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ABSTRACT11

Statistical analyses of biomechanical finite element (FE) simulations are frequently conducted on scalar

metrics extracted from anatomically homologous regions, like maximum von Mises stresses from de-

marcated bone areas. Advantages of this approach are numerical tabulability and statistical simplicity,

but disadvantages include region demarcation subjectivity, spatial resolution reduction, and results inter-

pretation complexity when attempting to mentally map tabulated results to original anatomy. This study

proposes a method which abandons the two aforementioned advantages to overcome these three limita-

tions. The method is inspired by parametric random field theory (RFT), but instead uses a non-parametric

analogue to RFT which permits flexible model-wide statistical analyses through non-parametrically

constructed probability densities regarding volumetric upcrossing geometry. We illustrate method funda-

mentals using basic 1D and 2D models, then use a public model of hip cartilage compression to highlight

how the concepts can extend to practical biomechanical modeling. The ultimate whole-volume results

are easy to interpret, and for constant model geometry the method is simple to implement. Moreover,

our analyses demonstrate that the method can yield biomechanical insights which are difficult to infer

from single simulations or tabulated multi-simulation results. Generalizability to non-constant geometry

including subject-specific anatomy is discussed.
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1 INTRODUCTION29

In numerical finite element (FE) simulations of biomechanical continua model inputs like material30

properties and load magnitude are often imprecisely known. This uncertainty arises from a variety of31

sources including: measurement inaccuracy, in vivo measurement inaccessibility, and natural between-32

subject material, anatomical and loading variability (Cheung et al., 2005; Ross et al., 2005; Cox et al.,33

2011, 2015; Fitton et al., 2012b). Despite this uncertainty, an investigator must choose specific parameter34

values because numerical simulation requires it. Parameters are typically derived from published data,35

empirical estimation, or mechanical intuition (Kupczik et al., 2007; Cox et al., 2012, 2013; Rayfield,36

2011; Cuff et al., 2015).37

It is also possible to perform multiple FE simulations using a spectrum of feasible model input values38

to generate a distribution of model outputs (Dar et al., 2002; Babuska and Silva, 2014). More simply,39

probabilistic model inputs yield probabilistic outputs, and continuum mechanics’ inherent nonlinearities40

ensure that these input and output probabilities are nonlinearly related. Probing output distributions41

statistically therefore generally requires numerical simulation. Such analyses can require substantial42

computational resources: probabilistic FE outputs have been shown to converge to stable numerical values43

only for on-the-order of 1000 to 100,000 simulation iterations depending on model complexity (Dopico-44



González et al., 2009). The advent of personal computing power has mitigated problems associated with45

this computational demand and has led to a sharp increase in probabilistic FE simulation in a variety of46

engineering fields (Stefanou, 2009) including biomechanics (Easley et al., 2007; Laz et al., 2007; Lin47

et al., 2007; Radcliffe and Taylor, 2007; Fitzpatrick et al., 2012).48

Producing a probabilistic input-output mapping is conceptually simple: iteratively change input49

parameters according to a particular distribution and assemble output parameters for each iteration to50

yield an output distribution. The simplest method is Monte Carlo simulation which randomly generates51

input parameters based on given mean and standard deviation values (Dar et al., 2002). More complex52

methods like Markov Chain Monte Carlo can accelerate probabilistic output distribution convergence53

(Boyaval, 2012).54

Once probabilistic inputs / outputs are generated they may be probed using a variety of statistical55

methods. A common technique is to extract scalars like maximum von Mises stress from anatomically56

demarcated regions of interest (Radcliffe and Taylor, 2007). Other techniques include Taguchi global57

model comparisons (Taguchi, 1987; Dar et al., 2002; Lin et al., 2007) to fuzzy set modeling (Babuska and58

