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Abstract—This paper presents a new modelling and control fuzzy-based framework validated with 

real-time experiments on human participants experiencing stress via mental arithmetic cognitive 

tasks identified through psycho-physiological markers. The ultimate aim of the modelling/control 

framework is to prevent performance breakdown in human-computer interactive systems with a 

special focus on human performance. Two designed modelling/control experiments which consist of 

carrying-out arithmetic operations of varying difficulty levels were performed by 10 participants 

(operators) in the study. With this new technique, modelling is achieved through a new adaptive, 

self-organizing and interpretable modelling framework based on General Type-2 Fuzzy sets. This 

framework is able to learn in real-time through the implementation of a re-structured 

performance-learning algorithm that identifies important features in the data without the need for 

prior training. The information learnt by the model is later exploited via an Energy Model Based 

Controller that infers adequate control actions by changing the difficulty level of the arithmetic 

operations in the human-computer-interaction system; these actions being based on the most current 

psycho-physiological state of the subject under study. The real-time implementation of the proposed 

modelling and control configurations for the human-machine-interaction under study shows superior 

performance as compared to other forms of modelling and control, with minimal intervention in 
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terms of model re-training or parameter re-tuning to deal with uncertainties, disturbances and 

inter/intra-subject parameter variability. 

 

Index Terms—Type 2 fuzzy sets, human machine interaction, psycho-physiological markers, 

mental stress, modelling, control, real time, adaptive. 

 

I. INTRODUCTION 

Today’s computer systems have changed the way we think and have allowed for path-opening to many 

paradigm changes in diverse areas. We constantly rely on these computer-based systems and as a result we 

delegate to them many of the other activities we took responsibility for not so long ago. 

Thanks to this revolutionary computational power, automation systems are finding their way into all 

devices thinkable, ranging from consumer-friendly electronic devices to very specialized equipment, hence 

breaking the barriers of science, e.g. the hadron collider at CERN, or the electronic devices for space 

exploration [1]. 

For the community working with control systems this has meant a shift from traditional approaches for 

modelling and control mainly based on mathematics and laws of nature, towards data-driven approaches 

that rely on simple ‘mining’ algorithms powered by very fast and intensive computations. Many 

techniques, such as artificial neural networks and fuzzy logic systems, exist that take advantage of this 

change in paradigm facilitated by the advancement in computational technologies. 

There are however many barriers yet to be broken and the exploration of Human-Machine Interaction 

(HMI) systems is one of them. As we strive to automate ever more of the machines we interact with it is 

also very important to acknowledge their psychological and physiological effect on us in order to 

completely understand our interaction with them. The role of the human should be given a special attention 

[2]. Though albeit representing a very ‘tricky’ task since the variables and features in these biological 
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systems are not fully understood and vary significantly under similar conditions given their high level of 

complexity. 

For safety critical systems (e.g. nuclear power plants), the adaptive capabilities and reasoning of human 

operators are often required to play an intrinsic role in the HMI system that cannot be (partially or fully) 

automated [3]. The decision on which tasks to automate and which tasks to leave to the human operator is 

indeed concomitantly important and challenging [4], and the mental and physical state of the operator 

should be given special considerations [1, 5, 6]. 

Cautiously but confidently we find ourselves with ever more advanced and intelligent algorithms and 

techniques that are capable to self-adapt, self-organise and evolve as the systems they are called upon to 

monitor are themselves evolving. Data-driven automatic approaches are now able to begin to understand 

HMI systems by extracting meaningful features. A selection of such intelligent algorithms can be found in 

[7-15]. Most of these algorithms focus on learning in an off-line configuration [7, 8, 11-15], and lack highly 

desirable online adaptive features needed for HMI systems. The works presented in [9, 10] address 

real-time adaptive learning algorithms. In [10] an online learning system capable of generating and deleting 

rules for an adaptive fuzzy-neural control system has been presented and tested. A further development into 

a self-organizing adaptive system is presented in [9]. In this system, rules are added, replaced, deleted and 

the parameters of a Takagi-Sugeno fuzzy structure are recursively adapted, achieving identification and 

tracking control. Both works [9, 10], present innovative approaches for the design of online, 

self-organizing, adaptive and semi-interpretable modelling and control applied to non-linear systems. 

However, they do not provide a robust enough framework capable of truly describing and weighting 

uncertainty for systems with inter- and intra-parameter variability. 

The techniques in [7-15] (i.e., neural network approaches, support vector machines, clustering 

approaches, fuzzy logic systems), lack one or more of the following highly desirable features for HMI 

systems: 

• Adaptation: widely understood as the ability to restructure themselves in real-time in response to 
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changes in the system they monitor. 

• Handling of uncertainty: their ability to handle ill-defined systems with un-modelled dynamics. 

• Interpretability: to be able to easily translate what these models learn into rules understandable by 

humans. 

• Self-organization: their ability to learn by themselves and in real-time without the need for a training 

phase. 

As will be introduced in the development of this work, in order to close the loop of the HMI system 

under study (of operators performing mentally stressful arithmetic operations) it is necessary to address the 

above features to construct a fully functional system. 

The paper is organized as follows: Section II presents the Mental Arithmetic operations based experiment 

and evidence of its transferability to other HMI systems. Section III deals with the various features relating 

to the psycho-physiological signals used for this work. In Section IV a new Adaptive General Type-2 

Fuzzy C-Means (A-GT2-FCM) modelling system is presented. Section V addresses an Energy Model 

Based Controller (E-MBC) design procedure for decision-making. In Sections VI and VII results of the 

real-time experiments under the proposed modelling/control framework are compared to a benchmark 

Adaptive Neuro-Fuzzy Inference System (ANFIS) modelling and heuristic control. Conclusions relating to 

the claims made in this paper about the modelling and control framework for the HMI are drawn in the last 

section.  

II. MENTAL ARITHMETIC OPERATIONS EXPERIMENT 

A. Experimental background 

Mental Arithmetic (MA) was selected as the task to induce mental stress in the participants of this study. 

This task was selected following extensive research whereby several experimental frameworks were 

investigated and analysed [1]. The studied experimental frameworks included: the operation of a computer 

simulated automation-enhanced Cabin Air Management System (aCAMS) [3, 16], Stroop Colour Word 
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Testing, Mental Arithmetic (MA) operations, cold presser test, and coin stacking task, among many others 

[17-22]. 

The selected task in an experiment to induce mental stress is as important as the measured 

psycho-physiological markers themselves [1]. Because of this specific reason, it is very important to 

analyse the task effectiveness in producing a cognitive load in the participant. Additionally, it is important 

to consider other aspects such as: 

1. Its reproducibility; MA is a fully reproducible experiment, mainly due to its simplicity. 

2. Its representativeness of real-life Human Machine Interaction (HMI) systems. Experimental 

frameworks that are more accurate descriptions of real-life HMI systems have been performed in the past 

with the operation of transport vehicles [20, 21] or with complex computer simulations like in [3, 16]. 

Despite their match to the real world, they are usually difficult to reproduce and/or require training of 

participants. It is also important to note that economic costs are also a constraint in these cases. MA is 

intuitive and requires no training, making it cheap to run. In [1, 18, 19, 22] the effect on commonly used 

psycho-physiological markers show that MA produces similar effects to the ones present in other 

experiments such as those described in [3, 16] with the aCAMS simulator. 

