The
University
g Of

8% Sheffield.

This is a repository copy of Experimental evaluation of environmental effects on a
polymer-coated aluminium structure: a time-series analysis and pattern recognition
approach.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105946/

Version: Published Version

Proceedings Paper:

Datteo, A., Dervilis, N., Barthorpe, R.J. et al. (5 more authors) (2016) Experimental
evaluation of environmental effects on a polymer-coated aluminium structure: a time-series
analysis and pattern recognition approach. In: PROCEEDINGS OF ISMA2016
INCLUDING USD2016. ISMA2016, 19 -21 September, Leuven, Belgium. , Leuven,
Belgium .

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Experimental evaluation of environmental effects on a
polymer-coated aluminium structure: a time-series
analysis and pattern recognition approach

Alessio Datteo!, Nikolaos Dervilis?, Robert J. Barthorpe?, Elizabeth J. Cross?, Keith Worden?,
Giorgio Buscal, Alfredo Cigadat, Ifigeneia Antoniadou?

! Politecnico di Milano, Dipartimento di Meccanica, Misure e Tecniche Sperimentall,&/Masa 1,
Milan,ltaly

e-mail: alessio.datteo@polimi.it

2 Dynamics Research Group, Department of Mechanical Engineering, UnivafrStyeffield, Mappin
Street, Sheffield, S1 3JD, UK

Abstract

Temperature variation is an important issue that needs to be considered witetotdgvelop a reliable
Structural Health Monitoring (SHM) strategy. In the case that a data-based@p@ahosen for damage
detection, environmental fluctuations could é&roneously regarded as an abnormal condition of the
structure and could mask the presence of damage. One of the objectivesuofethieveork is to examine

a statistical pattern recognition approach for novelty detection under differepérature conditions. A
second important issue that could hinder the reliability of a SHMegyrails any kind of nonlinear
behaviour, not associated with damage, in a system. For the purposes of this paper, the dynamic behavi
of a polymer-coated aluminium structure with ribs fixed with bolts is examinkd. alitoregressive
parameters are the damage sensitive features and later, it is performed P@oaipainent Analysis
(PCA) for robust novelty detection that takes into account the temperature variation.

1 Introduction

The main objective of Structural Health Monitoring (SHM) strategies &stess the performance and/or
health state of a structure in aerospace, civil and mechanical engineering.cbméme strategies are
developed to evaluate whether a structure needs to be repaired or replaced in edieet@ssociated
maintenance costs in SHM applications. Damage can be semwcchasge of the material and/or the
geometrial or structural-dynamical properties of the structure which is detritnémtaerformance
Normal conditions, on the other hand, refer to the common behaviour of the system tiedentdi
operational and environmental conditions when the structure is known to be undafdgddajmage
identification techniques can be divided into two main groups: model-based andideaaghproaches.
The former approach is usually based on a reliable physics-based model of the stradautbevatter is
based on analysing the acquired datathe statistical point of view. Using data-driven methods, the
indication of damage could be directly determined by a comparison between a basdlittee data
collected during the operational life of the structure. The procedure doeeewtany kind of physics-
based model to interpret the reality, and when a system is complex it becomes thffiealise a reliable
physics-based model. The core of the process is based on a robust statistical dnlaéysastaA feature

is defined as some characteristic of the measured response that is extractgdavigrecessing or
parameter estimation which is sensitive to the presence of damage avisghdfeature extraction
transforms “data” into “information”. It is desirable to have examples of the features from both damaged
and undamaged structures to infer more information about the damage, e.g. the severigrofge[B
However, to ensure the reliability of the analysis the reference databaseihelside as many healthy
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scenariosas possible. In real SHM applications, operational and environmental etiaaisask damage-
related changes in the features, especially if the damage is small. Feasiun,ra wide description of all

the possible combinations of environmental and operational conditions is useful in ocdefidently
uncover damage. Damage often changes the structural dynamics; thereforbgipoaentially detected
through any vibration data recorded, as long as the derived features are dansifje. This strategy
belongs to the vibration-based methods. A change in the dynamics may be also causedny vary
environmental conditions and uncertainty. Continuous monitoring systems make use of senso
permanently installedn the structure to extract the current state of the structure. As g thsutollected
structural responses are analysed and compared to baseline patterns in order to detect abnorma behaviour
and define the structural integrity. There are several useful techniquisblavad literature [4-1pwhose