Silva, 2014) and probability density construction for specific model parameters (Easley et al., 2007; Laz59

et al., 2007; McFarland and Mahadevan, 2008; Dopico-González et al., 2009).60

The purpose of this paper is to propose an alternative method which conducts classical hypothesis61

testing at the whole-model level using continuum upcrossing geometry. An ‘upcrossing’ is a portion of62

the continuum that survives a threshold (Fig.1) like an island above the water’s surface or a mountain63

top above clouds. Each upcrossing possess a number of geometrical features including maximum height,64

extent and integral, where integrals, for examples, are areas, volumes and hyper-volumes for 1D, 2D65

and 3D continua, respectively. Parametric solutions to upcrossing geometry probabilities exist for n-66

dimensional Gaussian continua in the random field theory (RFT) literature (Adler and Taylor, 2007), and67

non-parametric approximations have been shown to be equally effective (Nichols and Holmes, 2002). The68

method we propose follows the latter, non-parametric permutation approach because it is ideally suited to69

the iterative simulation which characterizes probabilistic FE analysis.70

The method is inspired by hypothesis testing approaches in nonlinear modeling (Legay and Viswanatha,71

2009) and in particular a label-based continuum permutation approach (Nichols and Holmes, 2002). It first72

assembles a large number of element- or node-based test statistic volumes through iterative simulation,73

then conducts inference using non-parametrically estimated upcrossing probabilities. These upcrossing74

distributions form a general framework for conducting classical, continuum-level hypothesis testing on75

FE models in arbitrarily complex experiments.76
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Figure 1. Example upcrossing in a 1D continuum. A thresholded continuum contains zero or more

upcrossings, each with particular geometric characteristics including: maximum height, extent, integral,

etc., each of which is associated with a different probability. The maximum height characteristic —

across all upcrossings — can be used to conduct classical hypothesis testing as described in §2.

2 METHODS77

All analyses were were implemented in FEBio v.2.4.2 and v.2.5.0 (Maas et al., 2012) and Python 2.778

(van Rossum, 2014). All partial differential equations underlying the models’ numerical solutions are79
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described in the FEBio Theory Manual (Maas et al., 2015). Model files and analysis scripts are available80

in this project’s GitHub repository (github.com/0todd0000/probFEApy).81

2.1 Models82

2.1.1 Model A: Simple anisotropic bone compression83

A single column of hexahedral elements (Fig.2a) with anisotropic stiffness (Fig.2b) was used to repre-84

sent bone with local material inconsistencies. This simplistic model was used primarily to efficiently85

demonstrate the key concepts underlying the proposed methodology. Nodal displacements were fully86

constrained at one end, and a total compressive force of 8000 N was applied to the other end along the87

longitudinal axis. The bone material was linearly elastic with a Poisson’s ratio of 0.3.88

Local anisotropy in Young’s modulus (Fig.2b) was created using Gaussian pulses centered at 70%89

along the bone length with amplitudes and breadths of approximately 10% and 20%, respectively. The90

actual amplitudes and breadths of the stiffness increase were varied randomly to simulate an experiment91

involving N=8 randomly sampled subjects in which the bone’s anisotropic stiffness profile was measured92

separately for each subject. Additionally, a small random signal was separately applied to each of the eight93

cases to ensure that variance was greater than zero, and thus that test statistic values were computable at94

all points in the continuum.95
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Figure 2. Model A. (a) Stack of cuboids representing a simplified bone. (b) Elemental Young’s moduli

representing local stiffness increase in N=8 cases.

2.1.2 Model B: Soft tissue indentation96

A rigid hexahedral block was compressed against soft tissue to a depth of 1 cm height as depicted in97

Fig.3. Nodal displacements on the soft tissue’s bottom surface were fully constrained. The soft tissue was98

modeled as hyperelastic with the following Moony-Rivlin strain energy function (Maas et al., 2015) :99

W = a(I −3)+
k

2
(lnJ)2 (1)

Here a is the hyperelastic parameter, k is the elasticity volume modulus, I is the deformation tensor’s100

first deviatoric invariant, and J is the deformation Jacobian. The parameter a was set to 100 and eight k101

values (800, 817, 834, 851, 869, 886, 903, 920) were compared to a datum case of k=820.102

