. In the following sections we use Bayesian uncertainty analysis to address the

deficiencies in these maps that arise from ignoring uncertainty in the input parameters.
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The analysis has two parts. First, uncertainty analysis of SDGVMd is used to derive the

maps of mean NBP and GPP and to create maps of the associated uncertainties. This involves

aggregation, at each site, over the 4 PFTs. Second, we calculate the uncertainty in the aggregate

NBP for E&W as a whole. Both parts involve aggregation of model runs and make use of new

uncertainty analysis methodology, which is described in §2. Note that we do not consider

aggregation of GPP across E&W because, although the GPP map provides useful information

about the main component of NBP at each site, the aggregate of GPP is of little scientific

interest.

1.2 Uncertainty in the carbon flux

Some of the underlying physical and biological processes represented in SDGVMd are poorly

understood and exact values for the parameters describing them are unknown. Measurement

data are available from the literature for some vegetation parameters, but these are usually

species-specific, and may not provide the most representative value for a more generalised PFT.

Other parameters are either very difficult to measure or are tuning parameters which cannot

be measured. Furthermore, any input value at a single grid-cell actually represents a large area

so there is uncertainty due to upscaling from fine to coarse scale. The consequences of these

uncertainties must be properly accounted for in any assessments based on the model outputs.

Crucially, results from computer modelling exercises often neglect these uncertainties and treat

the input estimates as if they were known.

A major deliverable of CTCD, to which this work contributes, is an estimate of the total

UK carbon flux and its uncertainty. The wider issues involved in calculating this flux, and

the various sources of uncertainty are described in detail in Quegan (2006). In the present

paper, for the reasons given earlier, attention is first concentrated on producing maps of both

the best estimate of the E&W NBP and GPP and their uncertainties, given the uncertainties

arising from input parameters. From these maps we then derive inference about the total NBP.

Spatial variations in the model output are due to differences in vegetation cover, soil and climatic

conditions. Data for each of these three factors are used to drive the model. The input values

for any set of grid-cells are clearly correlated, and these correlations induce correlations between

the outputs for individual grid-cells. Similarly, model outputs of different PFTs at a site are

correlated because they share the same climate and soil drivers. This dependence needs to be

allowed for in any uncertainty analysis of the aggregate NBP.

Estimating aggregate NBP simply involves summing outputs for all relevant grid-cells. Each

PFT is treated separately in the estimation (though over longer timescales they interact within

the model itself), so that we can create maps of NBP and calculate the individual aggregate

values for each of the PFTs, then combine the four aggregates to give the overall aggregate NBP,

weighting according to land cover. This separate treatment of PFTs makes it straightforward

to partition the sources of uncertainty and it also provides a route to account for uncertainty in

the PFT proportions at each grid-cell (see Quaife (2006)).

Data for soil texture and bulk densities were obtained from the National Soil Research

Institute via DEFRA (2003). The original data were measured on a 5 km grid, then a process

involving interpolation and expert judgements was used to produce soil texture and bulk density

information at 1 km resolution.

5



The first step in the analysis is to build a set of statistical emulators of the model outputs at

individual sites as described in Appendix A. The emulators are used in a sensitivity analysis to

identify the most influential inputs, and Bayesian uncertainty analysis is then applied to account

for and quantify uncertainty in the output at each site, which derives from uncertainty in the

influential model parameters defining vegetation and soil properties.

In the following section we introduce new methodology for inference about a sum of model

outputs. Results for E&W carbon maps and total carbon flux are then given in §3. We conclude

with discussion of these results and possible extensions in §4.

2 Bayesian uncertainty analysis for aggregates of model outputs

Recent work in the statistical analysis of computer models has concentrated on the case in which

a model produces a single output (e.g. Sacks et al. (1989), Kennedy and O’Hagan (2001)). In

practice most complex computer codes produce multiple outputs. Each output can of course

be analysed individually using single output methods, and for many purposes this is sufficient.

Often, however, inference is required about a function of multiple outputs: the sum of outputs

is an important example. More generally consider the linear combination

F =
N

∑

j=1

γjfj(Xj) (1)

where each fj is a single output of a code run with input vector Xj . The fj(·) may be distinct

outputs from a multi-output code or even different codes, which could take distinct input vectors

of varying dimensions. We formally recognise that the true values of the input vectors Xj

are uncertain. In keeping with widespread convention we use upper case Xj to signify this

uncertainty. The upper case F denotes that uncertainty in the Xj makes the aggregated output

also uncertain. The question at issue for the uncertainty analysis of F is the distribution of F

induced by uncertainty in the code input values.

For the E&W carbon flux, we need to sum contributions to NBP or GPP from different PFTs

at a given site, and also to sum NBP over sites to obtain the aggregate for E&W. Therefore two

variations of the sum (1) are considered.

Aggregation over plant functional types. A weighted sum (1) is required at each site, including

a component of NBP for each of 4 vegetation types. The weight γj is the proportion of land

covered by type j. Each PFT uses a different form of SDGVMd, so the fj take different sets of

inputs. This aggregation is described in more detail in §3.4.

Aggregation over sites. Each term represents NBP output at distinct sites or grid-cells for a

single PFT, with weights γj representing the area (in m2) of grid-cell j covered by that PFT.

In this case we also assume that each Xj is p−dimensional, so that each code output has

the same number of inputs. For a given PFT, SDGVMd can be run with a single input x

at multiple sites. This multi-output code can therefore be represented as a vector function

f(x) = (f1(x), . . . , fN (x)) at, say, N sites. If exactly the same inputs were appropriate at

each site, then X1 = X2 = . . . = XN = X and F could be treated by single-output methods

by simply reducing the output to a single aggregate value for each test run. In this paper we
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consider the more structured case in which X1, . . . ,XN are distinct but correlated. Examples

of correlations between SDGVMd inputs are considered in §3.5.

If the code is very fast then straightforward Monte Carlo estimation of the distribution of F

may be feasible. This would require running the code for thousands of simulated input points,

for all PFTs and sites, to create a sample of F values. Very often, however, (as, for instance, in

the case of SDGVMd), the complexity of the code rules out such an approach, as a single run

may take several minutes or even hours and it becomes too costly to generate enough runs for

reliable estimation. A statistical representation of the code, based on a Gaussian process model

and known as an emulator, can be used instead. This provides both a fast approximation for

the code and a coherent framework for inference, in which input parameter uncertainty can be

propagated through the emulator analytically. The emulator also accounts for the approximation

uncertainty introduced by its own use as a surrogate to the code. A brief summary of emulation

is given in Appendix A. The development builds upon the earlier work in Bayesian uncertainty

analysis of Haylock and O’Hagan (1996) and O’Hagan and Haylock (1997).

