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We analyse f(R) modifications of Einstein’s gravity as dark energy models in the light of their
connection with chameleon theories. Formulated as scalar-tensor theories, the f(R) theories imply
the existence of a strong coupling of the scalar field to matter. This would violate all experimental
gravitational tests on deviations from Newton’s law. Fortunately, the existence of a matter depen-
dent mass and a thin shell effect allows one to alleviate these constraints. The thin shell condition
also implies strong restrictions on the cosmological dynamics of the f(R) theories. As a consequence,
we find that the equation of state of dark energy is constrained to be extremely close to −1 in the
recent past. We also examine the potential effects of f(R) theories in the context of the Eöt-wash
experiments. We show that the requirement of a thin shell for the test bodies is not enough to
guarantee a null result on deviations from Newton’s law. As long as dark energy accounts for a
sizeable fraction of the total energy density of the Universe, the constraints which we deduce also
forbid any measurable deviation of the dark energy equation of state from -1. All in all, we find
that both cosmological and laboratory tests imply that f(R) models are almost coincident with a
ΛCDM model at the background level.

PACS numbers: 04.50.Kd, 95.36.+x, 12.20.Fv

I. INTRODUCTION

The acceleration of the Universe expansion was dis-
covered ten years ago and is still a deep mystery (see e.g.
[1] for recent results on observations of dark energy and
e.g. [2, 3] for theoretical overviews). Two types of ap-
proaches have been considered. One can either introduce
a new kind of matter whose role is to trigger accelera-
tion or modify the behaviour of gravity at cosmological
distances. In the first approach, dark energy is a new
energy form, with all its well-known puzzles such as the
cosmological constant problem, the coincidence problem
and the value of the equation of state. This approach is
subject of intense experimental investigation and any de-
viation from -1 would be a smoking gun for new physics
beyond the standard models of particle physics and cos-
mology. On the other hand, in the second approach,
various attempts to modify gravity have been presented
(see e.g. [4]-[14]; the literature is vast, see [15] for a re-
cent overview and further references). Up to now, they
are all plagued with various theoretical problems such as
the existence of ghosts or instabilities. In this paper, we
will consider a modification of Einstein’s gravity, the so–
called f(R) theories, which do not seem to introduce any
new type of matter and can lead to late time accelera-
tion. In fact, these theories can be reformulated in terms
of scalar-tensor theories with a fixed coupling of the extra
scalar degree of freedom to matter. As theories of dark
energy, they suffer from the usual problems and are also
potentially ruled out by gravitational tests of Newton’s

law.

The only way-out for these models is to behave as
chameleon theories [16], i.e. develop an environment de-
pendent mass [17, 18, 19, 20]. When the density of the
ambient matter in which the scalar field/chameleon prop-
agates is large enough, its mass becomes large and the
smallness of the generated fifth force range is below the
detectability level of gravitational experiments. On the
other hand, for planetary orbits or any other situations
in which gravity is at play in a sparse environment, one
must impose the existence of the so–called thin shell ef-
fect. In this case, the fifth force is attenuated as the
chameleon is trapped inside very massive bodies (the
Sun for instance). It has been argued that the existence
of thin shells is usually enough to salvage f(R) models
[17, 19]. We show that thin shells do not always guar-
antee null results in experimental tests of Newton’s law.
We exemplify this fact using the Eöt-wash setting and
obtain strong constraints on the models which translate
into stringent bounds on the present dark energy equa-
tion of state, preventing any detection of a deviation from
-1 in the foreseeable future |1+w| ≤ 10−4, where w is the
equation of state of dark energy in the recent past. This
corroborates a similar bound obtained from the existence
of thin shell for objects embedded in a super-cluster. It
should be noted that this result holds at the background
level. For higher red-shifts where the effective dark en-
ergy density fraction, Ωde, may become small (or even
vanish), larger deviations can be present as exemplified
in the models in [21, 22] where the equation of state can
deviate from -1 for red-shifts of order z = 2 − 3. In all
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these models however |1 + w|Ωde ≪ 1, and so even if
w deviates significantly from −1, deviations of the ho-
mogeneous cosmology from ΛCDM are still very small.
Detectable deviations from ΛCDM are envisageable at
the perturbative level as the growth factor is anomalous
at small scales (see e.g. [23] for a discussion of this point
for the original chameleon model). Some consequences
of this fact on the matter power spectrum and the CMB
spectrum of f(R) models have been presented in Ref.
[24, 25, 26].

The paper is organized as follows: In the subsequent
section, we review f(R) models and chameleon theories.
In section III we derive the cosmological thin shell bound
on the equation of state. In section IV, we consider tests
of the inverse square law. Finally, we apply these consid-
erations to particular models in section V. The appen-
dices contain some technical details.