Additionally, three different indenter face types were compared. The first indenter face was perfectly103

flat, and the other two were uneven but smooth as depicted in Fig.4. The uneven surfaces were generated104

by adding spatially smoothed Gaussian noise to the indenter face’s z coordinates (i.e. the compression105

direction), then scaling to a maximum value of approximately 2.5 mm, or 1.7% the indenter’s height.106

2.1.3 Model C: Hip cartilage compression107

A separately-published model of hip cartilage compression (Maas et al., 2015) (Fig.5) was selected to108

demonstrate how the concepts from the simple models A and B above may extend to realistic biomedical109

applications. This model is available in the FEBio test suite (febio.org; model name: “hip_n10rb”),110

and the scripts we used to manipulate this model are available in this paper’s GitHub repository (github.111

com/0todd0000/probFEApy).112
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Figure 3. Model B: rigid block indentation on a hyperelastic material.

Figure 4. Model B indenter faces. The grey area depicts the compressed soft tissue.

The bones were rigid and the cartilage was modeled using the hyperelastic Mooney-Rivlin model113

above (Eqn.1) with a constant a value of 6.817. Ten different values of k were simulated for each of two114

hypothetical groups (Table 1) to mimick a two-sample experiment involving in vivo or in vitro material115

property measurements. The pelvis and acetabular cartilage were fixed and the femur was kinematically116

driven 1 mm in the upward direction.117

Table 1. Model C material parameters; see Eqn.1. SD = standard deviation.

Group Mooney-Rivlin k values Mean (SD)

1 [1200, 1230, 1260, 1290, 1320, 1350, 1380, 1410, 1440, 1470] 1335 (90.8)

2 [1380, 1410, 1440, 1470, 1500, 1530, 1560, 1590, 1620, 1650] 1515 (90.8)

2.2 Analysis118

We used a non-parametric permutation method from the Neuroimaging literature (Nichols and Holmes, 2002)119

to conduct classical hypothesis testing at the whole-model level. The technique employs observation per-120

mutation to generate non-parametric approximations to probabilities from (parametric) multi-dimensional121
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Figure 5. Model C; “hip_n10rb” from the FEBio test suite containing femoral and acetabular cartilage

compressed via rigid bone displacement. (a) Full model. (b) Pelvis removed to expose the cartillage

surface geometries.

Random Field Theory (Adler and Taylor, 2007). The method is described below and is depicted in Fig.6.122

All permutations described below were applied to pre-simulated FEA results.123

2.2.1 Model A124

The datum Young’s modulus (E=14 GPa) was subtracted from the eight 1D Young’s modulus continua125

(Fig.2b), and the resulting difference continua were sign-permuted (Fig.6a) to generate a number of126

artificial data samples. For each sample the t continuum was computed according to the typical one-127

sample t statistic definition:128

t(q) =
y(q)−µ(q)

s(q)/
√

N
(2)

where y is the sample mean, µ is the datum, s is the sample standard deviation, N is sample size and q129

is continuum position. Repeating for all permutation samples produced a distribution of 1D t continua130

(Fig.6b), whose maxima formed a ‘primary’ probability density function (PDF) (Fig.6c). This primary131

PDF represents the expected maximum difference (from the datum case of E = 14 GPa) that smooth,132

purely random continua would be expected to produce if there were truly no effect.133

We conducted classical hypothesis testing at α=0.05 using the primary PDF’s 95th percentile (t∗)134

as the criterion for null hypothesis rejection; if the t continuum associated with original, non-permuted135

data (Fig.6a) exceeded t∗ the null hypothesis was rejected. In this example the original t continuum136

failed to traverse t∗ (Fig.6e) so the null hypothesis was not rejected. Based on the primary PDF the exact137

probability value was: p = 0.101 in the depicted example.138

We repeated this procedure for the effective strain and von Mises stress distributions associated with139

the eight Young’s modulus continua. In cases where the original t continuum exceeded the t∗ threshold,140

probabilities associated with the upcrossing(s) (Fig.1) were computed with a ‘secondary’ PDF (Fig.6d)141

which embodied the probability of observing upcrossings with particular volume (i.e. supra-threshold142

integral). Note that (i) (1-α)% of the values in the secondary PDF are zero by definition, (ii) an upcrossing143

which infinitessimally exceeds t∗ has an integral of zero and a p value of α , and (iii) the minimum144

upcrossings p value is 1/n, where n is the total number of permutations. All integrals were computed145

using trapezoidal approximation.146

2.2.2 Model A, Part 2147

We conducted a secondary analysis of Model A to examine how additional probabilistic variables148

increase computational demand. For this analysis we considered load direction (θ ) to be uncertain,149
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(e)      Final results

