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CrCuAgN PVD Nanocomposite Coatings: Effects of 
Annealing on Coating Morphology and Nanostructure 

Xingguang Liu, Allan Matthews, Adrian Leyland 

 

Abstract 

CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced 

magnetron sputtering. This investigation focuses on the effects of post-coat annealing 

on the surface morphology, phase composition and nanostructure of such coatings. In 

coatings with nitrogen contents up to 16 at.%,  chromium exists as metallic Cr with N 

in supersaturated solid solution, even after 300 oC and 500 oC post-coat annealing.  

Annealing at 300 oC did not obviously change the phase composition of both 

nitrogen-free and nitrogen-containing coatings; however, 500 oC annealing resulted in 

significant transformation of the nitrogen-containing coatings. The formation of Ag 

aggregates relates to the (Cu+Ag)/Cr atomic ratio (threshold around 0.2), whereas the 

formation of Cu aggregates relates to the (Cu+Ag+N)/Cr atomic ratio (threshold 

around 0.5). The primary annealing-induced changes were reduced solubility of Cu, 

Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline 

and partly amorphous phase constitution to a coarser, but still largely nanocrystalline 

structure. It was also found that, with sufficient Cu content (> 12 at.%), annealing at a 

moderately high temperature (e.g. 500 oC) leads to transportation of both Cu and Ag 

(even at relatively low concentrations of Ag, ≤ 3 at.%) from inside the coating to the 

coating surface, which resulted in significant reductions in friction coefficient, by 

over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical 

diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, 

respectively). Results indicate that the addition of both Cu and Ag (in appropriate 
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concentrations) to nitrogen-containing chromium is a viable strategy for the 

development of ‘self-replenishing’ silver-containing thin film architectures for 

temperature-dependent solid lubrication requirements or antimicrobial coating 

applications. 
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Nanocomposite; PVD coatings; Annealing; Transportation; Phase transformation; 

Nanostructure  
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1. Introduction 

In recent years, self-lubricating PVD tribological thin films have been intensively 

investigated [1-16]. Among these, PVD nanocomposite coatings containing soft 

metals (e.g. Ag or Cu), as a solid lubrication phase, embedded in a hard wear-resistant 

matrix, such as a transition metal nitride [2-4, 6-9], carbide [10, 13] or oxide [14-16], 

and mixtures of these ceramics (in ternary/quaternary/nanocomposite coating 

systems), have all been extensively studied, with the promise of improved tribological 

performance during transient and/or cyclic temperature changes [17-19]. In particular, 

coatings based on Cr-Ag-N [7, 8, 17-21] and Cr-Cu-N [6, 22, 23] (as two typical 

coating systems), have been studied. For coatings in the Cr-Ag-N system, it is 

revealed that Ag precipitates often tend to exhibit a lamellar shape (height/width: ~ 

1/2 to 1/3), with a uniform, but isolated distribution in the ceramic nitride matrix of 

the deposited coating [24, 25]. However, for coatings in the Cr-Cu-N system, it is 

typically found that a metastable solid solution phase of Cu in bcc Cr (with Cu 

content of up to 60 at.%) will form at low deposition temperatures [26] (e.g. ≤ 

200 °C), or that nanocrystalline Cr (or CrN if nitrogen is introduced) embedded in a 

semi-continuous Cu-rich intergranular ‘tissue’, will form – as was experimentally 

verified by a number of studies (e.g. Baker et al. [27], Lee et al. [28]). 

The hardness to elastic modulus (H/E) ratio is now widely recognised as being a more 

important and effective property optimisation parameter than hardness (H) alone in 

defining the mechanical behaviour of tribological coatings on relatively soft and/or 

compliant substrates (such as low-alloy steels, light metals and other non-ferrous 

alloys), especially in applications other than cutting and forming operations [27, 29-

32]. However, it is important - particularly for metallic nanostructured and amorphous 

tribological coatings - that this parameter is considered together with other factors 
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such as system tribochemistry and oxidation kinetics (depending on the operating 

environment and choice of counterface material). 

In a previous study [33], CrCuAgN coatings with different Cu/Ag concentration ratios 

were produced reactively by unbalanced magnetron sputtering of a composite target 

(silver ‘buttons’ embedded in a copper plate) and a pure chromium target at three 

different nitrogen flow rates (0 sccm, 5 sccm and 10 sccm). The nanostructure, 

morphology and mechanical properties were systematically studied; moreover, a 

promising coating with moderately high hardness of 14.1 GPa, H/E ratio of 0.072 and 

a combined Cu+Ag concentration approaching 15 at.% was identified. In the present 

work, a selection of such CrCuAgN coatings were annealed at 300 °C and 500 °C, for 

2 hours. The chamber was heated under high vacuum from ambient at a heating rate 

of ~15 °C/min, then held at the prescribed annealing temperature for two hours. After 

annealing, the chamber was cooled back to room temperature under vacuum. The 

effects of annealing on the nanostructure, surfaced topography, fracture morphology, 

elemental distribution (and resulting phase composition and mechanical properties) of 

these coatings were investigated. 
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2. Experimental procedure 

Three groups of coatings were produced prior to annealing, deposited at nitrogen 

reactive gas flow rates of 0 sccm (control group), 5 sccm and 10 sccm, respectively. 

Each group contained 5 samples, which were located at 5 different positions between 

the Cu-Ag composite target and pure Cr target during deposition, as shown 

schematically in Fig. 1. The chamber was evacuated to a base pressure of 2×10-5 mbar 

(2×10-3 Pa) before deposition process. During deposition, the substrates were biased 

at a DC pulsed voltage of -100V, with a frequency of 180kHz and substrate current 

density of ~0.4 mA/cm2. Cr and Cu-Ag targets were powered at 1000W and 400W, 

respectively. The detailed deposition process, including pre-deposition preparation, 

sputter target configuration and deposition pressure/voltage parameters, have been 

described in detail previously [33]. 

High-resolution secondary electron images were obtained using a Philips XL30 S 

field emission gun scanning electron microscope (FEG-SEM), in order to observe the 

morphologies of coated surfaces and fracture sections. 

X-ray diffraction (XRD) measurements were carried out using a Siemens D5000 X-

ray diffractometer, with a Cu-KĮ source (Ȝ=0.15418 nm) and Bragg-Brentano ș-2ș 

scanning mode, for phase composition analysis of the deposited coatings. In order to 

distinguish coating diffraction peaks from those of the substrate, a diffraction pattern 

for the uncoated AISI 316 L stainless steel coupons was also obtained. 