II. f(R) GRAVITIES AND CHAMELEON

THEORIES

A. f(R) theories

An f(R) theory is a modified gravity theory in which
the usual Einstein-Hilbert Lagrangian for General Rela-
tivity, i.e. R, is replaced by some arbitrary function of
the scalar curvature i.e. f(R). The action for an f(R)
gravity theory therefore takes the following form:

Sf(R) =

∫

d4 x
√−g

M2
Pl

2
f(R) + Smatter[gµν , Ψi], (1)

where the Ψi represent the matter fields.
In this work we are concerned only with metric f(R)

theories, in which only the metric gµν is the independent
variable in the gravitational sector. The quantity Γρ

µν is
taken to be the Levi-Civita connection associated with
the metric gµν . In these metric f(R) theories the field
equations are:

Rµνf ′(R) −1

2
f(R)gµν = κT matter

µν (2)

+∇µ∇νf ′(R) − gµν�f ′(R).

where κ = 1/M2
Pl.

B. Transformation to a Scalar-Tensor theory

Eq. (2) gives a set of equations which are second or-
der in derivatives of R, which is itself second order in
derivatives of gµν , making the field equations fourth or-
der in gµν . Finding solutions to fourth order equations
can be mathematically and physically troublesome, but
fortunately metric f(R) theories can be recast as a scalar
tensor theory with only second order equations via a well
known conformal transformation. We define φ by

exp

(

− 2βφ

MPl

)

= f ′(R),

where β =
√

1/6. We also define the Einstein frame

metric ḡµν by a conformal transformation

ḡµν = e
− 2βφ

MPl gµν ,

and let R̄ be the scalar curvature of ḡµν . When rewritten
in terms of ḡµν and φ, Eq. (1) becomes:

SST =

∫

d4 x
√−ḡ

(

M2
Pl

2
R̄ − 1

2
ḡµν∇µφ∇νφ − V (φ)

)

+Smatter[e
2βφ
MPl ḡµν , Ψi], (3)

where the potential V (φ) is given by:

V (φ) =
M2

Pl (Rf ′(R) − f(R))

2f ′(R)2
.. (4)

When the action is written in the form of Eq. (3), we
say that we are working in the Einstein frame. The field
equations then become:

Ḡµν = R̄µν − 1

2
R̄ḡµν = κ∇̄µφ∇̄νφ (5)

−κḡµν

[

1

2
(∇̄φ)2 + V (φ)

]

+ κT matter
µν

�̄φ = V ′(φ) − β

MPl
T matter. (6)

In the above and subsequent expressions, the covariant
derivatives, ∇̄µ, obey ∇̄µḡµν=0 and all indices are raised
and lowered with ḡµν unless stated otherwise. We note
that in the Einstein frame T matter

µν is not conserved but
instead:

∇̄µT matterµ
ν =

β

MPl
T matter∇̄νφ. (7)

This implies that matter will generally feel a new or ‘fifth’
force due to gradients in φ. We note from Eq. (5) that,
when written as a scalar tensor theory, gravity in an f(R)
theory is essentially General Relativity, and all the mod-
ifications are essentially due to the effective ‘fifth force’
and to the energy density of φ. Much of our intuition
for how gravity works is based on how it works in Gen-
eral Relativity. When an f(R) theory is written as a
scalar tensor theory we can readily make use of this intu-
ition in solving the field equations. This may not be the
case, however, in the original frame in which the equa-
tions were fourth order and so in those circumstances one
would have to be more careful. Note that all physical ob-
servables must be independent of the choice of frame, i.e.
the choice of metric gµν or ḡµν .

C. Chameleon Theories

Since f(R) theories are equivalent to scalar tensor the-
ories one can generally directly apply the plethora of con-
straints on scalar tensor models. In particular, since the
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extra degree of freedom, φ, couples to matter with grav-
itational strength, tests of the inverse square law such as
the Eöt-Wash experiment require that φ have a mass,
mφ =

√

V,φφ, greater than 1 meV. Cosmologically φ
would then have been fixed at its minimum since very
early times, and physics over astrophysical scales would
be indistinguishable from predicted by unmodified Gen-
eral Relativity with a cosmological constant. Both the
coincidence problem and the problem of the small size of
the cosmological constant would not be alleviated in this
scenario. However, this is not the whole story. Labora-
tory constraints on scalar tensor theories can be greatly
relaxed if mφ =

√

V,φφ develops a strong dependence on
the ambient density of matter. Theories in which such
a dependence is realized are said to have a chameleon
mechanism and to be chameleon theories. In such the-
ories, φ can be heavy enough in the environment of the
laboratory tests so as to evade them, whilst remaining rel-
atively light on cosmological scales. It must be stressed
that even with a chameleon mechanism, it is still very
difficult, if not impossible, to construct such a theory
where the late time cosmology would be observational
distinguishable from the usual ΛCDM model. To the
best of our knowledge all such theories which are also
experimentally viable require a fairly high degree of fine
tuning to ensure that the effective cosmological constant
is small enough.