We model individual outputs using separate emulators, and consider the covariance between

outputs fj(Xj), fj′(Xj′) that is induced by covariance between the inputs Xj and Xj′ . In

principle, there is a further source of correlation arising from correlation in the emulators.

This is addressed in Conti and O’Hagan (2006) by building a multivariate emulator of multiple

outputs. However, the multivariate emulator makes stronger assumptions and the correlation

induced in this way is small provided the emulation is sufficiently accurate. We therefore treat

the emulators here as independent.

The joint distribution of X1, . . . ,XN , which formally characterises the uncertainty in model

inputs, is denoted by G and the marginal distribution of Xj by Gj . Similarly the joint dis-

tribution of a pair Xj ,Xj′ is denoted by Gjj′ . Appropriate choices for G, and hence Gj and

Gjj′ , are clearly dependent on the application and require detailed discussions with a subject

specialist – a vegetation modelling expert in our case. We use mixtures of normal distributions,

which allows some important integrals required in the emulation theory to be computed ana-

lytically. This mixture class is flexible enough to accommodate a wide range of expert beliefs;

indeed, a single component is adequate in practice for most inputs. In our application only one

input, leaf lifespan for EvNl, requires a non-degenerate mixture distribution. The form of these

distributions, with particular reference to EvNl leaf lifespan, is given in Appendix B.

We are interested in aspects of the distribution of the sum F . The distribution itself is

complicated, so we focus on its mean and variance, which are expressed as

M = E(F | f1, . . . , fN ) =
N

∑

j=1

γj

∫

fj(xj) dGj(xj), (2)

V = Var(F | f1, . . . , fN ) = M2 − M2, (3)

where

M2 = E(F 2 | f1, . . . , fN ) =
N

∑

j=1

γ2
j

∫

fj(xj)
2 dGj(xj)

+2
N−1
∑

j=1

N
∑

j′=j+1

γjγj′

∫

fj(xj)fj′(xj′) dGjj′(xj , xj′). (4)
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M and V are features of the distribution of F that we want to compute to quantify the impli-

cations of parameter uncertainty. These quantities are themselves uncertain because we cannot

compute integrals such as (2) without running the model at all possible input values. Instead,

the emulation provides an estimate of each in the form of its posterior mean, and a posterior

variance to describe uncertainty due to emulation; these are analogous to the estimates and

standard errors that would be produced by the Monte Carlo approach. Computations required

for these inferences about M and V , for aggregation over sites, are detailed in Appendix C.

3 Uncertainty analysis of E&W carbon flux

The following notational conventions are used throughout the remainder of the paper. A sub-

script k is used with variables or distributions associated with site k. A second site is indicated

with subscript k′ when required, for example if referring to a joint distribution or covariance

between site-specific quantities. PFT specific quantities will use subscript t or t′. Input param-

eter components will use subscript i. The vector x is used as a generic code input, whereas y

is used to represent a site coordinate in the maps.

There are too many grid-cells in the E&W map to emulate each of them as a separate output,

since the process of building the emulator requires of the order of 200 model runs per cell and per

PFT, so 33 sample sites were selected. As our estimates are based on outputs from a computer

model, there were no restrictions on the choice of locations. Sample sites were selected to be

representative of the varied E&W climatic conditions, to cover the whole region adequately and

to include a wide range of land cover types. The selected sites can be seen in Figure 1. The

spatial disposition of sites provided a wide range of inter-site distances that gave information

about spatial correlations at different scales. A total of 132 emulators was created, one for each

of the four PFTs at each sample site.

An initial sensitivity analysis was carried out for each PFT to determine the most important

inputs in terms of contribution to the output variance. The ranges over which to test each input

were provided by the plant modelling expert (Professor Ian Woodward, a member of CTCD and

the originator of SDGVM). Different sets of important parameters emerged from the sensitivity

analysis for each PFT. The significant plant inputs are listed in Table 1. In addition to these, 3

soil inputs were found to be important for all PFTs, as explained in §3.2. Inputs to which the

output is not sensitive were given normal distributions in subsequent analysis, with parameters

set so that the rough initial ranges represent mean ±2 standard deviations. Each emulator for

the grassland, crop, and DcBl PFTs was built as a function of the input parameters using 200

well chosen code runs. Emulators for EvNl required 300 runs to cover adequately the wider

potential range of the leaf lifespan parameter, as explained in §3.1. Maximin Latin Hypercube

designs (Morris and Mitchell (1995)) were used to select values of the input parameters for these

training runs, using the initial ranges for each input selected by the expert.

3.1 Elicitation of expert opinions for PFT parameters

To elicit marginal prior probability distributions corresponding to the important vegetation

input parameters the expert was questioned again, in more detail, on his beliefs about these

parameters. The area covered by each 1/6th of a degree grid-cell ranges from about 190 km2
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to 220 km2, so the parameter value used in SDGVMd should account for the fact that multiple

species are likely to be represented in each cell. The expert was asked specifically to provide a

possible range of values for individual grid-cell averages. The resulting minimum and maximum

values were taken to be mean ±2 standard deviations, assuming symmetric distributions. The

implied mean value was taken as a suitable representative value of the input for use in SDGVMd.

The implied variance reflects the fact that the types of species present in a single grid-cell varies

across E&W, and it also includes the effect of uncertain knowledge about the overall mean

for E&W. The expert agreed that normal distributions provided a fair representation of his

uncertainty about these inputs.

The parameters and their elicited distributions are listed for each PFT in Table 1. For

evergreen needleleaf species, the leaf lifespan parameter required special treatment because leaves

can live for several years but are most likely to die during autumn. Suppose that a leaf dies

d days into its yth year, so that its full lifespan is 365(y − 1) + d days. The expert specified

independent distributions for y and d, with d distributed as N(200, 625), and with y having a

discrete distribution on values y = 1, 2, 3, 4, 5.

Table 1: SDGVMd significant plant input parameters for each PFT and elicited probability

distributions for their value within a single grid-cell.

PFT Parameter Distribution

EvNl Leaf life span (days) 0.18N(565, 625) + 0.52N(930, 625) + 0.23N(1295, 625)

+0.06N(1660, 625) + 0.01N(2025, 625)

Leaf mortality index (proportion) N(0.005, 4 × 10−6)

Seeding density (individuals/m2) N(0.15, 0.0025)

DcBl Leaf life span (days) N(190, 1600)

crop Budburst limit (degree-days) N(140, 56.25)

Fraction harvested N(0.505, 0.01051)

Maximum carbon store (gC/m2) N(200, 2500)

Leaf mortality index (proportion) N(0.005, 2.25 × 10−6)

Length of crop season (days) N(190, 1600)

grassland Leaf life span (days) N(180, 3600)

Budburst limit (degree days) N(135, 6.25)

Maximum carbon store (gC/m2) N(200, 3600)

3.2 Uncertainty in soil inputs

The important soil parameters were found to be sand percentage, clay percentage and bulk

density. These parameters were generally found to be much more influential on the output than

the PFT parameters for both DcBl and EvNl, but the opposite is true for grassland and crops,

as seen in §3.3. (The reason for their importance is that the soil parameters play a critical role

in the mechanisms governing the availability of water to plants, hence are central to growth and
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biomass productivity.) The same soil parameters are inputs for each PFT, at a given site, and

this implies a correlation between PFTs which must be accounted for in the total NBP at that

site. This aggregation over PFTs is described in §3.4.