main effort is to extract significant features from data. In mangnsic fields, including SHM, the
number of measured variables can be laRymcipal Component Analysis (PCA) provides ways for
reducing a complex data deto a lower dimension and revealing some hidden and simplified patterns
linked to specific scenarios. PCA is a classical linear technique of miatasastatistics for mapping
multidimensional data into a lower dimension with minimal loss of inédion [14. In SHM, PCA has

been applied in the past to vibration signals to remove the influences of trenerental effects from the
vibration datato extract structural damage sensitive features and to discrimirzdteefe from damaged

and undamaged structures [17]. In this paper, PCA is applied to the vibration datteddilom a plate

and it is used to identify the different conditions on which the structure is exphsmregressive (AR)
models are used to extract damage-sensitive features from time-seriesechégsaccelerometers when

the structure is subjected to different environment temperatures and strsitgalonditions. The main
contribution of this work is the performance evaluation of PCA-based algorithms applidie
parameters of autoregressive models based on experimental data in the presem@iaisvin the
environmental conditions. This work is organised as follows. Section 2 givegpkmation about the AR
model and the PCA background theory. A description of the test structurénthated operational and
environmental variability, and a summary of the data sets is provided in Sectio8ettion 4, the results

and the discussion of the application of the PCA on the AR parameters are carried out. Section 5 report the
conclusion of this work.

2 Background theory
2.1 AR models

In time series analysis, one of the most useful representations of a tigsepsecess is via autoregressive
(AR) modelling. It is a stochastic finite linear model and a kfecription is given here; for a detailed
analysis of the AR model, please refer to [18]. If Z is a generic statigmacgss, one can estimate the
value of Z at time t just basing the evaluation on its past values plus wisige bei one fix the value of a
process at equally spaced times t, t-2, t= by z;, z;_1, Z;_5, ... . Also let Z;, Z;_q, Z¢_5, ... be the
deviation from the process mean value p (assumed stationary); for ex&mple, — 1. Then the value
Z, can be written as:

21: = ¢1Zt—1 + ¢22t—2 + -+ d’pft_p + at (l)

wherep is the order of the modep; are the (constant) coefficients of tAR model andz; is white noise.
a; is a sequence of uncorrelated random values from a fixed distribution with ¢com&an Ef,),
(usually assumed to be 0) and constant variancexMjar6?2.

If one defines a\R operator of ordep by the following equation:

®(B) =1—®;B — ®,B? — -+ — &, B )
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whereB is the backward-shift operator, then #ie model may be written as:
?(B)Z; = a; 3)

A key point in using an AR model is to establish the its order. Manyiarfigr model order estimation
have been introduced and are described in the literature for a proper model sele¢tisnwork, the
Bayesian Information Criterion (BIG3 used to identify the most appropriate model order.

2.2 Principal Component Analysis

Principal component analysis (PCA) is a useful technique of multivariable arthtsieduces a complex
multivariate data set to a lower dimension and can thus reveal hidden atiflesirpatterns. The theory
of PCA can be found in many books and articles, e.g. [16], [19]; here, just dds@ziption is presented.
PCA can be defined as the orthogonal projection of the given data onto a loweriolalelirsear space,
known as the principal subspace, such that the variance of the projectésl matdamised. Consider a
data set of observationx, } where n = 1.... , N, andx,, is a Euclidean variable with dimensionality D.
Our goal is to project the data onto a space having dimensionality M<D wdntienining the variance of
the projected data.