Figure 6. Depiction of non-parametric, permutation-based continuum-level hypothesis testing. This

example uses five of the Young’s modulus continua from Fig.2b and compares the mean continuum to the

datum: µ=14 GPa. (a) Original continua were sign-permuted by iteratively multiplying subsets by −1.

(b) For each permutation a t continuum was computed using Eqn.2 . (c) The maximum t values from all

permutations were assembled to form a primary probability density function (PDF) from which a critical

test statistic (t∗) was calculated. (d) Thresholding all permuted test statistic continua at t∗ produced

upcrossings (Fig.1) whose integral formed a secondary PDF from which upcrossing-specific p values are

computable. (e) Since the original test statistic continuum failed to traverse t∗ the null hypothesis was not

rejected at α=0.05 for this example.

with a mean of zero and a standard deviation of 3 deg (forces with θ=0 deg are depicted in Fig.2a,150

and these forces were rotated about the depicted Y axis). For typical simulation of random variables151

hundreds or thousands of simulations are usually needed to achieve probability distribution convergence152

(Dopico-González et al., 2009) , but we aimed to show that computational increases may be minimal for153

the proposed hypothesis testing framework.154

We randomly varied θ for an additional 400 FE simulations, 50 for each of the observations depicted155

in Fig.2b. We then qualitatively compared the permutation-generated distribution of t continua after just156

16 simulations (one extra FE simulation for each observation) to the distribution obtained after 400 FE157

simulations. To quantitatively assess the effects of the number of simulations N on the distributions we158

examined the null hypothesis rejection rate for the N=16 and N=400 cases as a function of the number of159

post-simulation permutations.160

2.2.3 Model B161

The goal of Model B analysis was to qualitatively assess the effects of imperfect contact geometry (Fig.4)162

on both mean FE simulation results and statistical interpretations. Nine simulations were conducted163
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for each of the three indenter faces (Fig.4): one datum (k=820) and then the eight other values of k as164

described above. For each indenter we computed the mean von Mises stress distribution in the compressed165

soft tissue, then compared this mean to the datum (k=820) stress distribution through the one-sample test166

statistic (Eqn.2) .167

2.2.4 Model C168

The goal of Model C analysis was to demonstrate how the analysis techniques and results for Model A169

and Model B extend to realistic, complex models. The null hypothesis of equivalent von Mises stress170

distributions in each group (Table 1) was tested using a slight modification of the permutation approach171

described above (Fig.6). The only differences were that (i) the two-sample t statistic was computed instead172

of the one-sample t statistic, and (ii) group permutations were conducted instead of sign permutations.173

Group permutations were performed by randomly assigning each of the 20 continuum observations to174

one of the two groups, with ten observations in each group, then repeating for a total of 10,000 random175

permutations. Although the total number of possible permutations was 20! / (10! 10!) = 184,756, we176

found no qualitative effect of adding more than 10,000 permutations.177

3 RESULTS178

3.1 Model A179

FE simulations of each of the eight cases depicted in Fig.2b yielded the stress/strain distributions and180

t statistic distributions depicted in Fig.7. In this example Young’s moduli only increased (Fig.7a) and181

strain only decreased (Fig.7b), but stress exhibited central increases (near element #70) and peripheral182

decreases (near elements #60 and #80) (Fig.7c), emphasizing the nonlinear relation between model inputs183

and outputs.184

Maximum absolute t values differed amongst the field variables (Fig.7d–f), with stress exhibiting the185

largest maximum absolute t values. The null hypothesis was rejected for von Mises stresses but not for186

either Young’s modulus or effective strain. Additionally, both stress increases and stress decreases were187

statistically significant (Fig.7f). These results indicate that statistical signal associated with the Young’s188

modulus inputs was amplified in the von Mises stress field, but we note that strain would have been the189

amplified variable had the the model been displacement-loaded instead of force-loaded. More generally190

these results show that statistical conclusions pertaining to different model variables can be quite different,191

and that different continuum regions can respond in opposite ways to probabilistic inputs.192