The following procedure was used to specify the input distributions for these soil parameters.

For each of the sample sites, soil data were available at 1 km2 resolution, giving a number of

observations of the relevant parameters for each site. The number of available points varies with

latitude and proximity to the coastline. The mean of these observations might be expected to

give a good representative value for each parameter to use as input to SDGVMd. However,

the soil input values which enable SDGVMd to best estimate vegetation growth and carbon

dynamics in a grid-cell are not necessarily the mean values across the grid-cell, because of

nonlinearity in the model’s response to the soil inputs. The size of any discrepancy due to

nonlinearity would be related to the variability of the parameters over the site. Furthermore,

the data are not truly independent observations, having been derived by interpolation of raw

data on a 5 km grid. Therefore, although we did assign the sample mean as the estimated value

of each soil input, we represented uncertainty in each case, not by the sample variance divided

by the number of 1 km2 points but by half the sample variance. Single normal distributions were

thought reasonable to describe uncertainty, and independence was assumed between different

inputs. Although formally there should be some negative correlation between the percentages

of sand and clay, this was judged to be negligible in the light of the small standard deviations

on these inputs. The resulting input distributions are listed in Table 2 for each sample site.

3.3 Single Plant Functional Type maps

Bayesian uncertainty analysis produced estimates of the mean and variance of NBP and GPP

for each PFT at each of the 33 sample sites. Between-site variations in these values were due

to:

• different climatic conditions producing different SDGVMd outputs: these were captured

by the differences between the emulators.

• different soil properties, characterised by the site specific probability distributions for soil

parameters (Table 2): these variations were captured by the Bayesian uncertainty analyses.

SDGVMd is a highly non-linear function of its inputs. Therefore the expected value of an

output with respect to the uncertain input distribution can be substantially different from the

‘plug-in’ output obtained simply by running the model with the input fixed at its mean value.

At each sample site, both expected value of the outputs and the outputs with fixed inputs were

calculated, and the differences were used to correct the fixed-input estimates elsewhere. Specif-

ically, maps of the mean correction at the 707 E&W grid-cells were produced by interpolating

the 33 differences. We used the kriging software GSLIB (Deutsch and Journel (1997)). The

interpolated corrections for NBP are shown in Figure 2 for the four PFTs. Interpolation of

these estimates to the remaining E&W grid-cells is reasonable, given that climatic variations

over E&W are expected to be represented within the sample sites. A similar interpolation of

the log-variances was carried out on the basis of the 33 sample site values of log-variance. We

denote by Emt(yk) and Evt(yk) the mean and variance of NBP for the tth PFT estimated at
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Table 2: SDGVMd soil input parameters and their probability distributions at the sample sites.

Site (lat, lon) Soil sand % Soil clay % Bulk density (g/cm2)

1 55.083 -2.417 N(34.12, 1.95) N(22.82, 3.62) N(0.814, 0.067)

2 54.75 -2.083 N(36.53, 14.25) N(23.16, 4.60) N(0.859, 0.1015)

3 54.75 -2.417 N(37.53, 28.20) N(23.06, 15.99) N(0.550, 0.123)

4 54.583 -2.083 N(36.93, 60.38) N(25.33, 48.34) N(0.815, 0.1215)

5 54.417 -0.75 N(43.27, 222.12) N(22.36, 49.21) N(1.214, 0.0325)

6 54.417 -3.083 N(40.17, 47.39) N(17.24, 17.45) N(0.689, 0.0625)

7 54.083 -1.083 N(43.08, 260.75) N(28.75, 92.57) N(1.379, 0.001)

8 54.083 -2.083 N(30.55, 63.32) N(22.17, 3.19) N(1.171, 0.0175)

9 53.917 -2.75 N(33.51, 33.02) N(29.85, 27.75) N(1.367, 0.007)

10 53.583 -1.917 N(50.99, 51.65) N(18.53, 4.04) N(0.647, 0.0915)

11 53.25 -0.25 N(29.77, 70.00) N(36.45, 18.42) N(1.327, 0.0145)

12 53.083 -1.75 N(22.63, 114.4) N(25.14, 26.8) N(1.257, 0.005)

13 53.083 -3.083 N(44.08, 58.18) N(19.53, 16.00) N(1.222, 0.021)

14 52.917 -3.917 N(36.18, 24.85) N(20.20, 10.89) N(0.684, 0.0705)

15 52.75 -3.917 N(39.97, 36.05) N(18.2, 13.91) N(0.819, 0.0400)

16 52.583 -0.583 N(28.88, 72.79) N(38.21, 43.30) N(1.275, 0.0030)

17 52.417 0.917 N(69.91, 163.47) N(13.23, 52.70) N(1.313, 0.0105)

18 52.417 -2.25 N(60.68, 203.54) N(13.17, 23.66) N(1.351, 0.0030)

19 52.417 -3.583 N(35.08, 3.55) N(22.00, 4.76) N(1.0172, 0.0145)

20 52.083 -3.75 N(34.81, 7.17) N(21.59, 4.03) N(1.001, 0.0105)

21 51.917 -1.083 N(24.47, 79.12) N(40.77, 65.31) N(1.273, 0.004)

22 51.917 -4.417 N(32.44, 6.83) N(23.69, 3.96) N(1.033, 0.0065)

23 51.75 0.25 N(19.75, 13.53) N(43.24, 20.51) N(1.350, 0.0005)

24 51.75 -2.583 N(36.85, 102.06) N(24.31, 49.05) N(1.218, 0.0030)

25 51.75 -4.25 N(37.86, 230.08) N(21.53, 27.54) N(1.286, 0.0030)

26 51.25 1.083 N(19.31, 26.37) N(35.39, 46.22) N(1.260, 0.0025)

27 51.083 0.25 N(16.63, 5.45) N(24.77, 63.51) N(1.329, 0.001)

28 51.083 -0.083 N(18.74, 20.03) N(21.46, 45.45) N(1.322, 0.001)

29 51.083 -1.583 N(19.41, 57.47) N(34.90, 46.41) N(1.226, 0.002)

30 51.083 -3.917 N(31.42, 5.98) N(25.62, 3.6) N(1.158, 0.00055)

31 50.75 -1.583 N(28.02, 159.45) N(35.11, 92.82) N(1.327, 0.0025)

32 50.583 -3.75 N(47.70, 101.35) N(15.78, 34.03) N(1.077, 0.003)