3. Its validation property to ensure it is comparable with state-of-the-art research in the area; MA 

operations have been successfully used in the past in [1, 18, 19, 22]. When compared with the commonly 

used Stroop Colour Word Testing, studies presented in [17-19] in fact position MA as a better mental 

stressor. 

B. Hardware and software for experiment 

For the production of psycho-physiological markers, three main measurements were taken: 

electro-encephalogram (EEG), electro-cardiogram (ECG) and pupil size. EEG and ECG were acquired 

using the ActiveTwo System by BioSemi. Electro-oculogram measurements were also taken for future 

experiments on EEG noise recovery. The experimental framework utilised for the acquisition of these 

signals was the same as the one presented in [3, 16]. With regards to the pupil size acquisition, a 
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GAZEPOINT GP3 Eye Tracker was used similarly as in [1, 22]. Fig. 1 depicts a participant in the study 

while connected to the acquisition system. 

 

 

Fig. 1.  Picture of a participant in the study while connected to the ActiveTwo Biosemi box for acquisition of EEG, ECG and 

EOG. Pupil size was acquired with the GAZEPOINT GP3 Eye Tracker. 

 

For the MA experiment, a graphical user interface (GUI) was designed in MATLAB®. Data acquisition 

was carried-out for EEG, ECG and EOG with this software over TCP/IP protocol, communicating with the 

ActiView LabVIEW™-based software provided by BioSemi. The signals produced with this hardware 

were acquired in a decimated 256 Hz frequency. For the pupil size, communication was also achieved 

through TCP/IP with the use of the GAZEPOINT GP3 Eye Tracker server on a 60 Hz native frequency [1]. 

The GUI also supported, in addition to the acquisition of these signals, the experimental deployment of 

arithmetic operations at controlled intervals and with varying difficulty levels, the psycho-physiological 

markers real-time computation, the adaptive real-time model algorithm and the model-based controllers. 

Fig. 2 shows an image of the user-end GUI designed in MATLAB® for the MA experiment. 

C. Configuration of experiment  

Three basic configurations of experiments were performed. For the first two configurations (Modelling 

Experiments 1 and 2), the psycho-physiological markers were computed and used as inputs to the Adaptive 

General Type-2 Fuzzy C-Means (A-GT2-FCM) modelling framework and to participant-specific Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS) modelling framework [23] (which will be later used for 
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comparison) for the production of Predicted Accuracy Performance (PAP). The last configuration (Control 

Experiments) added the designed Energy Model-Based Controller (E-MBC) and participant-specific 

ANFIS Controllers (ANFIS-C) for this HMI system (see Section VI). 

Modelling Experiments 1 (ME-1) and 2 (ME-2) consisted of four (4) phases of 180 s each and were 

performed one after the other in the same session. For ME-1 these 4 consecutive phases were of 

incremental difficulty levels (!!), evolving from !!=1 (relatively easy) to !!=4 (most difficult). !!=1  

consisted of summations of two random numbers of 1 to 2 digits with participants given 10 s to provide an 

answer (see Fig. 2(b)), !!=2 was similar to !!=1 with the difference that participants had only 5 s to 

provide an answer. !!=3 and !!=4 followed this same pattern but with numbers of 2 to 3 digits and with 

participants having 10 s and 5 s to provide an answer respectively (see Fig. 2(c)). All participants 

experienced a decreased performance at !!=4. For ME-2 the difficulty level phases were ‘scrambled’. The 

order of the difficulty levels in ME-2 was changed to block the effect of fatigue and to evaluate the order 

change effect in the psycho-physiological markers. Fig. 3 is a graph representing the difficulty levels 

plotted against time for ME-1 and ME-2. 

 

 

Fig. 2.  Graphical user interface software designed in MATLAB® for the MA experiment. (a) Shows the GUI before the 

hardware is connected (ActiView box and eye-tracker). (b) Shows the GUI during the experiment on !!=1. (c) Shows the GUI 

during the experiment on !!=4. 
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Fig. 3. Difficulty level for Modelling Experiment 1 (increasing difficulty), top plot. Modelling Experiment 2 (scrambled 

difficulty), bottom plot. 

III. PSYCHO-PHYSIOLOGICAL MARKERS 

A. Selection and calculation of psycho-physiological markers 

The acquisition of psycho-physiological signals from the body surface, should provide meaningful 

responses to stressful events [24]. This way, it is possible to use these signals to identify the presence of 

mental and/or physical stressors. 

Mental stress has been identified in the past through the acquisition of cardiovascular bodily signals such 

as Heart Rate Variability (HRV) [21, 25, 26]. Cognitive processes (e.g., planning, attention, reasoning, 

problem solving and decision making) also correlate strongly with mental stress [27] and are assumed to 

emanate from the activity of the prefrontal cortex area of the brain. Midline theta activity in this region 

through Gevins’ (1997) Task Load Index (TLI) [28, 29] was found to correlate with mental stress in 

complex task environments [30, 31]. 

A previous study performed in the ‘Human Performance Laboratory’ at the University of Sheffield found 

evidence of sufficient correlation between HRV and TLI with a performance index calculated from the 

aCAMS simulation model [3, 16]. 

Pupil size change and pupil size change acceleration have been linked with cognitive load in human 

computer interaction studies for Stroop Colour Word Testing experiments in [32-34]. More recently, a 

study performed also at the ‘Human Performance Laboratory’ used these pupil size markers together with 

Heart-Rate (HR) in a MA experiment [22] following a statistical correlation study of incremental levels of 

mental stress to evaluate the power of this marker in [1]. The study in [1] linked the Pupil Diameter Marker 
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(PDM) with mental stress originated from the same MA experimental configuration as the one presented in 

this work. 

This work combines five key and previously successful markers for the detection of mental stress in a 

MA experiment. Namely, Heart Rate Variability 1 (HRV1), Heart Rate Variability 2 (HRV2), Task Load 

Index 1 (TLI1), Task Load Index 2 (TLI2) and Pupil Diameter Marker (PDM). As already stated, every MA 

experiment lasted for 720 s. All markers were calculated with data collected within windows of 30 s and 

shifted every 1 s to obtain a total of 690 marker data samples. 

The computation process relating to the cardiovascular indices (e.g., HRV) was derived from the power 

spectrum analysis of the cardiac interval [16]. HRV1 is a marker that represents the 0.1 Hz component (e.g., 

in the frequency range from 0.07 Hz to 0.14 Hz) of the HR signal. For this work, it was calculated by 

averaging the power spectrum of HR collected during the 30 s period window. The marker HRV2 was 

calculated as the ratio between the standard deviation over the mean value of the HR in the same 30 s 

window. 

The TLI markers are based on the presence of high levels of theta activity at frontal midline sites and 

with attenuation of alpha power in parietal sites [16, 28]. These cognitive indices are defined as ���! !