Transmission electron bright field images, and dark field images with corresponding 

selected-area electron diffraction (SAED) patterns were obtained using Philips 

EM420 and FEI Tecnai T20 transmission electron microscopes (TEMs), in order to 

assess the phase transformations caused by annealing. All TEM samples were 
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prepared using an FEI Quanta 200 3D scanning electron microscope equipped with 

Focused Ion Beam (FIB), with the foil sample surface being parallel to the coating 

surface. 

In order to evaluate the solid lubricating performance of the as-deposited and 

annealed CrCuAgN coatings, coefficients of friction (CoF) at room temperature (RT) 

was obtained using a laboratory scratch adhesion test instrument, equipped with a 

0.2mm radius Rockwell C hemispherical diamond indenter. The critical load (Lc) of 

each selected sample was obtained first. Then, a fixed normal load of 20N 

(significantly lower than the Lc of all tested coatings) was used to obtain the CoF. A 

scratch speed of 0.2mm/s and distance of 5mm were used in all tests. Moreover, a 

Bruker CETR-UMT instrument equipped with a high temperature reciprocating 

sliding wear test module was used to evaluate the tribological properties at RT, 300 °C 

and 500 °C. An alumina ball of ¼ inch (6.35 mm) diameter was used as the 

counterface. Normal load, sliding distance and frequency were 1 N, 1 mm and 1Hz, 

respectively. 

In order to simplify the description and analysis in the following sections, each 

sample (or the deposited coating thereon) from the positions Px (x=1, 2, 3, 4, 5) will 

be simply described using “Px” (unless otherwise stated). As-deposited coatings 

without annealing will be described as Px-AD, and coatings annealed at 300 °C and 

500 °C will be described as Px-300 and Px-500, respectively. Each group of samples 

deposited at 0 sccm, 5 sccm and 10 sccm N2 flow rates will be briefly described as 

“control group” (or “0 sccm group”), “5 sccm group” and “10 sccm group”, 

respectively. The as-deposited group, 300 °C and 500 °C annealed groups will 

likewise be described as “0 sccm-AD”, “5 sccm-300”, etc. The simplified descriptions 

may be used as a combination as well, e.g. “5 sccm-P1-300” means “sample deposited 
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at position 1 under a nitrogen reactive gas flow rate of 5 sccm and subsequently 

vacuum annealed for 2 hours at 300 °C”.  
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3. Results and discussion 

The elemental compositions of the coatings investigated in this study are listed in 

Table 1 [33]. 

3.1. Fracture cross-sections 

The fracture-section secondary-electron images of the as-deposited and annealed 

coatings are shown in Fig. 2.  

3.1.1. The 0 sccm (nitrogen-free) control group 

In the 0 sccm (nitrogen-free) control group, the columnar structures of the as-

deposited coatings in P1 and P2 became less obvious after 300 °C annealing and even 

more so after 500 °C annealing. For P3, little difference (except the emergence of fine 

‘lumps’ on the columnar surfaces) was found from ‘AD’ to ‘300’ then to ‘500’, 

probably due to its ‘native’ coarse columnar structure in as-deposited condition 

compared to the relatively fine columnar structures of P1-AD and P2-AD. For P4 and 

P5, the fracture sections became gradually more ‘lumpy’ and rough from “AD”, to 

“300” and then to “500”. The blurred columnar boundaries and emergence of ‘lumps’ 

on the columnar surfaces after annealing probably indicate the occurrence of phase 

transformation and will be discussed further in sections 3.3, 3.4 and 3.5. 

3.1.2. The 5 sccm and 10 sccm (nitrogen-containing) groups 

In the two nitrogen-containing groups (5 sccm group and 10 sccm group), all coatings 

showed more lumpy and rough fracture-section structures after annealing - and 

progressively more so with increasing annealing temperature. According to the 

previous investigation [33], all as-deposited coatings in 5 sccm and 10 sccm groups 

were substitutionally super-saturated nitrogen-containing chromium (i.e. Cu and Ag in 



9 

 

Cr(N)) and hence likely to be highly metastable. Therefore, it may be expected that 

precipitates would form during annealing, which could explain the formation of the 

‘lumps’ in the fracture sections of the annealed coatings (and this will be confirmed in 

the phase transformation analysis in sections 3.4 and 3.5). 
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3.2. Surface morphology 

Oblique-view secondary-electron images of the coating surface morphologies are 

shown in Fig. 3.  

3.2.1. The 0 sccm (nitrogen-free) control group 

For the 0 sccm control group, it can be seen that from “AD” to “300” to “500”, 

coating surfaces become rougher. Some precipitated particles can be seen from 0 

sccm-P5-500, as shown by areas circled in Fig. 3. 

3.2.2. The 5 sccm and 10 sccm (nitrogen-containing) groups 

In the two nitrogen-containing groups, for P1 and P2, no obvious change in surface 

roughness can be seen from their as-deposited states to their annealed states, as shown 

in Fig. 3. Some tiny cracks can be seen in 5 sccm-P1-300, 5 sccm-P2-300 and 10 

sccm-P2-300. However, no obvious cracks can be seen from P1-500 and P2-500 in 

both 5 sccm and 10 sccm groups. The surface roughness of P3 in both nitrogen-

containing groups changed slightly after annealing; however, no development of 

surface aggregates could be observed. 

For P4 and P5 in the two nitrogen-containing groups, it can be seen that sphere-like 

(Cu, Ag)-rich (see section 3.3) aggregates emerged and became larger in size from P4 

to P5 (and from 300 °C to 500 °C annealing temperature), as shown by the areas 

circled in Fig. 3.  

3.2.3. Comparison among the three coating groups 

It was noticed that, after annealing, the number of aggregates found in the nitrogen-

containing coatings was much higher than in the nitrogen-free control group, which is 

probably because the introduction of nitrogen reduced the solubility of Cu (and Ag) in 
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Cr, therefore more (Cu, Ag)-rich aggregates would form for the nitrogen-containing 

coatings after annealing. This is further supported by the fact that more (and larger) 

aggregates were found in the 10 sccm group than in the 5 sccm group. 

For both the nitrogen-free control group and the nitrogen-containing groups, voids 

and spaces between columns can be clearly seen in the coatings with high Cu+Ag 

concentrations (e.g. P4 or P5 in each group) after annealing, which is probably caused 

by the diffusion of Cu and Ag from within the coating to the coating surfaces (and 

hence formation of the aggregates discussed above).  

3.2.4. Summary of surface morphology analysis 

For the surface morphologies of all three groups, annealing resulted in more obvious 

changes to coatings containing higher Cu+Ag concentrations.  