Although stiffness increased non-uniformly as a Gaussian pulse (Fig.7a) the test statistic magnitude193

was effectively uniform across that region (elements 60 – 80; Fig.7d). This suggests that mechanical and194

statistical magnitudes are not directly related, and thus that statistical conclusions mustn’t be limited to195

areas of large mechanical signal unless one’s hypothesis pertains specifically to those areas.196

3.2 Model A, Part 2197

Adding uncertainty to the load direction increased variability and thus caused absolute t value decreases198

near element #70 (Fig.8a), but general loading environment changes caused increases to absolute t values199

in other model areas, especially toward elements #50 and #90. The stress response was somewhat different200

, with absolute t values increasing near element #70 but decreasing elsewhere (Fig.8c), re-emphasizing201

the complex relation amongst different field variables’ response to probabilistic model features.202

The t distributions for stress and strain were not qualitatively affected by the number of additional203

FE simulations; 16 simulations, or one extra simulation per observation (Fig.8a,c) yielded essentially the204

same results as 400 simulations (Fig.8b,d). The reason is that permutation leverages variability in small205

samples to produce a large number of artificial samples, and thereby approximates the results of a large206

number of FE simulations.207

To quantify t continuum distribution stability as a function of the number of permutations we con-208

sidered the null hypothesis rejection rate in both cases of 16 and 400 FE simulations (Fig.9). After209

approximately 200 permutation iterations the null hypothesis rejection rate was effectively identical for210

both 16 and 400 FE simulations. These results suggest that permutation, which is extremely fast compared211

to FE simulation, may be able to effectively approximate a large number of FE simulations using the212

results of only a few FE simulations.213
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Figure 7. Model A results. (a–c) Young’s modulus input observations and strain/stress continua

associated with each observation. (d–f) Hypothesis testing results (α=0.05); red dotted lines depict

critical thresholds.

Figure 8. Model A t distributions for strain (upper panels) and stress (lower panels) under a load

direction uncertainty with a standard deviation of 3 deg.

3.3 Model B214

The mean stress distributions associated with the three indenter faces (Fig.10) closely followed indenter215

face geometry (Fig.3). Variation in material parameters was associated with stress distribution variability216

(Fig.11a). Nevertheless, t values were effectively constant across all elements and all three models217

(Fig.11b). This suggests that test statistic continua are more robust to model geometry imperfections than218

are stress/strain continua.219
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Figure 10. Model B mean stress distributions for the three indenter faces. Note that these patterns

closely follow the indenter face geometry depicted in Fig.4.
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3.4 Model C220

A two-sample t test regarding the material parameters (Table 1) yielded t=5.17, p<0.001 and thus a221

rejection of the null hypothesis of equal group means. These probabilistic material parameters produced222
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mean stresses which were generally higher in Group B vs. Group A (Fig.12), where a stress distribution223

difference plot clarified that inter-group differences were generally confined to areas of large stress224

(Fig.13). The inter-group statistical differences were much broader, covering essentially the entire femoral225

cartilage (Fig.14). Moreover, relatively broad regions of the cartilage exhibited significant stress decreases,226

similar to the result observed in the simple bone model (Fig.7f).227

These results reiterate many of the aforementioned methodological points. In particular, changes in228

probabilistic model inputs (in this case: material parameter values) can have statistical effects on output229

fields (in this case: von Mises stresses) which are not easily predicted. Additionally, the visual advantages230

of full-field analyses are somewhat clearer in this more anatomically correct model; tabulated stresses231

from different regions of the femoral cartilage would be more difficult to interpret in terms of the original232

anatomy. Last, mechanical (Fig.13) and statistical (Fig.14) results can be quite different.233
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Figure 13. Model C: mean stress difference.