33 50.25 -4.917 N(32.92, 0.94) N(25.68, 0.18) N(1.198, 0.0015)

a given (latitude, longitude) coordinate yk. The emulator variance associated with Emt(yk) is

denoted by V mt(yk). Then, taking into account emulator uncertainty, the overall mean and

variance for type t at yk are mt(yk) = Emt(yk) and vt(yk) = Evt(yk) + V mt(yk). Figure

3 shows the standard deviations (SD) derived from this interpolation for NBP. These would

represent maps of mean and SD of NBP if E&W had 100% coverage of grassland, crop, DcBl or

EvNl respectively. The SD maps also include a contribution from the uncertainty in the mean

correction, which is due to emulation. The size of this contribution depends on the amount

of spatial variation seen in the mean NBP or GPP values at the sample sites. It will also be

largest in regions where there are few nearby sites. The mean percentage of the variance due to

uncertainty in the interpolation (averaged over all 707 E&W grid-cells) is 5.9% for EvNl, 9.6%

for grassland, 16.03% for crop and 23.21% for DcBl.
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Figure 2: Mean NBP corrections (gC/m2) with 33 sample sites shown.

Features and apparent anomalies in these graphs can be understood by examination of the

emulation and interpolation analyses in more depth. For example, the map of NBP corrections

for crops in Figure 2 shows significant North to South variations in a central band streching from

Wales to East Anglia. The largest corrections 29.75 and 28.21 occur at latitudes 52.917 and

52.083. Between these latitudes are 5 sites which all have negative corrections, the most extreme

being -39.29. Another feature seen in these plots is a large positive correction in NBP for DcBl

in the South-East corner. This is due to the interpolation and caused by a large difference

between values -16.35 at (51.083, -0.083) and 47.15 at (51.083, 0.25).

The most extreme corrections seen in Figure 2 occur for Deciduous Broadleaf at points

(52.417, -2.25), (54.083, -1.083) and (54.417, -0.75). These are all negative corrections. An

explanation for these corrections is suggested by examining the main effects of each input, as

shown in Figure 4 for site (54.417, -0.75). Notice that the effect of soil bulk density is reasonably

constant up to around 1.1, then has a sharp fall. The range over which bulk density for this site

has significant probability (see Table 2) coincides with this sharp drop, resulting in the large

negative correction. A positive correction is seen for Deciduous Broadleaf at site (51.083, 0.25).

Here, the effect of increasing leaf lifespan is monotonic and positive, in contrast to the effect

seen in Figure 4. The relatively low sand content is also in a region of the parameter space

which leads to increasing NBP.
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Figure 3: Standard deviation of NBP corrections (gC/m2) with 33 sample sites shown.

The Deciduous Broadleaf PFT also gives rise to the largest standard deviations. The largest

is at site (53.083, -3.083). To understand the source of this uncertainty, we can use the methods

of Oakley and O’Hagan (2004) to partition the variance at the site into contributions from the

main effects of each uncertain input. It is found that 81% of the total variance at this site is

due to uncertainty in soil bulk density, while soil sand percentage and leaf lifespan contribute

only approximately 4% and 2% respectively.

The combined contributions to total output variance from main effects of all soil parameters

and all plant parameters are shown in Figure 5. The height of each bar, representing the sum of

all main effects, is not 100% because there are also contributions from interaction effects, but it

is clear that the overall influence of soil parameter uncertainty is much lower for grassland and

crops than it is for the tree types. We return to this point in §4.

3.4 E&W combined map

The LCM2000 land cover map of Haines-Young et al. (2000) provides proportions of area covered

by each PFT within each grid-cell (Figure 6). This can be used to combine the individual PFT

maps mt(·) and vt(·), found in §3.3, into a single map for E&W. We will denote the proportions

at grid-cell yk by γt(yk), where t ranges through the four plant types. For each E&W grid-cell
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Figure 4: Main effects of input parameters on SDGVM NBP output for DcBl at site (54.417,

-0.75) (gC/m2). The solid lines are the mean main effects and the dotted lines show 95%

probability bounds due to emulation.

yk, the mean NBP is

m(yk) =
∑

t

γt(yk)mt(yk),

and the variance of NBP is

v(yk) =
∑

t

γt(yk)
2vt(yk) + 2

3
∑

t=1

4
∑

t′=t+1

γt(yk)γt′(yk)Ect,t′(yk). (5)

The variance (5) includes covariances Ect,t′(yk) between PFT outputs. These are non-zero

because the 3 site specific soil input values are common to all PFTs. For each pair of types

(t, t′), Ect,t′(yk) is a result of interpolating values calculated at the sample sites, as with the

means and variances. We now consider the calculation of Ect,t′(yk) at a sample site k. Suppose

the unknown input vector for PFT t at this site is denoted by Xkt. Then

Ect,t′(yk) = (E[V ar{fkt(Xkt) + fkt′(Xkt′)}] − Evt(yt) − Evt′(yt′)) /2,

where the term E[V ar{fkt(Xkt) + fkt′(Xkt′)}] can be calculated using the methods of §2 with

N = 2.
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Figure 5: Proportion of the output variance explained by soil parameters and plant parameters

for each sample site and each PFT. Sites are ordered as in Table 2.

The mean and standard deviation maps taking into account land cover are shown in Figures 7

and 8. The largest standard deviation for NBP occurs around site (54.417, -0.75) where there is a

36% proportion of deciduous broadleaf, according to LCM2000. The largest uncertainty in GPP

occurs in West Wales. Inspection of the land cover map shows a 78.5% coverage of grassland and

10% DcBl, both of which produce high standard deviations in this region. Overall the differences

between the corrected maps in Figures 7 and 8 and their plug-in counterparts (Figure 1) appear

small. The most significant corrections of around -40 for NBP occur in small regions close to

sites (54.417, -0.75), (53.75, -2.75) and (52.417, -2.25). For GPP there are negative corrections

of approximately -100 to -150 in these regions.

3.5 Expert elicitation for between-site correlations

In order to quantify uncertainty about aggregates across E&W we need to identify correlations

between sites. We have assumed independence between different inputs, but correlations arise

between the values of a given input at different sites. For instance, if the expert were able to

learn the value of the leaf lifespan for the DcBl PFT in one site, then it would influence his

beliefs about the value of this parameter at another site. The principal reason for this is the

common uncertainty about leaf lifespans for deciduous broadleaf species. There have been few
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Figure 6: Percentage of land covered by each plant functional type, based on the LCM2000 land

cover map.

recorded measurements of this parameter, covering very few species. The possibility of such

correlations was considered for each input, and the following cases were identified.

Soil inputs. Because detailed site-specific data (typically, samples of around 190 measurements)

are available on soil inputs, it was deemed appropriate to treat these inputs as independent

across sites.