The introduction of nitrogen reduced the solubility of Cu (and Ag) in Cr; therefore, 

after annealing, progressively increasing numbers of aggregates formed, in direct 

correlation with the nitrogen flow rate increasing during coating deposition from 0 

sccm to 5 sccm and then to 10 sccm. 

Annealing activated the ‘transportation’ of Cu and Ag to the coating surfaces under 

moderately high temperature (e.g. slightly at 300 °C and more noticeably at 500 °C), 

which is a desirable in-service adaptive property in solid lubricating applications, 

because it can facilitate replenishment of the solid lubricating phases which might be 

consumed (e.g. worn, oxidized and/or dissolved) during service.  
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3.3. EDX line scan analysis 

An EDX line scan across one selected aggregate from coating 10 sccm-P5-500 was 

carried out, with the results shown in Fig. 4. It can clearly be seen from Fig. 4 that the 

aggregate is (Cu, Ag)-rich. According to a further EDX point analysis of a similar 

aggregate, it was found that the concentrations of Cr, Cu, Ag and N in it were 33.2, 

31.1, 10.5 and 25.2 at.%, respectively, with the Cu and Ag concentrations much 

higher than the average values measured for 10 sccm-P5-AD (as listed in table 1). 

Compared to the electron beam penetration depth in EDX analysis (normally in the 

order of a few microns, depending on the accelerating voltage and the material to be 

analysed), the sizes of the aggregates are relatively small (below 1 ȝm in diameter, as 

can be seen from Fig. 4). Thus there would also be some X-ray signal generated from 

areas surrounding (and beneath) the aggregate, being incorporated into the EDX point 

analysis results, making them nearer to the “average” value of the entire coating. 

Therefore, the real concentrations of Cu and Ag in the aggregates are likely to be even 

higher than the above EDX point analysis results indicate.  

It is also interesting to notice that silver is more ‘mobile’ than copper, since - from the 

EDX point analysis - it can be seen that the atomic ratio of Cu:Ag is about 3:1, 

whereas in the as-deposited 10 sccm-P5 it is about 8:1 (Cu 23.5 at.% and Ag 3.0 at.%; 

Table 1). This may be related in part to the lower melting point of silver (Ag: 1234K; 

Cu: 1356K). However, the significantly enhanced Ag mobility is surprising 

(compared to the relatively small differences in homologous temperature of the two 

elements during annealing at 500 °C, 773K); it is clear that the transport path 

provided by copper allows silver to migrate to the coating surface in significant 

quantities even though the ‘global’ Ag content of the coating is low (~3 at.% or lower). 

According to the existing literature, in (for example) CrAgN PVD coatings with no 
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added Cu, the Ag concentration needs to be at least 12 at.% (more than 4× higher than 

in our study) to permit ‘transportation’ to the coating surface – even during annealing 

at quite high temperatures (e.g. 600 - 700 °C) [21] - and needs to be in excess of 20 at.% 

to transport sufficiently well to provide adequate solid lubricating benefits [8, 18, 20, 

21, 25]. The transportation of Ag from inside to the coating surface (and subsequent 

aggregation) will also be a desired characteristic for antimicrobial coating applications 

[34, 35], particularly when the Ag aggregates are presented in nanocrystalline 

topography [36]. 

Furthermore, from the EDX line scan shown in Fig. 4, it can be seen that the Cu and 

Ag maxima were displaced from each other. The analysed aggregate appears Cu-rich 

on the left and Ag-rich on the right. In other words, after annealing, although both Cu 

and Ag precipitate from substitutional solid solution in Cr and transport to coating 

surface they are inclined to exist separately, which is in good agreement to the Ag-Cu 

phase diagram [37] and to first-principles calculation [38, 39] (at equilibrium silver 

and copper are nearly immiscible below 550K). 

  



14 

 

3.4. XRD analysis 

The X-ray diffraction patterns are shown in Fig. 5.  

3.4.1. The 0 sccm (nitrogen-free) control group 

From the diffraction patterns of the 0 sccm control group shown in Fig. 5(a), it is clear 

that all of the annealed coatings (except 0 sccm-P3-500) retained the same preferred 

orientations as their as-deposited counterparts. Regarding 0 sccm-P3-500, it showed 

preferred orientation of Cr(110) rather than the Cr(211) texture of its counterparts 0 

sccm-P3-AD and 0 sccm-P3-300. By comparing the patterns of the coatings annealed 

at 500 °C, it can also be seen that 0 sccm-P3-500 showed a transition of preferred 

orientation between Cr(211) and Cr(110). Moreover, distinguishable movement of 

shifted peaks back to their theoretical (unstrained) positions after annealing can also 

be seen, by comparing the diffraction patterns of as-deposited and annealed coatings. 

This movement means the interplanar spacings of the as-deposited coatings regressed 

during annealing, indicating a relaxation of compressive growth stresses. Therefore, it 

can be deduced that annealing probably resulted in recovery of the crystalline lattice 

from significant distortion (due to the supersaturated solid solution developed during 

sputter deposition at low temperature). Likewise, it can be deduced that the 500 °C 

annealing caused more lattice recovery than the 300 °C annealing, because the 

diffraction peaks of coatings annealed at 500 °C are more closely aligned to their 

theoretical values than those annealed at 300 °C, as indicated by the green lines in Fig. 

5(a). Cu(111) and Cu(200) peaks were also found in the diffraction patterns of 0 

sccm-P4-500 and 0 sccm-P5-500, probably because Cu precipitated from solid 

solution in the Cr-rich matrix and formed a separate crystalline phase after annealing 

at 500 °C, which is in agreement with the EDX line-scan results (section 3.3) and is 

further supported by the SAED patterns shown later in Fig. 9.  
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3.4.2. The 5 sccm group 

The diffraction patterns of the 5 sccm group are shown in Fig. 5(b). The first three 

coatings, 5 sccm-(P1 to P3), with the same post-coat treatment (and irrespective of 

annealing condition: ‘AD’ or ‘300’ or ‘500’), exhibited quite similar diffraction 

patterns, probably due to their relatively similar chemical compositions (in contrast to 

P4 and P5; see Table 1). However, for each coating the phase structure changed 

obviously after post-coat annealing. The low and wide diffraction peaks of 5 sccm-(P1 

to P3), in either ‘AD’ or ‘300’ condition, indicate an extremely distorted and 

supersaturated lattice structure, being amorphous or nanocrystalline (or a mixture of 

both). In contrast, after the 500 °C annealing, the XRD patterns of all three coatings 

exhibit narrower and higher-intensity peaks, indicating a phase transformation from 

amorphous/nanocrystalline to distinctly crystalline, with little (or no) residual lattice 

distortion. An apparent low and wide ‘Cr2N(112)’ nitride peak was also found for the 