!!!!∀ !!!!∀ and ���! ! !!!!∀! !!!!∀#!!∀#, where !! and !! relate to the theta-band (4 Hz to 7.5 Hz) and 

alpha-band (8 Hz to 12.5 Hz) powers of the EEG respectively. !!!!∀ and !!!!∀# represent the theta activities 

of the Fz and AFz electrode locations. The theta range power was calculated by averaging the power 

spectrum over the 30 s period. Similarly, !!!!∀ and !!!!∀#!!∀# are alpha activities of the Pz and the pool of 

CPz and POz electrode locations. [16] 

The PDM calculation was performed following the hardware considerations presented in [1] with respect 

to blinking and relative distance from the eye-tracker. The pupil size, which is normally measured in pixels 

from the image captured by the eye-tracker, was averaged in the same 30 s period window. 
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IV. ADAPTIVE GENERAL TYPE-2 FUZZY C-MEANS MODELLING 

Fuzzy logic is an established technique that is capable of handling uncertainties in the labelling of data in 

a transparent and simplified way by emulating the inference process that humans follow [35]. Fuzzy logic 

of Type-1 (T1FL) optimized with genetic algorithms was successfully used for the modelling and control of 

a HMI system for mental stress detection in [16]. The model presented in [16] was able to map input-output 

data with a general rule-base for all participants in the study. This successful result acknowledged the use 

of fuzzy systems for their ability to handle uncertainty in data to benefit the processing of predictions. 

However, a manual calibration was required before every experimental session due to the high variability 

in the scaling of the input psycho-physiological markers. This normalization process was required even 

when experiments were performed with the same participant, a fact derived from the important intra- and 

inter-parameter variability in humans. 

Type-2 Fuzzy Logic (T2FL) in contrast, is a generalizing construct able to characterize uncertainties with 

an additional level of uncertainty to T1FL [36-41]. Despite the introduction of this powerful 

bi-dimensionally-structured mapping arrangement, its use is still problematic when the output processing is 

concerned [36, 41, 42]. This is the reason why most applications use the reduced Interval Type-2 (IT2) 

fuzzy representation that simplifies the output processing by making the secondary membership equal to 1 

[36, 37, 43, 44]. In [3], an Interval Type-2 Fuzzy Logic (IT2FL) approach was used for the mental stress 

modelling of the data gathered in experiments presented in [16]. Results in [3] found more generalizing 

features than the T1FL version of [16], but retained the scaling problems of the T1FL experiment. 

Following these results it was quickly apparent that a more robust approach was needed to account for such 

parameter variability for a truly generalizing model. Because of the varying nature of the 

psycho-physiological markers used, and in order to acknowledge the time-dependent variations in the 

markers (e.g., due to fatigue or changes in temperature), a self-organizing and adaptive system capable of 

handling uncertainty was required. For these reasons, a new modelling framework named Adaptive General 

Type-2 Fuzzy C-Means (A-GT2-FCM) was devised to take advantage of the mapping capability of General 
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Type-2 Fuzzy Logic (GT2FL) that can fully represent uncertainty [36-38, 40], the simplicity of Fuzzy 

C-Means (FCM) clustering algorithm to find relationships in data for rule generation [45], and the adaptive 

learning approach of negative Reinforcement Learning (RL) [46] to weight the uncertainty in the data for 

obtaining ‘crisp’ predictions. The idea behind A-GT2-FCM is one of a data-driven modelling framework 

capable of learning and storing information in real-time without the need for off-line training. The 

algorithm is based on a tri-dimensional rule-base R (equation (1)) whose first dimension (row) corresponds 

to the learned rules, its second dimension (column) corresponds to input and output variable mappings and 

the third dimension represents the uncertainty in the data. Part of the rule-base is the SM bi-dimensional 

matrix (see equation (2) below) that holds the information regarding the weighting of the modelled 

uncertainty: 

! !

!!!!! !!∀!! ! ! !!!!!!!! ! ! !!!!

!!∀∀!! !!!∀! ! ! !!!!!!!! ! ! !!∀

!

!!!!! !!!∀! ! ! !!!!!!!! ! ! !!!
!!!∀! !!∀∀! ! ! !!!!!!!! ! ! !!∀!

!!∀!!! !!!!! ! ! !!!!!!!! ! ! !!!

!

!!!∀! !!!!! ! ! !!!!!!!! ! ! !!!

!
!!!!! !!∀!! ! ! !!!!!!!! ! ! !!!!

!!∀!!! !!!!! ! ! !!!!!!!! ! ! !!!

!

!!!!! !!!!! ! ! !!!!!!!! ! ! !!∀

                                                    (1) 

�� !

��!!! ��!∀! ! ! ��!!!

��!∀!! ��!!! ! ! ��!!

!

��!!! ��!!! ! ! ��!∀

                                                          (2) 

where x represent inputs and y the output in a MISO system. r is a variable number of fuzzy rules, d is a 

constant number of input and output variables, and ! is the variable number that represents the size of the 

discrete uncertainty dimension. sm represent weights for each rule and each uncertainty dimension. 

The inference of an output follows the next steps: 

1. Calculate the uncertainty rule-base UNR of dimension r-by-d; this is where the use of the secondary 
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membership lies. This calculation accounts for the type-reduction process: 

��� !

���!!!���!∀! ! !���!!!!!! ! !���!
���!∀!!���!!! ! !���! !!! ! !���!

!

���!!!���!!! ! !���!!!!!! ! !���!

                                                 (3) 

���!∀ !
!∀!∀!!!∀#

!
!!!

!∀!∀

!

!!!

                                                                (4) 

where unx represents uncertainty-weighted inputs and uny the uncertainty weighted output in a MISO 

system. For equation (4), i=1,2,…,r; and j=1,2,…,d. 

2. Calculate the primary membership with the FCM algorithm and the UNR input reduced matrix: 

����� !

���!!!���!∀! ! !���!!!!!!!

���!∀!!���!!! ! !���! !!!

!

���!!!���!!! ! !���!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(5)!

���! ! !! ! �����!∀
!!!!

!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(6)!

!! !
!∀#!

!∀#!

!!

!!!!

!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(7)!

!! !
!!!!∀#!!!!!

!∀#!!!!!!!∀#!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(8)!

where UNRin is the UNR input reduced matrix, ! ! ! ��!! ��!! ! ! ��!!∀#!!!  is the input vector with the 

information needed to perform a prediction and is of size 1-by-(d-1), ���! is the 1-by-r distance vector, m is 

an FCM algorithm constant (i.e., usually equal to 2), !! is the 1-by-r membership vector and C is the 

normalized 1-by-r !. i=1,2,…,r; and n=1,2,…,(d-1). The FCM algorithm weights for each rule (see 

equation (7)), the sums of the squared distances between all UNRin elements and the current inputs (see 

equation (6)). This way, a normalized membership (see equation (8)) is computed for each rule. 

3. Obtain the PO (predicted output) with the UNR output reduced vector. This corresponds to the 

defuzzification process; 

������ !

���!
���!
!

���!

                                                                       (9)!
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�� !
!!!!∀#∃%&!

!
!!!

!!
!
!!!

                                                             (10) 

where UNRout is the UNR output reduced matrix and C is the normalized 1-by-r membership vector. 

The A-GT2-FCM modelling algorithm is a GT2FL approach since it utilizes two membership sets in the 

computation of a predicted output. The secondary membership weights inside SM are used to calculate an 

uncertainty type-reduced rule-base UNR (step 1) that is later used to calculate the primary membership 

(step 2). This membership is computed with the FCM algorithm and compares each new input vector I(t) to 

all the rules in UNR. Predictions (step 3, equation (10)) are based on the comparison of the current state 

with the information stored in the tri-dimensional rule-base (R and SM). The modelling algorithm utilizes a 

very simplified inference by avoiding the costly Mamdani-type rule interpretation process. This way, it is 

able to take advantage of the uncertainty present in the data without the need of a computationally 

expensive type-reduction process that represents the bottleneck of many approaches to GT2FLS [42]. It is 

nevertheless a very powerful algorithm because of its learning and adaptive capability reinterpreted from 

the ideas of Gao [10] and Qi [9], where an automatically generated model through the use of similarity 

indexes is used for learning in real-time. Fig. 4 shows a diagram of the A-GT2-FCM modelling framework. 