The sample mean of the data is:

R
TN z - (4)
The covariance matrix is defined by
1 N
3 =N2(xn—f) (x, — )T (5)
n=1

One now maximises the projected varianésu with respect to u. Clearly, this has to be a constrained
maximization to preveru|| - . The appropriate constraint comes from the normalisation
conditionu”u = 1. To enforce the constraint, one introduces a Lagrange multiplier, denotedyher
and then makes an unconstrained maximisation of

uTSu+ A (1 — uTw) (6)

By setting the derivative with respecticequal to zero, ongees that this quantity will have a stationary
point when

Su=Au (7

which says that must be an eigenvector $f If one left-multiplies byu” and makes use af u = 1, one
see that the variance is given by

ulSu=2 (8)

Therefore, the variance will be a maximum when onesetqual to the eigenvector having the largest
eigenvaluel.
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If one considers the general caseawM-dimensional projection space, the optimal linear projection for
which the variance of the projected data is maximised is now defined W ¢fgenvectorau, ... , uy

of the data covariance matrix S corresponding to the M largest eigenvglues, A,. [19]. The
projected variables are referred to as principal component scores.

In order to develop PCA, since the data collected, in general, have differentudagrand scales, here
each data point is scaled using the mean and the standard deviation of all measurements.

3 Design of the experiment and data collected

The test rig is made from a rectangular plate with dimension of 250x8Y¥33rmm width, and with four
ribs to increase the strength. Two ribs are on the short side of thariateey are C ribs; the others two
are in the centre and they are L ribs. All ribs are fixgddits.

The plate and the ribs aoé aluminium, but there is also a thin layer of a polymer (3mm) on the bottom of
the plate. The plate is suspended by four springs to provide free-free boundaryomorsii
accelerometers are used to collect the vibration data of the plate, middhéon is illustrated in Fig. 1.

.
- ) - ¥

.*, \

o

Figure 1: Plate with the indication of the position of the accelerometers

The plate is excited by a shaker (Fig. 2) and a load cell is placed under the pl&g (fignected
directly to the shaker, in order to measure the force.

Figure 2: Shaker Figure 3: Force transducer
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The hardware used to perform the data acquisition and to set the if@oa@the plate is LMS&cadas

Lab. The sampling frequency chosen was 2560 Hz, because the maximum frequency ohasetastn

at around 1000 Hz. The spectral resolution was 0.15ddmjring time histories of 6.4 s duration each.
The selected input given to the plates white noise, and in order to reduce the noise associated to the
measuresan average of 50 spectra was performed to obtain the Frequency Response Funckshs (FR
The amplitude of the input was sdthree different levels, of rms vatug2 N, 44 N and 110 N. The plate
was placed inside an environmental chamber to test its behaviour in diffevénoinenental conditions
(Fig. 4).

Figure 4: Plate inside the chamber

The temperature range selected was from -20° C up to 80° C. In this way, it was possible to investigate t
three different states of the epoxy: glassy, transitional and rubbehgrmdcouple was fixetb plate to

check when the specimen reached the selected temperature before performing the telstat In order

to perform a damage detection, a number of abnormal conditions of thewptateonsidered, as the
temperature changed. Nine levels of damagee chosen. The abnormal condition was represented by
removing the bolts from a selected stringer. The first level of the damagedo remove just one bolt
while the ninth consistd of removing nine bolts from the selected stringer, as shown in Tab. 1.

Leved of Damage Number of boltsremoved |D Damage

1 1 D1
2 2 D2
3 3 D3
4 4 D4
5 5 D5
6 6 D6
7 7 D7
8 8 D8
9 9 D9

Table 1: Description of damage level

The bolts are clamped through a dynamometric Allen key to ensure the squoe rrwment is given to
the bolts. For M3 bolts, the maximum recommended tightening torqaddar quality screw is 0.57 Nm,
so it was decided to siethere at 0.6 Nm.
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The experiment has been divided in four phases:

i.  normal condition.
ii.  abnormal conditions.
iii. normal condition with temperature variations.
iv.  abnormal conditions with temperature variations.