500 °C annealed 5 sccm-(P1 to P3), which required further investigation (and will be 

discussed in the TEM analysis in section 3.5). Moreover, even after annealing at 

500 °C, Cr(200) is still the observed primary lattice peak (much higher than others) 

indicating that, with a nitrogen concentration up to 16 at.% (or N/Cr atomic ratio up to 

0.22, see Table 1), Cr exists mainly - if not entirely - as a metallic crystalline phase 

(with nitrogen in supersaturated interstitial solid solution). From ‘AD’ to ‘300’, the 

primary diffraction peaks of 5 sccm-(P1 to P3) apparently shifted from ‘nitride’ 

Cr2N(112) to ‘metallic’ Cr(200). Because of the well-known high thermal stability of 

chromium nitride, it is unlikely that Cr2N would somehow dissolve or decompose 

after 300 °C or 500 °C annealing. Therefore further investigation on the phase 

composition and transformation of 5 sccm-(P1 to P3), from ‘AD’ to ‘300’ to ‘500’ was 

required, this will also be discussed further in the TEM analysis in section 3.5. 
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For 5 sccm-(P4 and P5), the phase compositions of the as-deposited and 300 °C 

annealed coatings are quite similar, being either amorphous or nanocrystalline (or a 

mixture of both). However, after annealing at 500 °C, their phase structure became 

distinctly crystalline, with the diffraction patterns (hence phase compositions) quite 

similar to those of the 500 °C annealed coatings in the 10 sccm coating group. 

Therefore, 500 °C annealed 5 sccm-(P4 and P5) and 10 sccm-(P1 to P5) will be 

discussed together in the TEM analysis in section 3.5.  

3.4.3. The 10 sccm group 

For the diffraction patterns of the 10 sccm group shown in Fig. 5(c), it can be seen 

that the X-ray diffraction patterns of the as-deposited and 300 °C annealed coatings 

exhibited the typical featureless ‘hump’ of an amorphous phase. However, coatings 

annealed at 500 °C exhibited clear peaks of Cu(111), Cu(220), Cr(110), Cr2N(112), 

which also indicated phase transformation from amorphous to crystalline due to 

500 °C annealing. Further discussion will be made in the TEM analysis, as mentioned 

at the end of section 3.4.2 above. It needs to be mentioned that, in coatings which 

possess high N/Cr atomic ratios (e.g. 0.42 to 0.48, see Table 1), these ratios are in fact 

quite near to the stoichiometric ratio of Cr2N - such as in 5 sccm-P5 and 10 sccm-(P1 

to P4). After annealing at 500 °C, a clear Cr(110) diffraction peak was found, with its 

intensity around 1/3 to 1/2 of the strongest peak - Cr2N(111), indicating that Cr 

remains inclined to exist as a nitrogen-supersaturated metallic phase, rather than as a 

stoichiometric nitride in CrCuAgN coatings, even after annealing at moderately high 

temperature (e.g. 500 °C). 

3.4.4. Comparison among the three coating groups 

From Figs. 5(b) and (c), which show the diffraction patterns of the two nitrogen-
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containing groups, it can clearly be seen that diffraction patterns of coatings annealed 

at 300 °C exhibited wide and low-intensity peaks, similar in shape to those of their as-

deposited counterparts, indicating an extremely high degree of lattice distortion. 

However, after 500 °C annealing, the XRD patterns of all nitrogen-containing 

coatings exhibited new peaks, narrower and higher in intensity - indicating a phase 

transformation from amorphous or nanocrystalline (or a mixture of both) to more 

strongly crystalline with little (or no) lattice distortion - confirming the apparent phase 

transformations noted in the previous surface morphology discussions of section 3.2. 

Moreover, these new peak positions are closely aligned to the theoretical values, 

indicating less lattice expansion (shift to lower angles of 2ș) or indeed contraction 

(shift to higher angles of 2ș), hence reduced solid solution of Cu, Ag and N in the Cr 

(or newly formed Cr2N) matrix [33], which is supported by the clearly identified 

formation of Cu- and Ag-rich aggregates on coating surfaces (section 3.2) and the 

EDX line-scan data (section 3.3). 

In the nitrogen-free control group, no Cu or Ag diffraction peak was found in as-

deposited or annealed P1 to P3; however, Cu(200) and Ag(111) peaks were found in 0 

sccm-(P4 and P5)-500, corresponding to a threshold (Cu+Ag)/Cr atomic ratio of ~0.2 

(e.g. 0.22, that of 0 sccm-P4, see the red numbers in Table 1).  

In the two nitrogen-containing groups, no obvious Cu peak was found in as-deposited 

or annealed 5 sccm-(P1 to P3); however, after annealing at 500 °C, a clear Cu(111) 

peak was found in 5 sccm-(P4 and P5) and in 10 sccm-(P1 to P5). By combining the 

chemical compositions (Table 1), it can be concluded that in nitrogen-containing 

coatings the (Cu+Ag+N)/Cr atomic ratio is more relevant to the separation of Cu from 

solid solution in Cr than the (Cu+Ag)/Cr atomic ratio. When the (Cu+Ag+N)/Cr 

atomic ratio is higher than ~0.5 (as is the case of P4 and P5 in the 5 sccm group and 
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P1 to P5 in the 10 sccm group - see the green numbers in Table 1), after annealing at 

500 °C, Cu tends to separate from solid solution in Cr. In other words, the 

introduction of nitrogen reduces the substitutional solubility of Cu and Ag in Cr. 

Interestingly, Ag diffraction peaks (e.g. 111) can only be found in 500 °C annealed P4 

and P5 in all three groups, indicating that the separation of Ag from solid solution in 

Cr is highly connected to the Cu concentration and relatively less influenced by the 

introduction of nitrogen (the precise mechanisms for which are under further 

investigation and will be published later). The (Cu+Ag)/Cr atomic ratio is therefore 

more important for the separation of Ag during annealing, whereas the (Cr+Ag+N)/Cr 

atomic ratio is more important in the case of Cu. By extracting the data of P4 in all 

three groups from Table 1, the threshold of the (Cu+Ag)/Cr ratio for Ag to activate the 

separation during annealing is around 0.2. By combining the fact the Cu and Ag 

aggregates were found on the surfaces of 500 °C annealed P4 and P5 in the two 

nitrogen-containing groups, it can be concluded that with (Cu+Ag)/Cr atomic ratio 

higher than 0.2 and (Cu+Ag+N)/Cr atomic ratio higher than 0.5, under moderately 

high temperature (e.g. 500 °C) Cu can assist Ag transportation from inside the coating 

onto the coating surface. It indicates that the concept of adding both Cu and Ag into 

nitrogen-containing chromium coatings is a feasible approach for precise tuning of 

nanostructure (and promotion of ‘adaptive’ behaviour) in solid lubricating and 

antibacterial applications. 