Constants. At the other extreme are unknown constants that are common to all sites and have

a single distribution. Minimum stem growth rate falls into this category (although it is not an

influential parameter in any of the PFTs). It has no spatial variability, so we set the correlation

to 1 between any pair of sites.

All other inputs except EvNl leaf lifespan. For all other PFT inputs x i, the expert felt that

there would be some spatial variability but also correlation. In the case of DcBl leaf lifespan, for

instance, there is correlation due to uncertainty about the typical value that this parameter would

take for deciduous broadleaf species, but there will also be spatial variability due to variations

in the mix of species present at different sites. Although in principle sites close together might

have higher correlations, it would have been impractical to elicit such a complex structure, and

so a common correlation τ i was assumed between all pairs of sites. For such an input, let x̄ i

denote the average value of x i over E&W. In order to find a suitable value for τ i, the expert

was asked to provide a possible range for x̄ i, and from this the mean mexp and variance vexp
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Figure 7: Mean and standard deviation of NBP using the LCM2000 land cover weighting. Dots

indicate the 33 sample sites.

for his distribution for x̄ i were inferred as in §3.1. The individual grid-cell mean and variance

of x i, denoted by m1 and v1, are already known from the elicitation of §3.1. If we assume that

x i ∼ N(m1, v1) and Cor(x i, x
′

i) = τ i for values at different grid-cells, and that the number of

values averaged to obtain x̄ i is N , then E(x̄ i) = m1 and

V ar(x̄ i) =
1

N2

(

N
∑

k=1

v1 + 2
N−1
∑

k=1

N
∑

k′=k+1

τ iv1

)

. (6)

By equating these to the expert’s mean mexp and variance vexp and solving we find m1 = mexp

and

τ i =
N(vexp/v1) − 1

N − 1
. (7)

This exercise was conducted for each influential vegetation input parameter. A default value

τ i = 0.5 was used for inputs deemed non-influential.

EvNl leaf lifespan. In the case of inputs whose uncertainty marginally is represented by a single

normal distribution, the above approach is adequate to identify joint normal distributions across

different sites with correlation coefficient τ i. However, for EvNl leaf lifespan a more complex

analysis is required to produce a joint distribution in the form of a mixture of normals. Details

are given in Appendix B.

17



-4 -2 0

lon

5
0

5
1

5
2

5
3

5
4

5
5

la
t

200 600 1000 1400

Mean GPP (gC/m2)

-4 -2 0

lon

5
0

5
1

5
2

5
3

5
4

5
5

la
t

0 50 100 150

Standard deviation GPP (gC/m2)

Figure 8: Mean and standard deviation of GPP using the LCM2000 land cover weighting. Dots

indicate the 33 sample sites.

3.6 Inference for the E&W aggregates

The uncertainty analysis used to build the single PFT maps in §3.3 provided means and variances

for NBP at the 33 sample sites. In order to estimate the variance of aggregate NBP for the whole

of E&W, we need the correlations between any pair of grid-cells in E&W. To estimate these for

PFT t, we first used the methodology of §2 with q = 2 to estimate the variances of all pairwise

sums V ar{fkt(Xkt) + fk′t(Xk′t)}, for sample sites k, k′ = 1, . . . , 33 and k < k′. From these we

derived the sample site covariance matrix V test for the full set of 33 outputs, using the fact that

Cov(fkt(Xkt), fk′t(Xk′t)) = [V ar{fkt(Xkt)+fk′t(Xk′t)}−V ar{fkt(Xkt)}−V ar{fk′t(Xk′t)}]/2

and V ar{fkt(Xkt)} is already calculated as the variance at sample site k.

The following approximation model was then used to extrapolate from our representative

sites to the whole map for a single PFT, type t. Let Y t represent the vector of NBP values over

N = 707 E&W grid-cells of the tth PFT map. We assume that Y t is distributed approximately

as Y t ∼ NN (mt, V t) where mt = (mt(y1), . . . , mt(yN )) and

V t =













vt(y1) ρt

√

vt(y1)vt(y2) . . . ρt

√

vt(y1)vt(yN )

ρt

√

vt(y2)vt(y1)
. . .

...
...

. . . ρt

√

vt(yN−1)vt(yN )

ρt

√

vt(yN )vt(y1) . . . vt(yN )













. (8)
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By using (8) we do not build spatial correlation into the model, since an earlier study revealed

that the distance between grid-cells had little effect on the correlation.

Finally we selected values of ρt such that the sum of the terms in the sample site covariance

matrix V test for PFT t equalled the sum of elements in (8) with N = 33. This process was

repeated for t = 1, . . . , 4, based on the individual sample site emulators for type t, and produced

estimates ρ1 = 0.012 and ρ2 = 0.051, ρ3 = 0.006, ρ4 = 0.182 for grassland, crop, DcBl and EvNl

respectively. The correlations for DcBl, crop and grassland are extremely small, suggesting that

correlations in the plant functional type parameters do not induce correlations between outputs.

By combining the results from the four PFT maps and weighting according to the known

land cover proportions γt(yk) and areas ak of each grid-cell yk, we obtain the following for the

mean M∗ and variance V ∗ of the total NBP carbon flux:

M∗ =
4

∑

t=1

N
∑

k=1

akγt(yk)mt(yk)

and

V ∗ =
N

∑

k=1

a2
kv(yk) + 2

4
∑

t=1

{

ρt

N−1
∑

k=1

N
∑

k′=k+1

akak′γt(yk)γt(yk′)
√

vt(yk)vt(yk′)

}

(9)

to give M∗ = 7.6118 MtC (1 MtC = 1012 gC) and V ∗ = (0.6094 MtC)2. The mean is significantly

lower than the aggregate based on the uncorrected plug-in model runs, which is 9.0613 MtC.

The second term of (9) includes all between site covariances and the first term includes all the

between PFT covariances through (5). As soil inputs are independent between sites, there are

no between site covariances for distinct PFTs. Table 3 shows the contributions to these values

from each of the different PFTs and the covariances between PFTs.

Table 3: Contribution to the mean and variance of total NBP from different plant functional

types and covariances between these types.

PFT Plug-in estimate (Mt C) Mean (Mt C) Variance (Mt C)2

grassland 5.2793 4.6471 0.3229

crop 0.8525 0.4976 0.0380

DcBl 2.1319 1.6867 0.0087

EvNl 0.7976 0.7803 0.0007

covariances 0.0011

Total 9.0613 7.6118 0.3714

4 Discussion

We have illustrated a general methodology for creating uncertainty maps for carbon accounting

based on outputs from a mechanistic computer model. We have also shown how the overall

uncertainty can be partitioned into contributions from different plant functional types, each of

19



which can be further subdivided into individual parameter contributions at any given sample

site. This allows modellers to identify and quantify the most significant sources of uncertainty,

which should be helpful in the formulation of efficient strategies to reduce overall uncertainty.