A numerical example explaining further the A-GT2-FCM algorithm is presented in the Appendix section. 

 

 

Fig. 4.  Diagram of the Adaptive General Type-2 Fuzzy C-Means, A-GT2-FCM, modelling framework with its p-learning 

algorithm routine. 

 

The learning algorithm in the A-GT2-FCM is named performance learning (p-learning) and is similar to 

the one in [9, 10] in its use of similarity measurements in the form of the inverse exponential function (see 
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equations (11)-(13) and (15)). The p-learning algorithm includes the incorporation of similarity 

measurements to account for uncertainty and uses negative RL to weight this uncertainty. Additionally, 

rules are not replaced as in [9] but combined or added to uncertainty dimension with the aid of two 

similarity thresholds. 

The p-learning algorithm operates with the following learning procedure: 

1. After prediction (see equations (3) to (10)) acquire the actual output O(t-1) and check the maximum 

error tolerance ET (constant defined by the user) to decide if p-learning should be applied. 

If ! ! ! �� ! ! ! ! !!! ! !! ! ��, 

apply p-learning (steps 2-13, equations (11) to (16) ) 

2. In p-learning, calculate similarity index vector RS of size 1-by-(r-1) (reinterpreted from [9])  among 

rules in uncertainty rule-base UNR. Use i=1,2,…,(r-1); j=1,2,…,d. This step identifies similar rules in the 

type-reduced rule-base (see equations (3) and (4)) using the constant rad (defined by the designer) as 

follows: 

��! ! !
!

!∀#!∀!!∀#!!!!!!

!!!∀#

!

!!!
                                                           (11) 

3. Check r dimension combination threshold CT (constant defined by the designer and constrained by 

1>CT>0). Obtain new R and SM using i=1,2,…,(r-1); j=1,2,…,d; k=1,2,…,!. If two or more rules are 

above the threshold, they are combined with !! and !! (constants defined by the designer). 

If ��! > ��, then 

!!∀# ! !! ! !!∀# ! !! ! ! !!! !∀ 

!!!∀ ! !! ! ��!∀ ! !! ! �� !!! ! 

!! ! !! ! ! 

Erase ! !!!  for all d and !. Erase ��!!!!! for all !. 

Reduce size of r by one 

4. Calculate similarity index matrix GS of size r-by-(g-1) (reinterpreted from [9])  among rules in 
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uncertainty dimension g with i=1,2,…,r; j=1,2,…,d; k=1,2,…,(!-1). With rad, defined similarly to step 2. 

��!∀ ! !
!

!!∀#!!!∀!!!!!

!!!∀#

!

!!!
                                                   (12) 

!!∀# ! ��!∀ ! !!∀# 

5. Check g dimension generality threshold GT (constant defined by the designer with the constraint 

1>CT>GT>0) and obtain new R and SM with i=1,2,…,r; j=1,2,…,d; k=1,2,…,(g-1). If two or more 

uncertainty rule-mappings are similar, then they are combined as in step 3. 

If ��!∀ > ��, 

!!∀# ! !! ! !!∀# ! !! ! !!∀ !!! ;  ��!!!!!! ! ! 

Erase !! !!!  for all d 

6. Resize the rule-base by eliminating unnecessary dimensions after similarity checks of steps 3 and 5. 

7. Calculate similarity index matrix DS of size r-by-d (reinterpreted from [9]) with past input-output 

vector !!! ! !! ! !! ! ! ! ! !!! ! !!!  of size 1-by-d, and rules in the rule-base. Use i=1,2,…,r; 

k=1,2,…,! with constant rad defined similarly to steps 2 and 4. 

��!∀ ! !
!

!!!!!∀#

!!!∀#

!

!!!
                                                       (13) 

8. Check combination threshold CT to identify if new data is similar to an existing rule in the rule-base. 

If true, combine with existing rule and obtain new R and SM by combining D with the combination 

constant σ (chosen by de designer under the constraint 0<σ<1). The combination constant σ expresses the 

degree of importance given to incoming new information. Use i=1,2,…,r; j=1,2,…,d; k=1,2,…,!. 

If ��!∀ > ��, 

!!∀# ! ! ! !! ! !! ! !! ! !!∀#;  ��!∀ ! ! ! !! ! !! ! ��!∀ 

9. Check generality threshold GT. Add to uncertainty of one of the rules and obtain new R and SM. In 

case no similar rule is found in the rule-base, but D vector is similar enough as defined by the GT, add D to 

the uncertainty dimension g. Use i=1,2,…,r; j=1,2,…,d; k=1,2,…,g. 
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Else if ��!∀>��, 

!!∀ !!! ! !!; ��!∀!!!!! ! ! 

10. If the input-output mapping D is different to existing rules and their uncertainty dimension, add as a 

new rule for all g and obtain the new R and SM. This step generates new data rule-representatives for the 

rule-base. Use i=1,2,…,r; j=1,2,…,d; k=1. 

Else, 

!!!!!!!! ! !; ��!!!!!! ! ! 

Increment size of r by one 

11. Re-order rule-base sorting by output (d) column for interpretability of model. 

12. Calculate the negative RL algorithm-based distance with the scaling constant α. Use i=1,2,…,r; 

j=1,2,…,d; k=1,2,…,g. 

!!∀# ! !!!! ! !!∀#!                                                                (14) 

If ! ! !, !!∀# ! !! ! !!∀#  

13. Calculate the RL based similarity matrix RLS of size r-by-g (reinterpreted from [9]). Use constant 

rad defined similarly to steps 2, 4 and 7. Obtain new SM matrix. In this step, equation (16) uses negative 

RL to reduce the weight of dissimilar representatives in dimension g. With this process and enough 

experienced data, the weights for less occurring cases stored in the uncertainty are reduced. This ensures 

that the predictions are more highly influenced by the most occurring cases when SM is used for the 

calculation of UNR (see equation (4)). Use i=1,2,…,r; k=1,2,…,g. 

���!∀ ! !
!

!!∀#

!!!∀#

!

!!!                                                           (15) 

��!∀ !
!∀!∀!!∀#!∀

!∀#!!!∀#!!
                                                               (16) 

As can be observed from the inference process and the p-learning process of the A-GT2-FCM modelling 

framework, the inter- and intra-parameter variabilities across humans in a HMI system are handled inside 

the model learning operation without the need for calibration processes. 
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In addition to the modelling operation itself, the A-GT2-FCM framework can be re-utilised for control 

purposes given that it holds meaningful information about the dynamics of the system it is supervising. In 

the next section (V), a detailed account of one of the ways in which the inference process of the 

A-GT2-FCM can be re-utilised for control is addressed. 