The first stage in the testing was for characterising the dynamic behavithee pfate in the normal
condition by collecting vibration data from the six accelerometers umdéite noise excitation. The
normal condition is specified by the temperature at 20° C for the strugithm@ut removing any bolts.
The second test stage acedirvibration data related to each abnormal condition, removing one bolt to
nine bolts. For each acquisition case, time histories of 5 minutes duration (50 twadéoe histories of

6.4 s) were taken for the three different rms levels of amplitude chosen for kke @8N, 44 N and 110

N). All these amplitudes were guaranteed to force equally all the modike @late in the range of
frequency considered. Using three different level of amplitude atlowwestigation of the role of
different input intensitieg the pattern recognition. The testere conducted starting with all the bolts on
the plate, and they were then removed one by one, until the test cycle was complassurothe
repeatability of the experiment, when the test related to the removal of ondattoiefinished, all the
others bolts are replaced and it is checked that the normal condition is repeatehdssiogeto the next
test. The third test stageas to give a picture of the behaviour of the plate when only subjected to
temperature variations, from -20° C to 80° C with steps of 10° C. The targetrigorewas set into the
environmental chamber and then the dynamic testee performed after the plate reached the
thermodynamic equilibrium with the environment, checking the thermocouple applied on thre uppe
surface of the plate. Finallin the last test stage, the vibration datae collected for all the med cases

of abnormal conditions and temperature variations. Also in this stage, to guarantepettability, after
complete a temperature cycle for a considered abnormal condition, all the removettheldaaed, and

the normal condition (20° C and all the bolts on) is checked, before proceedimg next abnormal
condition. Fig. 5 shows the Frequency Response Function (FRF) of the plgenormal condition,
which is the reference.

| | | | | | | | | | | | | | | | | | |
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Figure 5: FRF of the plate in the normal condition
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The time histories obtained for each casge filtered by an eighth-order Butterworth filter, setting the
cut-off frequency at 630 Hz; in this way, the first four modes of the plete considered.

The aim of this workwas to try to use the AR parametersaagpresentation of the data and use them in
combination with PCA to perform a damage detection despite the environmental changesjsuhlly
mask damage. Therefore, the effort is to separate the effectatinanmal conditions from the effect of
the changes in temperature. Moreover, it is possible to understand how the trahéit@polymer status
influences the data. Another interesting point is to observe if the amplitudke iofput gives a variation in
the first two principal components of the AR model.

4 Results and discussion

In this section, the results provided by only one accelerometer are discussed. Tdreraetet is the one
placed in position 2as shown in the Fig. 1. Normal condition is made by all the bolts screwaddn
temperatureat 20° C. During the tests, generally,wes difficult to reach a very precise temperature.
Therefore, some tests related to the normal condition are conducted at 18° C and @fe(S. & this
way, it is possible to check if a small fluctuation around the nominal temmperatikes a great difience

in the results or not. The time histories acquired to check the restorationnadl condition between one
test and the other are also considered in this work. Overall, the normal coritegresented by 280
time histories acquired in different trials. Nine time histories are derexil for each temperature cluster.
For a fixed nominal temperature, three different tvedse performed in different stages of the test. Each
trial consised of using three different amplitude levels of the input. The same prooedsingsed for each
investigated damage scenario and the mixed cases of temperature variation and Namagee
historieswere considered for each different condition of the plate, in terms of damage and/or temperature.

The AR model ordewas checked using the Bayesian Information Criterion (BIC) and it was found to
have the best order at 35 parameters. The parameters of the AR model are computbeé ostigary
least square approach.

The first stepwas to normalise these parametbssremoving the mean and dividing by the standard
deviation of the parameters themselves. The R@#applied tahe normalised matrix and the results are
plotted just along the first two principal components (PC) of the AR pareandtee main effect is the
reduction of dimensions from 35 to 2. The variance associated with themirgirincipal components
preserves 99% of that of the original multivariate system.

Since there are several combinations of different scenarios, it is important to analysa gradislly. At

first, only the damaged scenarios without any variation in temperature is considered, which is fixéd arou
20° C. Figure &hows the first two principal components of the AR parameters related to the reovanal
the damaged condition together. As explained in Section 3, the damaged scamadosded ito 9
levels where each one corresponds to the number of removed bolts. Therefore, thesfficdtdamage
means only one bolt is removed, and so on until the ninth is removed.
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Figure 6: First two principal component scores of the AR parameters related to damagesscenari

As can be seen from the plot, the pattern of the principal component ssabmost linear among
different scenarios. The lowest damage is not visible because it is overlappadeniormal condition,
which is common when damage is too small to be separated from the operationainvakia the
intensity of the damage increases, the principal component scores are far frmmihaecondition. The
damage trend could be summarised as a linear increase monotonic from the normainctmttie 9

level of damage. Itan be seen that the different amplitude levels of the input do not have a great
influence on the data, because for each different condition the first twodP€s sae very close to each
other.