3.4.5. Summary of XRD analysis 

Overall, 300 °C annealing did not obviously change the phase structure of both 

nitrogen-free and nitrogen-containing coatings. However, annealing at 500 °C resulted 

in significant phase transformation in (particularly) the nitrogen-containing coatings. 

The newly formed Cu and Ag phases in coatings with sufficiently high Cu+Ag 
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concentrations were confirmed, in agreement with the surface morphology evaluation 

and EDX line-scan data. The formation of Ag aggregates relates to the (Cu+Ag)/Cr 

atomic ratio (threshold ~0.2), whereas the formation of Cu aggregates relates to the 

(Cu+Ag+N)/Cr atomic ratio (threshold ~0.5). 

After annealing at 500 °C, with a nitrogen concentration of up to 16 at.% (or N/Cr 

atomic ratio up to 0.22), Cr mainly (if not entirely) continued to exist as a metallic 

phase. At N/Cr atomic ratios as high as 0.42-0.48 (i.e. approaching the Cr2N 

stoichiometry), Cr2N formation was promoted, but a significant proportion of 

nitrogen-supersaturated Cr(N) metallic phase remains in these CrCuAgN coatings. 
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3.5. TEM analysis 

3.5.1. Coating selection for TEM analysis 

Several representative nitrogen-containing coatings were chosen for TEM analysis to 

further investigate the phase compositions and annealing-induced phase 

transformations of CrCuAgN coatings. The selection of representative samples was 

based on the XRD analysis results (as mentioned in sections 3.4.2 and 3.4.3), which 

showed similar patterns for (a) the as-deposited 5 sccm-(P1 to P3); (b) the 300 °C 

annealed 5 sccm-(P1 to P3); (c) the 500 °C annealed 5 sccm-(P1 to P3); (d) the 

500 °C annealed 5 sccm-(P4 and P5) and 10 sccm-P1 to P5. Therefore, one sample 

was chosen from each of the four groups above - namely: 5 sccm-P2-AD, 5 sccm-P2-

300, 5 sccm-P2-500 and 10 sccm-P4-500. 

SAED patterns, together with bright field (BF) and dark field (DF) images, were 

collected and are shown in Figs. 6 to 9, with the fitted indices of corresponding 

crystallographic planes marked on the SAED patterns. The sampled diffraction point 

(or part of a diffraction ring) for dark field imaging are indicated using small black 

circles - as can be seen from the SAED patterns in each of the abovementioned 

figures. 

3.5.2. 5 sccm-P2-AD 

The SAED pattern, BF and DF images for 5 sccm-P2-AD, are shown in Fig. 6. From 

the SAED pattern in Fig. 6(a), discontinuous diffraction rings with a small number of 

spots (as indicated by the yellow arrows) can be seen. The diffraction rings exhibit 

relatively narrow width and sharp boundaries (compared to the typical wide and 

blurred diffraction rings of an amorphous phase), indicating that the phase was not 

completely amorphous. However, it was also not a typical nanocrystalline diffraction 
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pattern, an excellent example of which is shown later in Fig. 8(b). Therefore, the 

phase is probably ultra-fine nanocrystalline (probably smaller than a few nanometers), 

which is also the reason why it is undetectable by XRD. The existence of ultra-fine Cr 

nanocrystallites can be verified by the corresponding BF and DF images, as shown at 

relatively low magnification in Figs. 6(b) and (c), and the same selected area shown at 

higher magnification in Fig. 6(d) and (e), respectively. From the BF and DF images, 

especially the high magnification DF image shown in Fig. 6(e), it can be seen that the 

white ‘dots’ are of sizes ranging from less than 1nm up to ~10nm - and are Cr 

nanocrystallites. Moreover, the rings are discontinuous (e.g. the (110) plane 

diffraction ring in Fig. 6(a)), indicating that these ultra-fine nanocrystallites are not 

randomly oriented. In other words, they possess preferential orientations (but more 

than one; otherwise discrete spots - rather than discontinuous rings – will be 

observed). Furthermore, the SAED pattern shows a very good fit to the calculated 

diffraction rings of bcc-Cr - rather than those of the Cr2N ceramic phase (as the 

abovementioned XRD data seemed to suggest). No Cu or Ag patterns were found, 

indicating that they most probably existed in substitutional solid solution in the ultra-

fine nanocrystalline Cr phase. As alluded to in section 3.4.3, despite the existence of 

16 at.% nitrogen in the as-deposited 5 sccm-P2 coating, the main constituent is an 

ultra-fine grained Cr-rich metallic phase (with supersaturated nitrogen in interstitial 

solid solution), rather than a ceramic nitride. Although for 5 sccm-P2-AD the wide, 

low-intensity peak in the XRD pattern roughly matched with the expected position of 

the Cr2N(112) reflection, it probably merely indicated the existence of a ultra-fine 

nanocrystalline phase (as confirmed by SAED pattern), since no existence of nitrides 

could be confirmed by TEM for this coating. 
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3.5.3. 5 sccm-P2-300 

The SAED pattern, BF and DF images for 5 sccm-P2-300 are shown in Fig. 7. Clear 

diffraction spots around the rings (Fig. 7(a)) were revealed, with the discontinuous 

diffraction rings found in 5 sccm-P2-AD having faded, but not totally disappeared - 

indicating a mixed structure of ultra-fine and nanocrystalline phases. The BF and DF 

images (from the same area), as shown in Figs. 7(b), (c) and Figs. (d), (e) respectively, 

at relatively low and at higher magnification, suggest that the nanostructure of 5 

sccm-P2-300 remains quite similar to that of 5 sccm-P2-AD. A slight difference after 

300 annealing is seen in the higher number of relatively large nanocrystallites visible, 

compared to 5 sccm-P2-AD (e.g. those of the order of several nanometers in diameter, 

comparing Fig. 6(e) with Fig. 7(e)), which is indicative of a small amount of 

annealing-induced grain growth. The pattern again correlates well to the calculated 

diffraction ring positions for bcc-Cr metal. As for 5 sccm-P2-300, no Cu or Ag pattern 

was found; therefore, by combining the EDX and XRD analyses, it can be deduced 

that 5 sccm-P2-300 was mainly composed of ultra-fine to nanocrystalline metallic Cr, 

with Cu and Ag in substitutional solid solution and nitrogen in supersaturated 

interstitial solid solution (similar to 5 sccm-P2-AD, except grain size). The three 

alloying elements, Cu, Ag and N, either co-exist in one metallic Cr-rich phase, or may 

exist separately, e.g. nanocrystalline Cr(Cu, Ag) and Cr(N); however neither scenario 

can be unambiguously determined from the present data (further investigation of the 

alloying mechanisms is also ongoing and will again be published later). No existence 

of nitride phases was found by TEM in 5 sccm-P2-300. 