With regards to the modelling for the MA Operations Experiment of Section II, rule-base R was 

constructed with mappings of the psycho-physiological signal markers HRV1, HRV2, TLI1, TLI2 and PDM 

as inputs. The output was selected as PAP (predicted accuracy performance) for the MISO system. In this 

case R is of size r-by-6-by-g. d=6 is constant while r and g may change their size according to the 

p-learning algorithm and the definition of the constants: m=2, !! ! !! ! !!!, σ=0.2, rad=0.25, α=1, 

ET=0.05, CT=0.99 and GT=0.7. SM is of size r-by-d. 

V. ENERGY MODEL-BASED CONTROL 

The inference process to produce a predicted output for A-GT2-FCM is supported by the FCM 

Membership calculation (equations (6)-(8)), obtained by comparing the input vector !(!) with the stored 

information about the relationships between inputs and output learned through the p-learning algorithm 

(equations (11)-(16)). 

For the production of a control output, the inference process of A-GT2-FCM can be re-utilised with some 

simple modifications for its use as the Energy Model Based Controller (E-MBC). The model itself may not 

directly guide the system into the desired state accurately and because of this reason, an energy function, 

!!, has instead been defined. The idea is to maximize ‘energy’ extraction by directing the system to states 

where ‘maximum extraction of energy’ is achieved. With the aid of this energy function, an additional 

energy membership vector E will be used in combination with the FCM membership C (that directs the 

inference into the most probable state given present conditions) for the production of a control output. Fig. 

5 shows a diagram illustrating the E-MBC architecture. 

The inference for the calculation of a control output can be explained as follows: 
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1. Obtain an energy membership from the energy function !! evaluated at each rule in the rule-base. 

The energy function !! is defined by the designer to guide the controller towards the desired state and is an 

application specific function. 

!! ! !! ���!!!���!!! ! !���!!!!!!!���!                                        (17) 

Where E is the energy membership vector of size 1-by-r. unx and uny are uncertainty-weighted input and 

output elements from the uncertainty matrix UNR respectively; for a MISO system and i=1,2,…,r. The 

energy membership may use any combination of inputs and output as specified by the designer. 

2. Use the energy membership in combination with the FCM membership of equation (8) for the 

calculation of a control output CO: 

�� !
!!!!!!!!!!!!!!!!!!∀#∃!

!
!!!

!!!!!!!!!!!!!!!
!
!!!

                                                     (18) 

where UNRc is the uncertainty-weighted control variable vector of size r-by-1 from the uncertainty matrix 

UNR. C and E are the FCM and Energy memberships respectively (of size 1-by-r). The constant ! is a 

user-selected weight. As a requirement, the control variable should be used as an input in the rule-base to 

ensure its relationship to other variables is stored and learned. The calculation of the CO action re-uses the 

inference process defined for the modelling framework. 

For the control of the MA Operations Experiment (Section II), the control variable is represented by the 

Difficulty Level (DL) of the experiment. For this reason, this variable had to be added as another input for 

the model, with the mappings in R (e.g., of augmented size r-by-7-by-!) becoming (i=1,2,…,r; 

k=1,2,…,!): 

! ! !���!!∀ !���!!∀ !���!!∀ !���!!∀ !���!∀ !��!∀ ! ���!∀!                              (19) 

For E-MBC to operate efficiently and optimally it is important that the rule-base (e.g., R and SM) explores 

and learns from the main operation regions of the system. For the MA experiment specifically, this 

translates to having experienced all the four difficulty levels. Fig. 6 shows the diagram of the E-MBC that 

was designed for the MA experiment. E-MBC for the MA experiment used the following inference steps: 
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1. Use DL (e.g., one of the inputs to the model) as the control output. 

2. Use the PAP (e.g., the output of the model) as an input for the E-MBC. 

3. Calculate the UNR with equation (4) with R of equation (19) (i=1,2,…,r): 

��� ! !�����!! !�����!! !�����!! !�����!! !�����! !�����! ! ����!! 

4. Define the energy function (see equation (17)) as dependent on the predicted accuracy performance 

and the difficulty level: 

!! ���!�� ! ��� ! ��!! 

5. Calculate the energy membership and normalize it similarly to C in equation (8) (i=1,2,…,r): 

!!! !
�����! ! ����!

�����! ! ����!

!

!!!

 

!! !
!!! !min!!!!!!

max !!! !min!!!!!!
 

6. Calculate the FCM membership C following equations (6) to (8). 

7. Calculate the controller output using equation (18) with ! ! !!!. 

 

 

Fig. 5.  Diagram of the Energy Model Based Controller, E-MBC, showing how it uses the information included in the 

A-GT2-FCM model. 

 

The use of PAP and DL for guidance of the controller is driven by the fact that this control should 

maximize the difficulty level without compromising on accuracy. For every participant in the study, the 

ideal state (e.g., maximum DL without great loss in AP) will be influenced by his/her personal ability and 
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current state identified through the psycho-physiological markers and PAP with his derived A-GT2-FCM 

model. Another important feature of E-MBC designed for the MA experiment is its use of a 1 min 

hysteresis that ensures that control actions have enough time to have a causal effect on the participant and 

to avoid ‘bang-bang’ control effect. Fig. 7 shows the normalized outcomes for the defined energy function 

!!!���!��!. From Fig. 7 it can be observed how the ideal state corresponds to DL=4 with an AP=1. As 

will be seen in the Results of Section VI, this difficulty level proved to be a challenge for all participants, 

with a lower DL being their ideal level of performance. It is worth noting that performance is greatly 

marked by the psycho-physiological state of the participant (e.g., influenced by fatigue, time of day, 

engagement, etc.); this is the part where the knowledge of the model output contributes most. 

 

 

Fig. 6.  Diagram of the Energy Model Based Controller designed for the MA experiment. The diagram shows how E-MBC uses 

the A-GT2-FCM model information stored in its rule-base and the inclusion of a 1 min hysteresis effect. 

 

 

Fig. 7.  Membership for the energy function !!!���!��!. 

VI. RESULTS 

This section outlines and discusses the results relating to modelling and control using the A-GT2-FCM 

framework of Section IV applied to the MA operations-based experiments of Section II. To highlight the 
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true adaptive/self-organising properties of this framework, it is compared with participant-specific ANFIS 

fixed models (i.e. one model per participant trained with data from ME-1) for off-line predictions with the 

same data obtained during the real-time A-GT2-FCM modelling experiments. Following these results and 

an analysis of the adaptive properties of the proposed framework, results concerning the real-time 

application of the E-MBC of Section V are described in more detail. Additionally, an ANFIS 

prediction-based reference controller (ANFIS-C) is tested with an additional set of experimental real-time 

sessions of comparable characteristics (i.e., same disturbance configuration, same experimental length, 

same participants). It is worth noting at this stage that a ‘like for like’ comparison between results with the 

two designed controllers is not always possible since variations in the real-time experiments are hard and 

even impossible to reproduce. However, the evidence presented in this section should still be helpful in 

evaluating the properties of the compared control systems. 

The ANFIS participant-specific models were constructed with the MATLAB®-based ‘Adaptive 

Neuro-Fuzzy Modeling GUI’. The models were trained with real data from ME-1 and validated with real 

data from ME-2. The ANFIS structure was derived using subtractive clustering for each participant, leading 

to rule-bases of 10 to 12 fuzzy TSK-based rules. The inputs for the ANFIS model were !!∀#∃% ! 