4 DISCUSSION234

This paper demonstrated how a non-parametric permutation technique from Neuroimaging (Nichols and Holmes, 2002)235

can be used to conduct classical continuum-level hypothesis testing for finite element (FE) models. It’s236

main advantages are:237

1. Easy implementation. As demonstrated in this project’s software repository (github.com/238

0todd0000/probFEApy), non-parametric hypothesis testing for FE models can be implemented239

using relatively compact scripts.240
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2. Computational efficiency. After simulating subject-specific results — which is usually necessary in241

arbitrary multi-subject studies — no additional FE simulations are needed; permutation can operate242

on pre-simulated small-sample results to approximate large-sample probabilities (Fig.6). Producing243

the main Model A results (Fig.7) required a total of only 1.3 s to execute on a desktop PC, including244

both FE simulations and permutation-based probability computation.245

3. Non-measured uncertainty capabilities. Adding uncertainty in the form of random model parameters246

does not necessarily require large increases in computational demands; results suggest that with247

respect to an original dataset with N simulations, it may be possible to robustly accommodate248

additional uncertainty with just N additional simulations (Figs.8–9).249

4. Visual richness and tabulation elimination. Continuum-level hypothesis testing results can be250

presented in the same geometric context as commonly visualized field variables like stress and251

strain (Fig.7b,e and Fig.7c,f), which eliminates the need to separately tabulate statistical results.252

5. Arbitrarily complex experiments. While only one- and two-sample designs were considered here, t253

statistic continua generalize to F and all other test statistic continua, so arbitrarily complex designs254

ranging from regression to MANCOVA can be easily implemented using permutation.255

6. Robustness to geometric imperfections. Small geometric changes can have qualitatively large256

effects on stress/strain continua, but have comparably little-to-no effect on test statistic continua257

(Fig.??), implying that continuum-level hypothesis testing may be more robust than commonly258

employed procedures which analyze local maxima. This potential danger is highlighted in the259

more realistic Model C, whose mean differences (Fig.13) exhibited high focal stresses whereas the260

statistical continuum was much more constant across the contact surface (Fig.14).261

4.1 Mechanical vs. statistical interpretations262

Mechanical and statistical continua are generally different. For example, for Model A it is clear that263

each stiffness increase (Fig.2b) has mechanical effects on the strain/stress continuum, but the statistical264

effects are less clear because there is relatively large uncertainty regarding the true nature of the stiffness265

increase in the population that this sample represents. For classical hypothesis testing, mechanical266

meaning is irrelevant because all mechanical effects must be considered with respect to their uncertainty.267

Further emphasizing the tenuous relation between mechanical and statistical meaning are regions of268

small mechanical signals (for Model A: near the periphery of the stiffness increase region) which can be269

accompanied by relatively large statistical signals.270

To objectively conduct classical hypothesis tests on FEA results it is therefore essential to explicitly271

identify the hypothesis prior to conducting simulations. If limiting analyses to only areas of large272

mechanical signal can be justified in an a priori sense, then those, and only those areas should be analyzed273

without any theoretical problem. If, however, one’s a priori hypothesis pertains to general stress / strain274

distribution changes, and not specifically to areas of high mechanical signal, it may be necessary to275

consider the entire model because maximal mechanical and maximal statistical signals do not necessarily276

coincide.277
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4.2 Comparison with common techniques278

In the literature, FE-based classical hypothesis testing is typically conducted via scalar analysis of local279

extrema (Radcliffe and Taylor, 2007). Applying that approach to the local mechanical change extrema in280