3.5.4. 5 sccm-P2-500 

The SAED pattern, BF and DF images for 5 sccm-P2-500 are shown in Fig. 8. The 
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SAED pattern (Fig. 8(a)) showed a typical nanocrystalline electron diffraction pattern, 

and it was perfectly-fitted to the calculated diffraction rings of bcc-Cr. A diffuse ring 

was also found and marked by black arrows in Fig. 8(a), which indicated the co-

existence of an amorphous phase. Because Cr was confirmed to exist as 

nanocrystallites, the amorphous phase was most probably composed of Cu, Ag and N 

(and possibly Cr as well, since it is known that up to 40 at.% Cr can co-exist in an 

amorphous Cu phase for sputtered PVD Cr-Cu coatings deposited at low temperature 

[26]). Similar to the 5 sccm-P2-300 sample, no existence of nitrides could be 

confirmed by TEM for the P2-500 coating. The sizes of the nanocrystallites are 

relatively evenly distributed (compared to those of 5 sccm-P2-AD and 5 sccm-P2-300) 

in a range of 10nm to 20nm, as can be seen from Figs. 8(d) and (e). Particularly, clear 

moiré fringes (under this magnification, the only possible cause of such fringes is the 

interference of crossed lattice planes) were observed in Fig. 8(e), which further 

confirmed that the particles found were crystalline rather than amorphous. 

3.5.5. 10 sccm-P4-500 

i). 10 sccm-P4-500: a SAED pattern and BF image 

The SAED pattern and BF image of 10 sccm-P4-500 are shown in Fig. 9. From the 

SAED pattern (Fig. 9(a)), it can be seen from the calculated diffraction rings (solid 

lines in different colours) of Cr, Cu and Cr2N that a large number of them are closely 

overlapped, and hence difficult to distinguish without ambiguity. However, the 

existence of nanocrystalline Cr2N can be easily confirmed according to the clear 

dotted diffraction rings (similar to the features of Fig. 8(a), indicating a 

nanocrystalline structure based on the discussion above) of low-index planes, e.g. 

Cr2N(101), (110) and (112). The existence of nanocrystalline Cr and Cu can also be 
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confirmed by Cr(110), Cr(200) and Cu(200), respectively, because of the relatively 

large and distinguishable distances of these diffraction rings from others in Fig. 9(a). 

However, no Ag diffraction rings or spots can be confirmed by our TEM analysis. 

One (likely) reason is that every Ag diffraction ring is so close to one or more 

diffraction rings of Cr, Cu and/or Cr2N that they could not be separately resolved. 

Other possible reasons are the relatively low concentration of Ag in all coatings, and 

its preferential transportation to the coating surface during 500 °C annealing (as 

confirmed in Fig. 4), resulting in very little Ag remaining in the area from which this 

particular TEM sample was extracted. 

ii). 10 sccm-P4-500: three DF images of a same selected area 

Three DF images of 10 sccm-P4-500 are shown in Fig. 10; these were obtained by 

choosing different sizes and parts of the SAED pattern shown in Fig. 9(a), with the 

corresponding sectors of the diffraction pattern indicated using black, red and green 

circles in Fig. 9(a), respectively. 

Fig. 10(a), with the corresponding diffraction pattern indicated by a black circle in Fig. 

9(a), shows a number of nanocrystallites with sizes ranging from several nanometers 

to several tens of nanometers. Four relatively large grains are labelled 1-4, 

respectively, as shown in Fig. 10. 

After choosing a smaller objective aperture, shown using a red circle in Fig. 9(a), the 

DF image changed to that shown in Fig. 10(b), imaged from the same area as in Fig. 

10(a). It can be seen that grain 1 and 2 are still visible in Fig. 10(b), however grains 3 

and 4 “disappeared”. Because Cr(110) exhibited the brightest diffraction ring (see Fig. 

9(a)) and the centre of the red circle is on the Cr(110) diffraction ring, it may be 

deduced that grain 1, which is the largest and brightest grain in Fig. 10(b), is probably 
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a nanocrystalline Cr grain, with the (110) plane (or equivalent planes from the {110} 

family) perpendicular to the TEM sample foil (no stage tilt was applied when 

obtaining the SAED patterns and DF images). Grain 2, however, could be a 

nanocrystallite corresponding to Cu(111),  Cr2N(111), Cr2N(200) or Cr2N(201) 

orientations, and could not be fully confirmed, due to the nearly overlapped 

diffraction rings and relatively large objective aperture (although the smallest 

objective aperture in the TEM instrument had been used for Figs. 10(b) and (c)).  

By moving the objective aperture to another area (shown using the green circle in Fig. 

9(a)) a third DF image, Fig. 10(c), was obtained. This time only one diffraction ring 

(with two diffraction spots along it) was included inside the objective aperture, which 

is Cr2N(112) - see Fig. λ(a). From Fig. 10(c), it can be seen that the “disappeared” 

grains 3 and 4 became visible once more, which confirms these to be Cr2N 

nanocrystallites - with plane indices belonging to the {112} family.  

3.5.6. Summary of TEM analyses 

Overall, TEM analyses of 5 sccm-P2-(AD, 300 and 500) reveal phase transformations 

from the original ultra-fine nanocrystalline Cr-based solid solution (5 sccm-P2-AD; 

Cu and Ag in substitutional solid solution and N in supersaturated interstitial solid 

solution), to a mixture of nanocrystalline Cr and ultra-fine nanocrystalline Cr-based 

solid solution after 300 °C annealing (5 sccm-P2-300; similar solid solutions as the 

as-deposited coating), then to a mixture of nanocrystalline Cr and an amorphous 

phase consisting of Cu, Ag, N (and possibly also Cr) after 500 °C annealing (5 sccm-

P2-500). The formation of an amorphous phase (Cu, Ag, N and/or with Cr) 

originating from the nanocrystalline Cr-based solid solution, possibly results from the 

low miscibility of Cu with Ag [37-39] (and also of Cu with Cr –and/or Ag with Cr 
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[37]), together with the non-nitride forming characteristics of Cu and Ag. Because Fig. 