!���! ! ! !���! ! !���! ! !���! ! !��� ! !��!! ! !!!. The output is the same as for the A-GT2-FCM 

modelling framework, i.e. PAP(t). The ANFIS model parameters were trained with the hybrid off-line 

learning algorithm available in the MATLAB® Fuzzy Logic Toolbox™. 

A. Modelling results 

As described in Section II one experimental session with two real-time modelling experiments was 

performed for every participant in the study. The first experiment consisted of an incremental difficulty 

configuration while the second consisted of a scrambled difficulty configuration as illustrated in Fig. 3. 

For the first prediction to be obtained from A-GT2-FCM, an initial ‘dummy’ rule was included which 

ensured that the first prediction was of an accuracy of 1. Afterwards, the p-learning algorithm took over and 

elicited new meaningful fuzzy rules based on the psycho-physiological markers and the observed past 
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model output. 

In order to evaluate the performance of A-GT2-FCM and to compare it with the participant-specific 

ANFIS model results, a table was constructed to show the errors and correlations of predictions; these 

indices were calculated using equations (20) and (21) respectively: 

����� ! 100 !
!∀!!!∀!!

!!

!!!

!
                                                      (20) 

����������� !
!!∀!!∀!!∀!!

!∀#!!∀!!∀!!!∀#!!∀!!!∀!!
                                                     (21) 

where N is the total number of samples in the experiment. For all experiments N=690, that corresponds to 

150 samples (samples are calculated with data from 30 s shifted every 1 s) for Phase 1 and 180 samples for 

Phases 2 through 4 each. 

Table I presents the modelling results (calculated via equations (20) and (21)) for the predictions in 

real-time which were obtained via A-GT2-FCM and compared with the off-line predictions with the same 

experimental data of the participant-specific ANFIS models. From Table I it can be observed that 

A-GT2-FCM performs better and in a consistent way for all participants in the study. Errors and 

Correlations show an excellent performance throughout, demonstrating the fast learning capabilities of the 

algorithm that needs no training phase. In the case of ANFIS, a very small training error and a high 

correlation index are observed for every participant in ME-1. However, the performance for ME-2 is not 

consistent and shows inferior prediction results for most participants. Overall A-GT2-FCM is able to obtain 

superior predictions; which can mainly be attributed to its adaptive properties. To further demonstrate the 

ability of A-GT2-FCM, Figs. 8 through 11 show the results for ME-1 and ME-2 for P01 together with the 

markers acquired for these experiments. 

From Figs. 9 and 11 it can be observed how A-GT2-FCM was able to successfully predict the 

performance of P01 in the MA experiment for both ‘difficulty’ configurations (ME-1 and ME-2). 

Furthermore, correlation, as shown in Table I, is very high and the error is very small. The information 

used by A-GT2-FCM to calculate its predictions is presented in Figs. 8 and 10 and corresponds to the 
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studied psycho-physiological markers of Section II. Similar performances were obtained for all participants 

in the study despite the intra-differences between them. For ANFIS, the inputs correspond to the same 

markers of Figs. 8 and 10 but with the inclusion of AP(t-1). Fig. 10 also shows the predictions for 

P01-specific ANFIS model in the case of ME-2, demonstrating the inability of ANFIS fixed model to 

handle the inter-parameter differences in P01. However, from Table I it can be observed how some of the 

ANFIS models were also able to obtain good predictions. Even in these cases, the inability of a fixed model 

to handle such parameter variations is apparent. 

TABLE I 

A‐GT2‐FCM real‐time / ANFIS off‐line. Modelling 
   Error 

   ME‐1  ME‐2 
P01  5.4197  /  2.0520  6.1525  /  71.8948 
P02  5.2753  /  2.2577  6.7112  /  52.0001 
P03  5.7502  /  1.8520  6.2016  /  34.0385 
P06  8.1281  /  3.1923  6.7512  /  58.8248 

P07  6.4311  /  2.5943  6.9501  /  43.7482 
P08 *  4.7957  /  1.7297  5.1479  /  6.9308 

P09  5.1887  /  1.4180  5.2014  /  8.2639 
P10  5.1957  /  1.9126  6.4262  /  9.4716 

P11  5.0032  /  2.3427  5.8235  /  6.4813 
P12  6.4129  /  2.2724  6.7505  /  14.3965 

Avg  5.7601  /  2.1624  6.2116  /  30.6051 

   Correlation 

   ME‐1  ME‐2 

P01  0.9828  /  0.9971  0.9587  /  0.1716 
P02  0.9820  /  0.9966  0.9732  /  0.4876 
P03  0.9638  /  0.9833  0.9574  /  0.6257 

P06  0.9751  /  0.9955  0.9818  /  0.3718 
P07  0.9866  /  0.9976  0.9826  /  0.3332 

P08 *  0.9852  /  0.9977  0.9682  /  0.9601 
P09  0.9662  /  0.9972  0.9553  /  0.9073 

P10  0.9818  /  0.9970  0.9860  /  0.9662 
P11  0.9859  /  0.9968  0.9856  /  0.9834 
P12  0.9845  /  0.9975  0.9814  /  0.9216 

Avg  0.9794  /  0.9956  0.9730  /  0.6729 
* Both experiments with incremental difficulty 

 

It is worth noting that the psycho-physiological markers used were re-scaled (HRV1/2500, HRV2/1.2, 

TLI1/120, TLI2/200 PDM/30) with constant values for all ten participants; this was a requirement for the 

programed software. However, this modelling framework does not necessarily require any type of 

normalization procedure for it to operate successfully. 

B. Adaptive properties of the A-GT2-FCM Modelling Framework 

In this section the adaptive properties of A-GT2-FCM are addressed. It was stated in Section IV that the 

algorithm presents characteristics that make it adaptable to inter- and intra-parameter variabilities between 
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the participants in the study given its ability to handle uncertainty from its GT2FL configuration and its 

real-time p-learning negative RL algorithm. The evidence that supports these adaptive characteristics is 

discussed in the points below: 

1  The model is able to operate and self-organize in real-time. From the real-time modelling results 

presented in Table I and Figs. 9 and 10 it is evident that A-GT2-FLS is capable of learning from features in 

the data and in real-time and of producing good predictions even without a training phase. Further, and on 

the subject of the self-organization properties of the modelling framework, Fig. 12 illustrates how the 

p-learning algorithm operates by displaying the number of rules in r and g dimensions as DL changes for 

P12 in ME-1. The P12-specific ANFIS model is of similar rule-base size with 12 rules leading to good 

off-line predictions for the training ME-1 data. 

 

 

 

 

Fig. 8.  P01 Psycho-physiological markers inputs (HRV1, HRV2, TLI1, TLI2 and PDM) to A-GT2-FCM. Incremental difficulty 

(ME-1 with DL= 1, 2, 3, 4) MA experiment. 

 

 

 

Fig. 9.  P01 Accuracy performance, AP, predicted accuracy performance, PAP for A-GT2-FCM in real-time and off-line with 

P01-specific ANFIS model. Incremental difficulty (ME-1 with DL= 1, 2, 3, 4) MA experiment. 
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Fig. 10.  P01 Psycho-physiological markers inputs (HRV1, HRV2, TLI1, TLI2 and PDM) to A-GT2-FCM. Scrambled difficulty 

(ME-2 with DL= 2, 3, 1, 4) MA experiment. 