Model A (Fig.7a–c) yielded the results in Table 2. The null hypothesis (of no mean change with respect to281

the 14 GPa case) was rejected at α = 0.05 for all three mechanical variables: Young’s modulus, effective282

strain and von Mises stress.283

While the test statistic magnitudes are the same for both the proposed whole-model approach (Fig.7)284

and these local extremum analyses, the critical threshold at α=0.05 is different because the spatial scope285

is different. The broader the spatial scope of the hypothesis, the higher the threshold must be to avoid286

false positives (Friston et al., 2007); in other words, random processes operating in a larger volume have a287

greater chance of reaching an arbitrary threshold.288

The proposed model-wide approach (Fig.7) and the local extremum (scalar) approach have yielded289

contradictory hypothesis testing conclusions for both Young’s modulus and strain distributions, so which290

approach is correct? The answer is that both are correct, but both cannot be simultaneously correct. The291

correct solution depends on the a priori hypothesis, and in particular the spatial scope of that hypothesis.292

If the hypothesis pertains to only the local extremum, then the local extremum approach is correct, and293

whole-model results should be ignored because they are irrelevant to the hypothesis. Similarly, if the294

hypothesis pertains to the whole model, then the whole model results are correct and local extrema results295

should be ignored because they are irrelevant to the hypothesis. We would argue that all FE analyses296

implicitly pertain to the whole model unless otherwise specified, and that focus on specific scalar metrics297

is appropriate only if justified in an a priori manner.298

Table 2. Model A results. Analyses of local extrema (at element 70) using a non-parametric

permutation-based two-sample t test. SD = standard deviation.

Variable Mean SD t p

Young’s modulus (GPa) 14.665 0.670 2.804 0.026

Effective strain (1e-6) 789.6 33.9 -2.946 0.022

von Mises stress (kPa) 8894.0 8.0 3.014 0.020

Historically in biomechanical FEA, low sample sizes (frequently n = 1 for each model) permitted299

nothing more than qualitative comparisons of stress or strain maps, and/or numerical comparison of output300

parameters at single nodes. Nevertheless conventional FEA can concurrently and ironically suffer from an301

excess of data when results are tabulated over many regions, often in a non-standardized manner across302

studies.303

With the continued increase of computer power and processing speed, FE models comprising over304

one million elements are becoming more and more common (Moreno et al., 2008; Bright and Rayfield,305

2011a; Cox et al., 2013, 2015; Cuff et al., 2015) (e.g. Moreno et al, 2008; Bright & Rayfield, 2011a;306

Cox et al, 2013, 2015; Cuff et al, 2015). Yet, typically stress and strain values are only reported and307

analysed from just a few elements (Porro et al., 2013; Fitton et al., 2012a). Alternatively average or peak308

stress or strain values can be computed for whole models (Dumont et al., 2011; Cox et al., 2012; Parr309

et al., 2013; Sharp and Rich, 2016) or selected regions (Wroe et al., 2007a,b; Nakashige et al., 2011).310

The recent application of geometric morphometrics to FEA results (Cox et al., 2011; Fitton et al., 2012b;311

O’Higgins and Milne, 2013) has gone some way to providing a method of analysing whole models rather312

than individual elements, but is limited to the analysis of deformations. The approach outlined here313

enables, for the first time, the analysis of all stresses or strains in a single hypothesis test.314

Another major benefit of the technique outlined here is its ability to take in consideration input315

parameters that are only imprecisely known. When modelling biological structures, the material properties316

of the model, and the magnitude and orientations of the muscle loads cannot always be directly measured.317

This is an especially acute problem in studies dealing with palaeontological taxa. Previous research has318

addressed this issue principally by the use of sensitivity analyses which test the sensitivity of a model319

to changes in one or more unknown parameters (Kupczik et al., 2007; Bright and Rayfield, 2011a; Cox320
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et al., 2011, 2015; Reed et al., 2011; Wood et al., 2016; Toro-Ibacache et al., 2016). The models are321

identical save for the unknown parameters, which are then varied between extremes representing likely322

biological limits or the degree of uncertainty. In such studies, the number of different models is usually323

quite low, with each parameter only being tested at a maximum of five different values. Our method takes324

this approach to its perhaps logical extreme – the unknown parameter is allowed to vary randomly within325

defined limits over a large number of iterations (usually on the order of 10,000). These iterations produce326

a distribution of results that can be statistically compared with other such distributions.327