The results presented here can be improved in a number of ways. The model itself is being

continuously improved as the modellers gain greater understanding of the processes involved and

also as a result of feedbacks provided by the statistical analysis presented here. It is important to

remember that these results are purely model based. We have quantified uncertainty in the model

output induced by uncertainties in soil and plant input parameters. The true physical value of

the carbon flux includes extra uncertainty due to inadequacies in the computer model, which

are not accounted for. The SDGVMd model does not account for grazing, for example, which

could lead to overestimation of NBP from grassland. These inadequacies should be reduced as

a result of the ongoing model improvements. If corresponding physical measurements became

available these could be used to learn about the model inadequacy, as in Kennedy and O’Hagan

(2001). Our results also assume that land cover is known for the year 2000 and that the climate

inputs are known. A natural extension of the work presented here is to consider the impact of

uncertainty in the land cover map. Given the mean and variance maps for individual PFTs, the

proportions of each PFT within a grid-cell could be treated as uncertain rather than as fixed at

the LCM2000 values. Daily climate data produced by the weather generator is assumed to be

known, and this too could lead to underestimation in the total uncertainty.

The estimate M∗ for the aggregate NBP is not directly comparable with other methods for

carbon accounting, which focus specifically on removal of CO2 by forests and include Scotland.

The comparable estimate of NBP is the sum of DcBl and EvNl, which from Table 3 is 2.467 MtC.

The value given in Milne and Cannell (2005) for the UK in 2000 is 4.173 MtC. From woodland

inventories of Great Britain (Forestry Commision (2002)) and Northern Ireland (Northern Ire-

land Forest Service (2001)) woodland in E&W accounted for approximately 50.76% of the UK

total in 2000. A simple scaling of the UK total therefore produces 2.118 MtC, which is smaller

than our estimate of 2.467 MtC and in the lower tail of our distribution (the standard deviation

is 0.0964 MtC). As already explained, incorporating uncertainty in land cover and other factors

will further increase uncertainty. Scaling our estimate to account for differences in total forest

area between the 2 methods gives 2.312 MtC. Discrepancies may also be partly due to model

inadequacy. The SDGVMd plug-in estimate from Table 3 is 2.93 MtC, which appears to be too

large.

Table 3 shows how the total flux and its uncertainty are clearly dominated by the contribu-

tion from grassland, even though both EvNl and DcBl generally have higher NBP per m2. For

example, the average mean NBP at the sample sites is 75.89 gC/m2 for grassland, 104.67 gC/m2

for DcBl and 172.63 gC/m2 for EvNl. The dominant influence of grassland in the total is due

to the fact that it has a much greater coverage than the forest types in the land cover map (see

Figure 6). Further efforts to reduce uncertainty should therefore concentrate on reducing uncer-

tainty in the input parameters for grassland. If uncertainty in the land cover map was included,

we might expect the variance contributions from EvNl and DcBl to increase substantially.

Included in the variance calculation V ∗ is a contribution from the uncertainty due to the

interpolation between sample sites. This accounts for 11.2% of the variance. Additional sample

sites could be added in regions where the maps show high interpolation uncertainty to reduce

20



this contribution to the variance.

The parameters having the greatest impact on NBP output vary between PFTs. For DcBl,

bulk density and leaf lifespan are the key parameters which explain most variation in the output.

The main effects plotted in Figure 4 highlight something that needs further investigation, in

that plants are dying within SDGVMd for large (but realistic) values of soil bulk density. This

suggests a weakness in the soil process modelling within SDGVMd which must be addressed.

The particular processes that operate on organic soils are also absent from SDGVMd, and this

is a direction for future model development.

For EvNl, a range of parameters make substantial contributions to the output variance,

although bulk density and soil clay are the dominant ones.

For grassland and crop PFTs, the soil parameters are less influential, although the effect

of soil bulk density is still substantial. These are the PFTs contributing most to the variance

of the carbon flux, so it is important to understand and verify the input-output relationships.

Crops and grassland are better able to adapt to changes in water holding capacity of the soil,

so we would expect these PFTs to be less dependent than trees on soil parameters.
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Appendix A: Emulation of computer outputs

Here we give a brief summary of the emulation process based on a Gaussian process model. A

more extensive general discussion on emulation of computer models can be found in Kennedy

and O’Hagan (2001). To simplify notation here we use subscript k for output k, but we could

also use kt to refer to the output representing vegetation type t at site k. For a function with

p-dimensional input vector x, we assume the stationary Gaussian process prior model

[

fk(·) | βk,σk, rk

]

∼ N
(

h(·)T βk, σ
2
kck(·, ·)

)

,

where the correlation function has the product form

ck(x, x′) =

p
∏

i=1

exp
{

−rk i(x i − x i
′)2

}

.

The vector rk = (rk 1, . . . , rk p) determines the roughness in output k as a function of each

input. Values of rk are found by maximising the posterior density p(rk | dk) given data dk. We

choose regression functions h(x) = (1, x 1, . . . , x p)
T , to account explicitly for the output having

a priori an overall mean and a linear trend in each of the inputs.

We shall denote by m∗

k(·) and v∗k(·, ·) the marginal posterior mean and covariance functions

for the emulator of the kth output fk(·). Conditional on the observed code data, comprising
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input sets {s1, . . . , sn} and corresponding outputs dk = fk(s1), . . . , fk(sn), these are given by

m∗

k(x) = h(x)T β̂k + tk(x)T gk

and

v∗k(x, x′) = σ̂k
2{ck(x, x′) − tk(x)T A−1

k tk(x
′)

+(h(x) − HT A−1
k tk(x))T (HT A−1

k H)−1(h(x′) − HT A−1
k tk(x

′))},

where tT
k (·) =

[

ck(·, s1), · · · , ck(·, sn)
]

, HT =
[

h(s1), · · · , h(sn)
]

, Ak = [ck(si, sj)] ∈ Rn,n,

β̂k =
(

HT A−1
k H

)

−1
HT A−1

k dk is the estimated vector of linear regression coefficients, gk =

A−1
k (dk − Hβ̂k) and σ̂2

k = dT
k {A

−1
k − A−1

k H
(

HT A−1
k H

)

−1
HT A−1

k }dk.

Appendix B: Normal mixtures for parameter uncertainty

The elicited distributions for individual uncertain model inputs are specified in Tables 1 and 2.