5(b) shows that 5 sccm-(P1 to P3) exhibited quite similar XRD patterns to each other 

- whether in the as-deposited state, or in either of the two annealed states - it can be 

deduced that similar phase transformations occurred for each of 5 sccm-(P1 to P3). 

From the XRD and TEM analysis of 5 sccm-P2-(AD, 300 and 500), It can also be 

seen that, for nitrogen-containing coatings with nitrogen content up to 16 at.% (and/or 

N/Cr atomic ratio up to 0.22, see Table 1.),  chromium exists as a metallic 

supersaturated interstitial solid solution with nitrogen, even after 300 °C and 500 °C 

annealing.  

After annealing, Cu exists not only on the coating surface, but also inside the coating 

(e.g. in solid solution for 5 sccm-P2-300, in an amorphous state for 5 sccm-P2-500, or 

as nanocrystallites in 10 sccm-P4-500), rather than being fully transported to the 

coating surfaces - indicating the dependence of this “transportation” on annealing 

duration. Moreover, annealing at 500 °C caused more and larger Cu-Ag aggregates to 

be formed on the coating surface than did annealing at 300 °C, indicating the (not 

unexpected) dependence of the Cu (and Ag) transportation speed on temperature. 

Furthermore, increasing nitrogen concentration caused larger Cu (and Ag) aggregates 

to form on the coating surface, indicating the dependence also of the Cu (and Ag) 

transportation (different from the influencing factors of the separation of Cu and/or 

Ag from solid solution in Cr, which are (Cu+Ag+N)/Cr and (Cu+Ag)/Cr atomic ratios, 

respectively) on nitrogen concentration. Considering the apparent dependence of Cu 

and Ag transportation on the ‘global’ Cu+Ag concentration, a conclusion can be 

drawn that the transportation of Cu and Ag to the surface depends on annealing 

temperature, annealing duration, nitrogen concentration and overall Cu+Ag 

concentration. In other words - by appropriate design - the transportation of Cu (and 
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particularly Ag) can be tuned for specific applications in order to obtain both the 

required functionality (such as solid lubrication) and an optimised service life in, for 

example, high temperature (or cyclic temperature) tribological or antimicrobial 

service conditions, as stated in section 3.3.   
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3.6. Coefficients of friction 

3.6.1 Scratch test 

Scratch test results showing the CoF of the AISI 316L substrate, and 5 sccm-P4-(AD, 

300 and 500) are shown in Fig. 11. It can be clearly seen that CrCuAgN coatings 

exhibited significantly lower CoF than the AISI 316L substrate. Moreover, for the 

same coating, annealing at higher temperature resulted in lower CoF in the scratch test. 

Particularly, the average CoF of 5 sccm-P4-500 was only 0.14, reduced by more than 

50% compared to that of the AISI 316L substrate (~0.31). The corresponding CoFs of 

as-deposited and annealed coatings are in good agreement with the morphology and 

nanostructure discussions made in sections 3.1 to 3.5. 

3.6.2 Reciprocating sliding wear test at room and elevated temperature 

The results of reciprocating sliding wear tests - at room temperature (~20 °C), 300 °C 

and 500 °C, respectively - of polished AISI 316L substrate and 5 sccm-P4-AD, with 

an alumina ball counterface, are shown in Fig. 12. It can be seen that the CoF of 5 

sccm-P4-AD decrease significantly as the ambient temperature increases, from an 

average of ~0.77 (tested at RT) to as low as ~0.40 (tested at 500 °C). Compared to the 

average CoF of the polished AISI 316L substrate (~0.83), the CoF of 5 sccm-P4-AD 

at medium high temperature (500 °C) is reduced by more than 50%. It can also be 

seen that the CoF at 500 °C is much more stable – and reduces slowly as the test 

carries on, indicating the stability of the solid lubricating performance under medium 

high temperature for the CrCuAgN coatings. The tribological properties of CrCuAgN 

coatings in this study are in good agreement with those of the CrN-Ag coatings (with 

more than 20 at.% of Ag) studied by Mulligan, et al [18-20]. 
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4. Conclusions 

The effects of annealing on the fracture sections, surface morphologies, phase 

compositions and nanostructure of CrCuAgN PVD coatings were comprehensively 

investigated. The following conclusions can be drawn: 

i) Annealing altered the coating fracture section appearance and surface morphology; 

as might typically be expected, the higher the annealing temperature, the more 

obvious are the changes occurring to the coating nanostructure, phase composition 

and (somewhat more importantly) surface morphology/chemical composition. 

Copper- and silver-rich aggregates formed on the surfaces of nitrogen-containing 

coatings after annealing, the number and size of which increased with increasing 

Cu+Ag concentration and/or annealing temperature. The number and size of the 

surface aggregates were also influenced by the nitrogen flow rate, probably due to 

the incorporation of nitrogen reducing the solubility of Cu and Ag in Cr, or Cr2N 

(where formed). 

ii)  In coatings with a nitrogen concentration of up to 16 at.% (N/Cr atomic ratio up to 

0.22),  a metallic Cr solid solution with supersaturated interstitial nitrogen 

remained present, even after post-coat annealing at 300 °C and 500 °C. At higher 

N/Cr atomic ratios of 0.42-0.48 (i.e. approaching Cr2N stoichiometry), chromium 

was still inclined to partially exist in the CrCuAgN coatings as a metallic 

interstitial solid solution with nitrogen, rather than as a ceramic nitride phase, even 

after annealing at 500 °C. 

iii)  The formation of Ag aggregates relates primarily to the (Cu+Ag)/Cr atomic ratio 

in the coating, whereas the formation of Cu aggregates relates primarily to the 

(Cu+Ag+N)/Cr atomic ratio. In CrCuAgN coatings with (Cu+Ag)/Cr and 
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(Cu+Ag+N)/Cr atomic ratios higher than 0.2 and 0.5, respectively, under 

relatively high temperature (e.g. 500 °C), Cu can assist Ag to be transported from 

within the coating to the coating surface - and with surprisingly enhanced Ag 

mobility (much higher than Cu), most probably due to formation of a transport 

path by the development of intercolumnar copper-rich phases, which enable the 

silver to migrate efficiently. Moreover, after annealing, although both Cu and Ag 

precipitate from substitutional solid solution in Cr (and are then transported to 

coating surface), they are inclined to exist separately.  

iv) The transportation of Cu and Ag to the surface depends on annealing temperature, 

annealing duration, nitrogen concentration and ‘global’ Cu+Ag concentration. 