A final advantage is that statistical continua may be less sensitive to geometric mesh peculiarities than328

stress / strain continua. In Fig.10 and Fig.13, for example, it is clear from the oddly shaped regions of329

stress difference that these effects were likely caused by mesh irregularities and that remeshing would330

likely smooth out these areas of highly localized stress changes. The test statistic continuum, on the other331

hand, appeared to be considerably less sensitive to localization effects (Fig.11) and (Fig.14). This may332

imply that one needn’t necessarily develop an ideal mesh, because statistical analysis may be able to333

mitigate mesh peculiarity-induced stress distribution irregularities.334

4.3 Limitations335

The major limitation of the proposed method as it currently stands is that only models of identical geometry336

can be compared. Thus, while the technique can be readily used to address sensitivity-like questions337

regarding material properties, boundary conditions and orientations, the method cannot readily address338

geometry-relevant questions, such as are created by varying mesh density (Bright and Rayfield, 2011b;339

Toro-Ibacache et al., 2016), or are found in between-taxa analyses (Dumont et al., 2005, 2011; Oldfield340

et al., 2012; Cox et al., 2012; Wroe et al., 2007a; Sharp, 2015). Nevertheless, through three-dimensional341

anatomical registration (Friston et al., 2007) and also potentially intra-model spatial interpolation to342

common continuum positions q (Eqn.2), it may be possible to apply the technique to arbitrary geometries343

even in cases of large deformation and/or geometrical disparity (Schnabel et al., 2003).344

A second limitation is computational feasibility. Although our results suggest that incorporating a345

single additional uncertain parameter into the model may not greatly increase computational demand,346

this may not be true for higher dimensional parameter spaces. In particular, given N experimental347

measurements, our results show that 2N simulations are sufficient to achieve probabilistic convergence348

(Fig.9). However, this result may be limited to cases where the uncertainty is sufficiently small so349

that it fails to produce large qualitative changes in the underlying stress/strain continua. Moreover, the350

feasibility for higher-dimensional parameter spaces is unclear. In particular, a sample of N observations is351

likely unsuitable for an N-dimensional parameter space, or even an N/2-dimensional parameter space.352

The relation between uncertainty magnitude, number of uncertain parameters, the sample size and the353

minimum number of FE simulations required to achieve probabilistic convergence is an important topic354

that we leave for future work.355

A third potential limitation is that both upcrossing features and the test statistic continuum can be356

arbitrary. In this paper we restricted analyses to the upcrossing maximum and integral due to the robustness357

of these metrics with respect to other geometric features (Zhang et al., 2009). Other upcrossing metrics358

and even arbitrary test statistic continua could be submitted to a non-parametric permutation routine.359

This is partly advantageous because arbitrary smoothing can be applied to the continuum data, and in360

particular to continuum variance (Nichols and Holmes, 2002), but it is also partly a disadvantage because361

it increases the scope of analytical possibilities and thus may require clear justification and/or sensitivity362

analyses for particular test statistic and upcrossing metric choices.363

A final limitation is that the both the test statistic and probability continua are directly dependent on364

the uncertainty one selects via model parameter variance. This affords scientific abuse because it allows365

one to tweak variance parameters until the probabilistic results support one’s preferred interpretation. We366

therefore recommend that investigators both clearly justify variance choices and treat variance itself as a367

target of sensitivity analysis.368

4.4 Summary369

This paper has proposed a probabilistic finite element simulation method for conducting classical hypoth-370

esis testing at the continuum level. The technique leverages probability densities regarding geometric371

features of continuum upcrossings, which can be rapidly and non-parametrically estimated using iterative372

permutation of pre-simulated stress/strain continua. The method yields test statistic continua which are373

visually rich, which may eliminate the need for tabulated statistical results, which may reveal unique374
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biomechanical information, and which also may be more robust to mesh and other geometrical model375

peculiarities than stress/strain continua.376
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