 

 

Fig. 11.  P01 Accuracy performance, AP, predicted accuracy performance, PAP for A-GT2-FCM in real-time and off-line with 

P01-specific ANFIS model. Scrambled difficulty (ME-2 with DL= 2, 3, 1, 4) MA experiment. 

 

 

Fig. 12.  Evolution in the size of the rule-base R during ME-1 for P12. Top plot, Task Performance (A-GT2-FCM and P12-based 

ANFIS). 

 

 

Fig. 13.  Psycho-physiological markers input (HRV1, HRV2, TLI1, TLI2 and PDM) for the ME-2 with DL= 2, 3, 1, 4. MA 

operations experiment for P11. 
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2  The modelling framework is generalizing for all participants; there was no need for a 

participant-based calibration and off-line model construction, an important contribution when compared 

with the ANFIS case and the works in [3, 16]. The same ‘dummy’ first prediction rule-base was used for all 

participants. Additionally, despite having variability in the psycho-physiological inputs from participant to 

participant and among participants themselves, the model was able to capture these variabilities in a 

transparent way. In fact, the same constant values were used to scale the markers for all participants. In 

order to further demonstrate these facts, input markers for ME-2 (scrambled difficulty) for P11 are 

displayed in Fig. 13. From this figure it can be observed that the numerical values for the markers of P11 

differ significantly from the ones presented for P01 in Fig. 10 (see y-axis). This is especially evident for the 

TLI markers, since for P11 these are double in magnitude when compared to the ones from P01 for the 

same experimental configuration. Inter-differences in marker scaling are also evident when further 

examining the TLI markers for P01 in Figs. 8 and 10. In this particular case, the markers for ME-2 (Fig. 10) 

are double in magnitude when compared with the markers of ME-1 (Fig. 8). This important change in 

marker scaling is probably responsible for the degraded predictions observed for the P01-specific ANFIS 

model in ME-2 (see Fig. 11). 

3  A-GT2-FCM can handle and adapt to temporal loss of information. Given the conditions for 

real-time acquisition and calculation of markers, there were occasional losses of information resulting from 

reference disconnections on the head scalp during EEG acquisition for some experiments. However, 

A-GT2-FCM was able to adapt to these disturbances without any significant loss in performance; Figs. 14 

and 15 represent one of such cases. Fig. 14 includes a scenario whereby the EEG-based TLI markers are 

lost during phase 3 of ME-2 for P02. The effect of this can also be observed in Fig. 15 at the same 

time-stamps (with evident lower than average predictions for the location) for the loss and the recovery of 

A-GT2-FCM (see circled regions in Figs. 14 and 15). In these graphs, the ability of the adaptive model to 

recover quickly at the next iteration is also apparent, ensuring successful adaptation and disturbance 

rejection. For ANFIS, the situation appears to be rather different, leading to a poor performance for ME-2 
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with no robustness properties for intra-parameter changes in P02 and for temporal loss of marker 

information. 

 

 

Fig. 14. Psycho-physiological markers input (HRV1, HRV2, TLI1, TLI2 and PDM) for the ME-2 with DL= 2, 3, 1, 4. MA 

operations experiment for P02. Loss of data during phase 3 for EEG based markers. 

 

 

Fig. 15. Accuracy performance and predicted accuracy performance obtained with A-GT2-FCM in real-time and off-line with 

the P02-specific ANFIS model. Scrambled difficulty ME-2 with DL= 2, 3, 1, 4 for P02. Loss of data during phase 3 for EEG 

based markers. 

 

C. Energy Model-Based Control and ANFIS Prediction-Based Reference Control 

This section discusses the results of the application of E-MBC and its comparison with the ANFIS 

prediction-based reference controller (ANFIS-C) using the same 10 participants from the real-time 

modelling experiments. As was previously explained, for the E-MBC to provide meaningful control actions 

it requires to have previously experienced the main system states. 

Fig. 16 displays the model surfaces used for P12 E-MBC real-time experiment (top row plots) and the 

surfaces for P12-specific ANFIS model (bottom row plots). This figure shows how ANFIS tries to 

extrapolate behaviour (unsuccessfully) in some input spaces of the marker values; this is not the case for 

A-GT2-FCM. 
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Fig. 16. Plant model for P12 after an off-line training with data gathered in real-time. Top surfaces, A-GT2-FCM as was used for 

the E-MBC experiment. Bottom surfaces, P12-specific ANFIS model with unsuccessful extrapolations. 

 

The ANFIS-C design was based on the work of [22], where predictions from a fuzzy modelling 

framework were used together with a reference-based control approach. The ANFIS-C is based on the same 

reference configuration as above and uses the last minute averaged predicted performance to select the DL 

as the control output. The ANFIS-C is governed by the following steps [22]: 

1. Obtain mean of last minute of PAP by participant-specific ANFIS model. 

2. If PAP>0.9, then DL=DL+1; with maximum DL=4 

3. Else if PAP<0.6, then DL=DL-1; with minimum DL=1 

4. Else, DL remains unchanged. 

 

 

 
Fig. 17. E-MBC (mean energy extraction = 0.5809) and ANFIS-C (mean energy extraction = 0.4722) experiments in real-time 

for P11. 
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Fig. 17 shows the results for the real-time E-MBC and ANFIS-C experiments performed for P11 in the 

study. From Fig. 17 it can be observed that after one minute of operation E-MBC selected DL=3 from an 

initial DL=1 as the best combination of PAP and the highest DL. After the selection of this DL there was an 

increase in the energy extraction that was maintained throughout the experiment. In contrast, despite having 

acceptable predictions, ANFIS-C increases the control DL in the second stage (t=180s to t=360s), which 

leads to a significant reduction in the task performance. It is worth noting that accurate performance 

predictions and model interpretability (e.g., the energy membership) at each operation stage are crucial in 

order to avoid reductions in accuracy and to maximize energy extraction. In this respect the ANFIS-C is 

deficient since it is only based on performance and does not consider the ideal PAP- DL combination (i.e., 

the energy membership) for each participant. 

 

 

Fig. 18. E-MBC and ANFIS-C experiments in real-time for P08. Disturbances identified with an asterisk. 

 

To further illustrate E-MBC’s capabilities additional experiments were performed with disturbances 
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18 illustrates one of these experiments for P08 in the study; with disturbances identified with an asterisk. In 

this figure E-MBC identified that the best performance was achieved at DL=3 (similarly to Fig. 17 for P11) 

by interpreting P08 ability from the information stored in its rule-base. From previous experience, E-MBC 

avoids DL=4 during most of the experiment. However, after the disturbance a t =540 the E-MBC adapted 
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by leaving the DL=4 unchanged given new experience of increased ability from P08. The ANFIS-C is only 

based on PAP and because of this reason, selected DL=4 at stage 2 which reduces the AP greatly. During 

stage 4, bad predictions lead to ANFIS-C maintaining DL=4 throughout the rest of this phase, leading to 

reduced energy extraction as can be identified in the bottom plot. 

Fig. 19 shows another example for E-MBC operation for P12 where the way the size of the rule-base 

changes is also illustrated. It is worth noting that the size of g increases with the appearance of 

disturbances, which was expected since this dimension is linked to uncertainty. An experiment with the 

same structure and for the same participant was performed using ANFIS-C and is shown in Fig. 20. Under 

this controller P12 accuracy performance showed noticeable degradation following ‘sub-optimal’ model 

predictions. 