A chameleon theory is essentially just a scalar-tensor
theory in which the potential has certain properties. As
such Eqs. (3 - 7) also define a chameleon theory for cer-
tain classes of V (φ). In these circumstances the f(R)
theory would be equivalent to a chameleon theory. In
a general chameleon theory, β, which parametrizes the
strength of the coupling of φ to matter, could take any
value and potentially even be different for different mat-
ter species. If a chameleon theory is equivalent to a f(R)

theory, however, β is fixed to be
√

1/6 and is the same
for all types of matter. If a f(R) theory is not equiva-
lent to a chameleon theory it would be generally ruled
out by laboratory tests of gravity and / or result in no
detectable deviations from General Relativity over astro-
physical scales.

For an f(R) theory to have a chameleon mechanism
one must require that, in at least some region of φ-space:

V ′(φ) < 0, V ′′(φ) > 0, V ′′′(φ) < 0.

It follows from the definition of φ that:

dφ

dR
= −MPl

2β

f ′′

f ′
. (8)

and therefore the derivatives follow

V ′(φ) =
βMPl

f ′ 2
[Rf ′ − 2f ] , (9)

V ′′(φ) =
1

3

[

R

f ′
+

1

f ′′
− 4f

f ′ 2

]

, (10)

V ′′′(φ) =
2β

3MPl

[

3

f ′′
+

f ′f ′′′

f ′′ 3
+

R

f ′
− 8f

f ′ 2

]

(11)

In general, this gives strong constraints on the form of
f(R). In the following we will study examples where
these conditions are met.

When these conditions are satisfied, the mass of φ in
a suitable large region with density ρ will increase with
ρ. In order to evade constraints coming from local tests
of gravity, it is not, however, enough that a theory pos-
sess a chameleon mechanism; the mechanism must, in
addition be strong enough for chameleonic behaviour to
occur for the test masses used in the laboratory gravity
experiments.

D. Thin-Shells

1. Chameleon Theories

Chameleon theories do not behave like linear theories
of massive scalar fields. In situations where massive bod-
ies are involved, the chameleon field is trapped inside
such bodies and its influence on other bodies is only due
to a thin shell at the outer edge of a massive body[16].
As a result, the field outside the massive body for dis-
tances less than the range of the chameleon force in the
outer vacuum is effectively damped leading to a shielded
fifth force which becomes undetectable. The criterion for
a thin shell is

∆φ

mPl
≤ 2βΦN (12)

where ∆φ = φ∞−φ0 is the field difference from far inside
the body to very far away. We define the body and the
region outside it to have densities ρ0 and ρ∞ respectively.
It involves Newton’s potential ΦN at the surface of the
body. In general the field values at infinity, φ∞, and deep
inside, φ0, are related to ρ∞ and ρ0 by

∂φV = −β
ρ

mPl
. (13)

In most current situations involving runaway potentials,
when ρ0 ≫ ρ∞, this implies that φ∞ ≥ φ0. Hence,
∆φ = φ∞ implying that cosmological information can be
inferred from local tests. Moreover, in a cosmological set-
ting, the chameleon sits at the minimum (13) during the
matter era. As a result, the variation of the equation of
state in the recent past is severely constrained. Another
important consequence of the chameleon effect is the ex-
istence of an anomalous growth of the density contrast
for scales lower than the inverse mass of the chameleon,

i.e. it grows like aν where ν ≈ −1+
√

1+24(1+2β2)

2 [23]. In
the f(R) setting, some of the consequences of this anoma-
lous growth on the CMB and the matter power spectrum
have been analysed using the convenient variable

B =
fRR

fR

dR

dH
H (14)

whose square root represents the compton wave-length,
i.e. the inverse mass of the chameleon, in horizon units
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H−1[24, 25, 26]. Effects on structure formation could
be seen for values as low as B = 10−4 in future galaxy
surveys[25]. In the following we will find an explicit ex-
ample of logarithmic f(R) model which could lead to
effects on scales as large as 100 h−1Mpc. All these facts
will be crucial in the following.