Small variations of the temperature have negligible effect on the normalibeh of the structure.
Looking at the data inside the blue circle, even if they are related to two different ¢ba) tbkmperatures
(18° C and 22° C), they are more or less in the same portion of the graph and are very well superimposed.

Then the effects of temperature can be taken into account; Fig. 7 showdribatidis of the first two
principal component scores when all the bolts are fixed and temperature is free to citlarsgstep of
10° C, from -20°C up to 80°C. These data represent the effect of temperature on the undamaged scenari
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Figure 7: First two principal component scores of the AR parameters related to tempenadticns

Fig.7 shows the changes of the system when the temperature variation is more significant tegaisv
can be identified, as described in Tead.

ID .
Trend Condition
{1} Temperature increases
{2} Temperature decreases

Table 2: Identified trends due to temperature variations

Both the identified trends are nonlinear. The main faictahe nonlinearity of the structure is related to
the presence of the polymer layer. At different temperatures, the sthtemolymer is different, causing

it to shift its damping behaviour. Figure 8 shows the influence of temyveron the damping ratio of the
polymer at frequencies of 200 Hz and 600 Hz. Between these two frequencies, eéhigre finst four
modes of the plate, and the damping behaviour of the plate is quite completely described by the Fig. 8.
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Figure 8: Damping ratio of the polymer

Generally, the temperature and the frequency greatly influence the dampngf mpolymer. Here, Fig.
8 shows that, even if the frequency changes a lot, the temperature has a great@mintyacariation of
the damping ratio of the polymeric material.

Here again, the effect of different input amplitudes is negligible. To makenplete overview of the
results presented, the next figure (Fig. 9) reports the first timzipal components related to all the
possible combinations shown so:faoth damaged scenarios and undamaged scenarios with temperature
variations.

PCA Analysis Undamaged T 18
4 Undamaged T 22
T10
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T40
T50
TG60
T70
T80
TO

000000000+ ++++++++

Second Principal Component
N
T

| | | | | |
-15 -10 -5 0 5 10 15
First Principal Component

Figure 9: First two principal component scores of the AR parameters related to terepexaaiions and
damage scenarios

It can be seen that damage and temperature have two different effects on the firsidipal component
scores of the AR parameters; so the variations in the data related to damage distimgalished from
those related to temperature.
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The laststage to the analysigas to consider the joined effect of temperature and damage together. For the
sake of simplicity, just the results of one level of damage are reportedrhereesults are analogous for
different levels of damage. For instance, in Fig. 10 are superimposed, the momaiion, the
temperature variation and the cases of temperature variation with a damage B{aleains 3 bolts are
removed from the ribs).
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Figure 10: First two principal component of the AR parameters related to temperature variatidfis and 3
level of damage plus temperature variations

The data related to temperature variation superimposed on damage are mapped near the eéemperatur
scenarios without damage and not near the damage scenarios without temperature Woratwmer, the
disposition of the principal component scores are not linear. Therefore sicabe, the temperature
variation has greater effect than the damage on the first two principal components.
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5 Summary and conclusions

PCA has been used in the SHM field in the past. Heégeused in order to detect and discern damages in
structures by analysing the vibration responses across several scenarios.blére pfwibration-based
damage detection under varying environmental conditions was considered by employing data records from
the healthy and damaged states of the given structure under various envirorcoaditbns. The
information from the state of the structure has been used to verify the ity classification. The
approach proposed in this paper reveals that environmental variations can nizevfisstives completely
differently compared to fault observations. The next step of the work could be tiisisanfthe data

related to the mixed case (i.e. the combination of damage and temperature varidtiersaate time) in

more degh. An idea to deal with these cases is to consider also the third priccipglonent and
represent the data by the principal curves, e.g. as in Fig. 11.

Principal Curves

— | 0f

warm

cold
_dﬂmage

Third Principal Component

First Principal Component

Second Principal Component

Figure 11: Principal curves of damage and temperature conditions
Detailed study of this aspect igtléor a future work.
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