In order to further evidence the increase in the energy extraction from the application of E-MBC, Table II 

includes the means of selected examples that compare the real energy extraction (mean �� ! �� ! ) of 

similar experiments with E-MBC, ANFIS-C and no control (open-loop). This comparative study is 

considered to be ‘fair’ since the introduced disturbances coincide with the DL profiles for the modelling 

experiments of Fig. 3. E-MBC and ANFIS-C take actions over these DL profiles in order to obtain an 

improved performance. 

 

Fig. 19. Evolution of the size of the rule-base R during the E-MBC experiment for P12. 
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Fig. 20. ANFIS-C experiment in real-time for P12 

 

As can be observed from Table II and for all participants with the exception of P02, E-MBC leads to an 

improvement in the amount of energy extracted when compared with the energy extraction without control. 

When compared with ANFIS-C, E-MBC shows better energy extraction in most cases. Overall, and for 

these 8 cases, there is an increase in energy performance as can be observed in the average values at the 

bottom of the Table. Furthermore, Fig. 21 shows the energy extraction results for P03 in the study with and 

without control. From this figure it can be observed that during the experiment, the real energy membership 

was mostly higher in the case of E-MBC. This is also evident from Table II for the mean energy extraction 

values for P03. This demonstrates how control actions derived from accurate predictions and model 

interpretability result in an increase in energy extraction. 

 

 

TABLE II 
Control Energy Extraction Mean 

   ANFIS ‐ Ctrl  E‐MB Ctrl  No Control 

   Experiment 1 (Incremental Difficulty) 

P01  0.5558  0.5699  0.4568 

P07  0.4048  0.4247  0.2811 

P08  0.5730  0.5848  0.4681 

P12  0.5146  0.4614  0.3500 

   Experiment 2 (Scrambled Difficulty) 

P02  0.4049  0.3722  0.4046 

P03  0.4760  0.5706  0.4104 

P06  0.4163  0.4020  0.3340 

P09  0.5286  0.6402  0.4969 

Avg  0.4843  0.5032  0.4002 
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Fig. 21. Energy extraction results in real-time for P03 with and without controllers. Difficulty level profiles (top plot) and real 

energy membership (bottom plot). 

 

VII. CONCLUSION 

The starting point of this study was an experimental design based on Mental Arithmetic operations, which 
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The paper stressed that the MA experiment was capable of producing ‘stress entrainment’ of participants as 

evidenced by previously published literature applications using similar experimental configurations.  

Furthermore, this experiment is simple and can be replicated for validation with no training required of 

participants. A Graphical-User-Interface-based software was also designed for the deployment of the 

experiment. This system handled all processes in the experiment that ranged from the acquisition of key 

psycho-physiological markers, to signal processing aspects, to modelling and real-time control calculations. 

In terms of the psycho-physiological markers used to assess the participant’s mental stress, HRV and TLI 

were identified as viable. Additionally, this paper introduced the use of a relatively new marker based on 

measurements of the pupil size, which according to surveyed literature, correlates strongly with 

performance breakdown in humans. 

Using these design features, a new modelling technique named Adaptive General Type-2 Fuzzy C-Means 

was proposed and applied to modelling humans undergoing psychological (mental) stress. This new 

modelling technique was compared with participant-specific trained ANFIS models, and was shown to lead 

to superior predictions for checking data for all participants. The design of A-GT2-FCM technique 

incorporates features that make it adaptive to inter- and intra- parameter variability across subjects. This 

capability arises from its performance-learning algorithm based on negative Reinforcement Learning. This 
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learning algorithm proved its ability in the extraction of features from data in real-time, taking advantage of 

the capability of Fuzzy Type-2 sets to truly handle uncertainty. For all 10 participants in the study, 

modelling was achieved with a small error and a high correlation with the actual performance. 

A controller design that re-exploits the A-GT2-FCM inference mechanism and information in the form of 

its fuzzy rule-base was also presented. This controller, named Energy Model Based Control (E-MBC) 

incorporates an Energy-based membership that allows it to acquire maximum energy extraction. Evidence 

to the controller’s good performance was presented and compared with another set of real-time experiments 

of the same structure performed with a participant-specific ANFIS prediction-based reference control. 

E-MBC achieved superior performance with an overall 10% increase in the extraction of ‘energy’ for 

experiments without control. This comparative study and previous studies (e.g. [16]) highlighted the 

importance of using adaptive models and self-organising control for such harsh environment characterized 

by uncertainty and subject parameter variability. 

The results achieved in this study show true promise in the further evaluation of the A-GT2-FCM 

modelling framework for applications with similar characteristics in the field of HMI. Furthermore, the 

simplicity of the inference mechanism designed for this algorithm makes it truly open to new and exciting 

control configurations for the many other challenging real-world environments where man-machine 

synergies and the switching between manual control and automation in real-time to avoid operator 

breakdown are of paramount importance. 

APPENDIX 

A numerical example detailing the A-GT2-FCM inference process of Section IV. 

An example of a simple rule-base with r=d=!=3 is as follows: 

!!∀ !

!!91!! !!!!!!!!52!

!!76!! !!39!!!!!!

!!80!! !!36! !!90
!

!!95!! !!18!!!!59!

!!!!!! !!79!!!!!!

!!! !! !
!

!!86!! !!21!!!!37!

!!! !! !!

!!! !! !
!

, 
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��!∀ !

!!75!! !!32!!!!!!!

!!35!! !!!!!!!!!!

!!!!!! !! !

 

To calculate ���!∀ with equation (4) consider the following calculation of one of its output elements: 

���! ! ��!! ! !!! ! ��!∀ ! !!∀ ! ��!∀ ! !!∀ ��!! ! ��!∀ ! ��!∀

! !!75 ! !!52! !!32 ! !!59! ! ! !!37 !!75! !!32! ! ! !!46 

Similarly, all ���!∀ elements were obtained: 

���!∀ !

!!89!! !!21!! !!46!!

!!76!! !!39!! !!!!

!!80!! !!36!! !!90

 

Consider an input vector: 

!!∀ ! !!!!!! !!27  with �����!∀ !

!!89!! !!21!!!

!!76!! !!39!

!!80!! !!36!

 

then, the first element of the distance vector in equation (6) is: 

���! ! ��! ! ���!!
!
! ��! ! ���!∀

!
! !!!! ! !!89

!
! !!27! !!21

!
! !!0576 

With similar calculations, ���! ! !!0244! and ���! ! !!0277. The FCM membership (equation (7)) for 

the first rule can be calculated with m=2 as follows: 

!! ! ���!

!!

!!! ���!

!!

!!! ! ���!

!!

!!! ! ���!

!!

!!!

! !!!0576!!! !!!0576!!! ! !!!0244!!! ! !!!0277!!! ! !!1838 

Similarly, !! ! !!4339  and !! ! !!3822 ; and !! ! ! , !! ! ! , !! ! !!7932  after the normalization 

process in equation (8). With: 

!!∀ ! !!!! !!! !!7932! and ������!∀ ! !!!46!! !!!!!! !!90!! 

the inference output of equation (10) is as follows: 

��!∀ !
!!!!∀#!!!!!!∀#!!!!!!∀#!

!!!!!!!!

! !
! !!!∀ ! ! !!!! ! !!!∀#∃ !!!∀

!!!!!!!∀#∃
! !!8275 
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