The expert did not feel that acquiring more information about any of the inputs would materially

change his beliefs about the others, so different inputs were assumed to be independent. However,

we need to consider correlation between the different values that the same inputs might take at

different sites, as discussed in §3.5. To simplify notation here we use subscript k to index output

k, but we could also use kt to refer to the output representing vegetation type t at site k. We

denote the marginal distribution of input i at site (i.e. output) k by

Gk i ∼

q i
∑

u=1

αu
iN(mu

k i, v
u
k i), (10)

where
∑q i

u=1 αu
i = 1 for i = 1, . . . , p. Superscripts u or u′ will be used throughout to index

components in a mixture distribution. The number of mixture components, q i, is 1 for all

inputs except EvNl leaf lifespan, for which q i = 5. The values of mu
k i and vu

k i are given in

Tables 1 (noting that for the PFT parameters these means and variances are the same for all

sites) and 2. The independence between inputs means that for site k the distribution Gk is the

product
∏p

i=1 Gk i.

As discussed in §3.5, independence was also assumed between the soil inputs in different sites,

but there is correlation between the values of PFT inputs across sites. For a PFT input i whose

uncertainty is represented by a single normal distribution, it is straightforward to introduce a

correlation τ i, which was set to 1 for inputs that represent constants taking the same value in

each site, to 0.5 for other non-influential PFT inputs, or to a suitable value obtained through

eliciting the expert’s beliefs about the E&W mean x̄ i. However, some thought is needed to

model the joint distribution of values of EvNl leaf lifespan across sites. The mixture distribution

marginally reflects the fact that evergreen leaves may have a lifespan of several years. It would

not have been appropriate to model the joint distribution Gkk′ i for outputs k and k′ by a

mixture of 5 bivariate normal components with margins the 5 components of the mixture given

in Table 1, because this would imply lifetimes in both sites extending for the same number of

years. Instead, the joint distribution was assumed to be a mixture of 25 terms. In general, we

22



write the joint distribution for any input i at sites k and k′ by the mixture

Gkk′ i ∼

q i
∑

u=1

q i
∑

u′=1

α
(uu′)
i N

((

mu
k i

mu′

k′ i

)

,

(

vu
k i τ i

√

(vu
k iv

u′

k′ i)

τ i

√

(vu
k iv

u′

k′ i) vu′

k′ i

))

, (11)

although for all inputs except for EvNl leaf lifespan, this mixture is degenerate. Independence

between inputs then leads to the representation of the joint distribution Gkk′ as a product of

bivariate Normal mixtures Gkk′(x, x′) =
∏p

i=1 Gkk′ i(x i, x
′

i).

Note that the q2
i-component mixture (11) is constructed so that its marginal distributions

agree with the q i-component mixture (10), provided that the coefficients in (11) have the prop-

erty that
∑q i

u′=1 α
(uu′)
i = αu

i and by symmetry α
(uu′)
i = α

(u′u)
i for i = 1, . . . , p. The parameter

τ i is the same in all of the mixture components. More generally, it could be allowed to vary,

but this is unnecessary for the degenerate mixtures and in the case of EvNl leaf lifespan the

common value reflects the expert’s view (discussed in §3.1) that uncertainty about this input

could be considered in terms of independent distributions for the number of years and the day

number within the year.

We now consider how to specify the weights α
(uu′)
i for the mixture components for EvNl leaf

lifespan. It would not be appropriate to assume independence between the numbers of years

at the two sites, so we cannot simply set α
(uu′)
i = αu

iα
u′

i . Recall from Table 1 that the distri-

bution of individual values x i of leaf lifespan at the grid-cell level is a five-component normal

mixture. The five mixing proportions themselves constitute a discrete probability distribution,

which, if there were any advantage in doing so, could be specified (in many ways) by discretiza-

tion of a continuous distribution. For example, we could take a standard Normal distribution,

partition the line into five intervals and choose the end-points of the intervals in such a way

that the probabilities ascribed to the intervals by the Normal distribution were the five mixing

proportions. In fact, this construction gives a simple basis for the generation of the bivariate

mixing proportions α
(uu′)
i . Take a bivariate Normal distribution with standard margins and a

correlation τα, and find the probability content of rectangles formed by the Cartesian product

of the five linear intervals above. For each value of τα the resulting discrete bivariate distribu-

tion has the properties required for the α
(uu′)
i in Gkk′ i: symmetry and reduction to the correct

marginal form. The means and variances of the mixture components in Gkk′ i are determined

by the earlier marginal specifications (Table 1) and are the same for all sites, so mu
k i = mu

k′ i

and vu
k i = vu

k′ i for u = 1, . . . , 5 in (11). Thus by use of these values for the α
(uu′)
i and the means

and variances from Table 1, the joint distribution is specified up to the value of the correlation

coefficient τα.

We have now formulated the joint distribution in terms of two correlation coefficients, τ i

representing correlation in the numbers of days within the year and τα representing correlation

between the numbers of years. To identify values for these we have only the expert’s expressed

variance for the overall E&W average value x̄ i for EvNl leaf lifespan, which was 48, 586. This

correlation is primarily driven by τα, so we simply fixed τ i = 0.5 and chose τα to match the
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elicited variance of x̄ i, which is given by

V ar(x̄ i) =
1

N2

{

N
∑

k=1

V ark(x i) (12)

+2
N−1
∑

k=1

N
∑

k′=k+1





5
∑

u=1

5
∑

u′=1

α
(uu′)
i (τ i

√

(vu
k iv

u′

k′ i) + mu
k im

u′

k′ i) −

(

5
∑

u=1

αu
im

u
k′ i

)2




}

,

where

V ark(x i) =

5
∑

u=1

αu
i{v

u
k′ i + (mu

k i)
2} −

(

5
∑

u=1

αu
im

u
k i

)2

(13)

is the marginal variance of the single site leaf lifespan. The fitted value of τα is 0.27.

Appendix C: Closed forms for the integrals

The integrals developed in this appendix are for the case of aggregation over k for a single PFT,

and we use subscript k for site k. Integrals required for aggregation over PFTs (at a fixed site

k) are similar, but subscript k would be replaced by kt, for example, and summation is over t.

In §2 the mean and variance of the aggregate output, for the special case of aggregating over q

sites for a fixed PFT, are expressed as

M = E(F | f1, . . . , fq) =

q
∑

k=1

∫

fk(x) dGk(x),

V = Var(F | f1, . . . , fq) = M2 − M2,

where

M2 = E(F 2 | f1, . . . , fq) =

q
∑

k=1

∫

fk(x)2 dGk(x)

+2

q−1
∑

k=1

q
∑

k′=k+1

∫

fk(x)fk′(x′) dGkk′(x,x′).

The mean and variance of M with respect to the distribution of the unknown code can be

expressed in terms of the emulator means and covariances. The mean is

E(M) =

q
∑

k=1

∫

m∗

k(x) dGk(x) =

q
∑

k=1

(β̂
T

k Rk + gT
k T k),

where

Rk =

∫

h(x) dGk(x), T k =

∫

tk(x) dGk(x).
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The variance of M is

Var(M) =

q
∑

k=1

∫

v∗k(x, x′) dGk(x)dGk(x
′)

=

q
∑

k=1

σ̂2
k

{

Uk − T kA
−1
k T k +

(

Rk − HT A−1
k T k

)T (

HT A−1
k H

)

−1
·

·
(

Rk − HT A−1
k T k

)}

,

where

Uk =

∫ ∫

c(x, x′) dGk(x) dGk(x
′).