This provides a possibility to tailor coatings with desired functionalities and 

properties for specific applications.  

v) A significant decrease in the coefficients of friction, over 50% compared to that of 

the substrate (from 0.31 to 0.14 with diamond indenter, and from 0.83 to 0.40 with 

alumina ball, respectively) was obtained for the CrCuAgN coatings, showing 

effective solid lubricating behaviour. 

vi) Furthermore, almost all of the available literature on MeN:Ag PVD coatings 

reveals the silver to precipitate as separate, isolated particles, with little or no 

migration path available - whereas the incorporation of copper (which, it is known, 

tends to precipitate as an intergranular/intercolumnar phase) appears to be a 

powerful strategy to enhance Ag mobility at low concentration (from ~20 at.% in 

the literature for no added Cu to ~3 at.% in this study) in such coatings under 

moderately high service temperature (and/or by coating pre-conditioning through 

careful post-coat annealing). Therefore, the results of the present study indicate 

that the concurrent addition of both Cu and Ag (in appropriate concentrations) to 
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PVD nitrogen-containing chromium coatings is a viable method to promote 

adaptive behaviour - and to permit the development of ‘self-replenishing’ thin film 

architectures for antimicrobial and solid lubricating coating applications. 
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Fig. 1. Schematic drawing of (a) target-substrate arrangement in deposition chamber 
and (b) plan-view of Cu-Ag target. 

Fig. 2. Fracture section SEM micrographs of (a) nitrogen-free control group, (b) 5 
sccm group and (c) 10 sccm group, in which “AD” means “as deposited”, “300” 
means annealed at 300 °C for 2 hours,  and “500” means annealed at 500 °C for 2 
hours. 

Fig. 3. Oblique-view coating surface SEM micrographs of (a) nitrogen-free control 
group, (b) 5 sccm group and (c) 10 sccm group, with Cu and/or Ag aggregates 
indicated by the red circles. 

Fig. 4. EDX line scan results of an aggregate on the surface of sample 10 sccm-P5-
500. 

Fig. 5. X-ray diffraction patterns of the as-deposited and annealed coatings, (a) 
nitrogen-free control group, (b) 5 sccm group and (c) 10 sccm group. 

Fig. 6. Plane-section TEM images and SAED pattern of 5 sccm-P2-AD, (a) SAED 
pattern; (b) BF image at low magnification; (c) DF image at low magnification, same 
area as (b), with its corresponding diffraction point (part of the (110) ring) shown in 
the black circle in (a); (d) BF image of the selected area shown in (b) at high 
magnification; (e) DF image of the selected area shown in (c) at high magnification, 
which is also the same feature as the one shown in (d). 

Fig. 7. Plane-section TEM images and SAED pattern of 5 sccm-P2-300, (a) SAED 
pattern; (b) BF image at low magnification; (c) DF image at low magnification, same 
area as (b), with its corresponding diffraction point (part of the dashed (110) ring) 
shown in the black circle in (a); (d) BF image of the selected area shown in (b) at high 
magnification; (e) DF image of the selected area shown in (c) at high magnification, 
which is also the same feature as the one shown in (d). 

Fig. 8. Plane-section TEM images and SAED pattern of 5 sccm-P2-500, (a) SAED 
pattern; (b) BF image at low magnification; (c) DF image at low magnification, same 
area as (b), with its corresponding diffraction point (part of the dashed (110) ring) 
shown in the black circle in (a); (d) BF image at high magnification; (e) BF image of 
another area at high magnification, with clear moiré fringes as indicated in red circles. 

Fig. 9. Plane-section TEM images and SAED pattern of 10 sccm-P4-500, (a) SAED 
pattern and (b) BF image at low magnification.  

Fig. 10. DF images of 10 sccm-P4-500, with their corresponding diffraction pattern 
shown in Fig. 9, (a) the large black circle, which contains (b), (c); (b) the small red 
circle, in which are parts of the diffraction rings belonged to Cr(110), Cu(111),  
Cr2N(111), Cr2N(200) and Cr2N(201), with Cr(110) being the brightest; (c) the small 
green circle, in which are two diffraction points along the Cr2N(112) diffraction ring. 
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Figure 11. Evaluation at room temperature of coefficients of friction for the AISI 
316L substrate and 5 sccm-P4-(AD, 300 and 500). Tests performed using a Rockwell 
C diamond stylus and 20N constant load. 

Figure 12. Evaluation of coefficients of friction at room temperature (RT), 300 °C and 
500 °C, for the AISI 316L substrate and 5 sccm-P4-AD. Tests performed with an 
alumina ball (6.35 mm in diameter) counterface; normal load, sliding distance and 
frequency being 1 N, 1 mm and 1 Hz, respectively. 



 

Table 1. Thickness, coating deposition rate, elemental composition of the as-deposited 

coatings 

 
 

 
 

at% (±0.5) 
(Nitrogen: ± 1.5 at%) 

 
 

  

N2 flow 
rate 

(sccm) 

Posi-t
ion 

Thick-
ness 
(ȝm) 

Deposition 
rate 

(nm/min) 
N Cr Cu Ag 

N/Cr 
ratio 

(Cu+Ag) 
/Cr ratio 

(Cu+Ag+N) 
/Cr ratio 

0 (N
itrogen free) 

1 3.9 43 -- 92.7 5.4 1.9 -- 0.08 -- 
2 4.5 50 -- 90.7 7.1 2.2 -- 0.10 -- 

3 3.6 40 -- 87.3 9.8 2.9 -- 0.15 -- 

4 3.1 34 -- 81.8 16.4 1.8 -- 0.22 -- 

5 3.5 39 -- 67.3 30.2 2.5 -- 0.49 -- 

 
 

  
     

  

5 

1 3.7 41 16 76.6 5.0 2.2 0.21 0.09 0.30 

2 4.1 46 16 74.9 6.5 2.3 0.21 0.12 0.33 

3 3.7 41 16 73.1 8.5 2.0 0.22 0.14 0.36 

4 2.7 30 18 65.1 15.3 2.0 0.28 0.27 0.54 

5 2.7 30 22 47.9 26.3 3.6 0.46 0.62 1.08 

 
 

  
     

  

10 

1 3.6 40 27 65.0 5.1 2.5 0.42 0.12 0.53 

2 4.0 44 28 64.2 5.6 2.4 0.44 0.12 0.56 

3 3.3 37 29 60.5 7.5 2.8 0.48 0.17 0.65 

4 2.9 32 26 59.8 12.9 1.6 0.44 0.24 0.68 

5 2.8 31 28 45.5 23.5 3.0 0.62 0.58 1.20 
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