The emulator variance of V is complicated and is not given here. The mean of V is given by

E(V ) = E(M2) − Var(M) − E(M)2,

where

E(M2) =

q
∑

k=1

∫

{v∗k(x, x) + m∗

k(x)2} dGk(x)

+2

q−1
∑

k=1

q
∑

k′=k+1

∫ ∫

m∗

k(x)m∗

k′(x′) dGkk′(x,x′)

=

q
∑

k=1

{

σ̂2
k(1 − tr(A−1

k P k) + tr{(HT A−1
k H)−1(Qk − SkA

−1
k H

−HT A−1
k ST

k + HT A−1
k P kA

−1
k H)}) + β̂

T

k Qkβ̂k + 2β̂
T

k Skgk + gT
k P kgk

}

+2

q−1
∑

k=1

q
∑

k′=k+1

{

β̂
T

k Qkk′β̂k′ + β̂
T

k Skk′gk′ + β̂
T

k′Sk′kgk + gT
k P kk′gk′

}

,

in terms of the integrals

Qk =

∫

h(x)h(x)T dGk(x), Qkk′ =

∫ ∫

h(x)h(x′)T dGkk′(x,x′),

Sk =

∫

h(x)tk(x)T dGk(x), Skk′ =

∫ ∫

h(x)tk′(x′)T dGkk′(x, x′),

P k =

∫

tk(x)tk(x)T dGk(x), P kk′ =

∫ ∫

tk(x)tk′(x′)T dGkk′(x,x′).

The forms chosen for h(·), Gk and Gkk′ allow us to express these integrals analytically. The

general class of input distributions we use is described in Appendix B.

The closed forms for Rk, T k, Sk, Qk, P k and Uk require only the marginal distribution Gk.

To simplify the notation below we let m∗

k i =
∑q i

u=1 αu
im

u
k i denote the mean value of input i for

output k.

The integrals are computed as follows:

Rk = (1,m∗

k 1 . . . ,m∗

k p)
T ,
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[T k]j = tkj =

p
∏

i=1

q i
∑

u=1

αu
i(1 + 2rk iv

u
k i)

−1/2 exp

{

−
rk i(sj,i − mu

k i)
2

1 + 2rk iv
u
k i

}

,

where sj,i denotes the ith element of the jth data input point sj ,

Qk =



















1 m∗

k 1 . . . m∗

k p

m∗

k 1

∑q 1

u=1 αu
1{v

u
k 1 + (mu

k 1)
2} m∗

k 1m
∗

k 2 . . . m∗

k 1m
∗

k p
... m∗

k 2m
∗

k 1

. . .
...

...
. . .

...

m∗

k p m∗

k pm
∗

k 1 . . .
∑q p

u=1 αu
p{v

u
k p + (mu

k p)
2}



















.

For i = 1 we have

[Sk]ij = tkj

and for h = 1, . . . , p

[Sk]h+1,j =

p
∏

i=1

i 6=h

q i
∑

u=1

αu
i(1 + 2rk iv

u
k i)

−1/2 exp

{

−
rk i(m

u
k i − sj,i)

2

1 + 2rk iv
u
k i

}

×

q h
∑

u=1

αu
h(1 + 2rk hvu

k h)−1/2 exp

{

−
rk h(mu

k h − sj,h)2

1 + 2rk hvu
k h

}

mu
k h + 2rk hvu

k hsj,h

1 + 2rk hvu
k h

.

The (h, j)th element of P k is

[P k]hj =

p
∏

i=1

q i
∑

u=1

αu
i(1 + 4rk iv

u
k i)

−1/2

× exp

[

−
1

2

{

rk i(sh,i − sj,i)
2 +

4rk i

1 + 4rk iv
u
k i

(

mu
k i −

sh,i + sj,i

2

)2
}]

.

The remaining integrals Qkk′ , Skk′ and P kk′ depend on the joint distribution Gkk′ of inputs

for two sites k, k′, which is formulated in Appendix B.

Qkk′ =































1 m∗

k′ 1 . . . m∗

k′ p−1 m∗

k′ p

m∗

k 1 Σ∗

1(τ 1) m∗

k 1m
∗

k′ 2 . . . m∗

k 1m
∗

k′ p
... m∗

k 2m
∗

k′ 1

. . .
...

...
...

m∗

k p−1

. . . m∗

k p−1m
∗

k′ p

m∗

k p . . . m∗

k pm
∗

k′ p−1 Σ∗

p(τ p)






























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where Σ∗

i(τ i) =
∑q i

u=1

∑q i

u′=1 α
(uu′)
i (τ i

√

(vu
k iv

u′

k′ i) + mu
k im

u′

k′ i),

[Skk′ ]h+1,j =

p
∏

i=1

i 6=h

q i
∑

u=1

αu
i(1 + 2rk′ iv

u
k′ i)

−1/2 exp

{

−
rk′ i(m

u
k′ i − sj,i)

2

1 + 2rk′ iv
u
k′ i

}

×

q h
∑

u=1

q h
∑

u′=1

[

α
(uu′)
h (1 + 2rk′ hvu′

k′ h)−1/2 exp

{

−
rk′ h(mu′

k′ h − sj,h)2

1 + 2rk′ hvu′

k′ h

}

×

{

mu
k h +

2rk′ hτ h

√

(vu
k hvu′

k′ h)(sj,h − mu′

k′ h)

1 + 2rk′ hvu′

k′ h

}]

for h = 1, . . . , p. For h = 1 we have

[Skk′ ]hj = tk′j . (14)

Finally, the (h, j)th element of P kk′ is

[P kk′ ]hj =

p
∏

i=1

q i
∑

u=1

q i
∑

u′=1

α
(uu′)
i

(

(1 + 2rk iv
u
k i(1 − τ i))(1 + 2rk′ iv

u′

k′ i(1 + τ i)) − 2τ i(rk′ iv
u′

k′ i − rk iv
u
k i)

)

−1/2

× exp

[

−rk irk′ i/{(1 + 2rk iv
u
k i(1 − τ i))(1 + 2rk′ iv

u′

k′ i(1 + τ i)) − 2τ i(rk′ iv
u′

k′ i − rk iv
u
k i)}

×[(1 + 2rk′ iv
u′

k′ i)(m
u
k i − sh,i)

2/rk′ i + (1 + 2rk iv
u
k i)(m

u′

k′ i − sj,i)
2/rk i

−4τ i

√

vu
k iv

u′

k′ i(m
u
k i − sh,i)(m

u′

k′ i − sj,i)]

]

.
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