2. Thin shells in the language of f(R) theories

It is useful to write the function f(R) in the form
f(R) = R + h(R), where h measures the deviation to
Einstein gravity. To leading order, as a consequence of
Ref. [16], the thin shell condition can be formulated as
[26]

|∆h′(R)| ≤ 2

3
ΦN . (15)

As Newton’s potential is small on cosmological scales,
with an upper bound around 10−4, this implies that h′

must have very small variations. The thin shell condition
is a constraint on local experiments at the present time.
It has nothing to say, a priori, about the evolution of
the universe since matter equality for instance. Another
useful combination (which is not to be confused with the
chameleon mass mφ) has been used

m =
Rh′′(R)

1 + h′(R)
(16)

It has been shown that the existence of a matter era fol-
lowed by an accelerated period requires m < 0.1. For
models where m is (nearly) a power law, the thin shell
constrain implies that m is much smaller for reasonable
powers. In the following, we will obtain a bound on the
equation of state at present time which implies that de-
partures from ΛCDM are tiny.

III. THIN-SHELL CONSTRAINTS ON

COSMOLOGY

In subsequent sections we will assume that test bod-
ies used in laboratory based gravity experiments have
thin-shells. In the absence of any thin-shell, the inverse
square law tests, such as the Eöt-Wash experiment [32]
(as well as other tests of gravity over longer ranges), rule

out theories with β = 1/
√

6 as it is in f(R) theories. The
thin-shell requirement must therefore be satisfied by any
physically viable f(R) theory. Although it is not often
appreciated, the thin-shell condition for laboratory test
masses actually places extremely tight constraints on the
recent cosmological evolution of φ. In this section we con-
sider those constraints in the context of a general f(R)
theory.

In any single field scalar tensor theory there is a choice
of frame. In the Jordan frame, the laws of physics in
a local inertial frame are the same everywhere, however

Newton’s constant, GN , is different at different points in
space and time. In the Einstein frame, GN is chosen to
be fixed but, as a result, local particle physics is position
dependent. The process of converting astronomical ob-
servations to cosmological parameters generally involves
making assumptions about how today’s laws of particle
physics are related to those in the past. This said, if the
relative changes in GN (in the Jordan frame) are small
i.e. ≪ 1, the differences between cosmological parame-
ters in the two frames are only very slight. For instance,
to calculate a redshift, one must compare the observed
wavelength, λobs of a particular absorption or emission
band to the wavelength that band would have had at
emission, λe. Since one cannot go to the astronomical
object in question and directly observe the wavelength
at emission, it is generally assumed that particles physics
in the past obeyed the same laws as it does today and
so replace λe with the wavelength of the band as it is
measured in a laboratory today, λtoday. When one is
dealing with scalar-tensor theories, the assumption that
λe = λtoday is equivalent to a choice of frame, specifically
the Jordan frame.

To make comparison with observations straight-
forward, one should therefore quote cosmological param-
eters for the Jordan frame. This said, it is often more
straightforward to perform calculations in the Einstein
frame and then merely express the results in terms of
Jordan frame quantities.

Cosmologically, in the Jordan frame we have:

ds2 = a2(η)
[

−dη2 + γijdxidxj
]

, (17)

and φ obeys:

− 1

a2
Φ,ηη − 2

a,η

a3
Φ,η =

κ

3

[

Tmatter + 2Φ3V,Φ

]

(18)

where Φ = e−2βφ/MPl = f ′(R). At late times, when it
is appropriate to ignore the contribution of radiation to
the total energy density of the Universe, we have

3a2
,η

a4
=

κρmatter

Φ
+ κΦV (φ) − 3a,ηΦ,η

a3Φ
− 3k

a2
. (19)

The Einstein equations also give:

2a,ηη

a3
−

a2
,η

a4
= κΦV (φ) − Φ,ηη

Φa2
+

2k

a2
− a,ηΦ,η

a3Φ
. (20)

We assume that measurements are interpreted in terms
of General Relativity, where the energy density of the
Universe is assumed to be due to non-interacting, dark
energy and normal matter. Thus we write

H2 =
a2

,η

a4
=

κ

3Φ0
ρmatter +

κ

3Φ0
ρeff
de − k

a2
(21)

=
(

Ωeff
m + Ωeff

de

)

H2 − k2

a2
.

The above equation partly defines ρeff
de , Ωeff

m and Ωeff
de ; to-

day Φ = Φ0. Now in the Jordan frame: ρmatter ∝ a−3.



5

If the effective dark energy equation of state parameter,

wde
eff , were constant it would obey: ρeff

de ∝ a−3(1+weff
de ).

More generally however the effective dark energy equa-
tion of state is then given by:

ρde
eff,η = −3

a,η

a
(1 + wde

eff)ρde
eff . (22)

Taking the η-derivative of Eq. (21) we get:
(

2
a,ηη

a3
− 4

a2
,η

a4

)

a,η

a
=

κ

3Φ0
ρmatter,η

+
κ

3Φ0
ρeff
de,η + 2

k

a2

a,η

a
,

and so using the Eq. (22) and ρmatter ∝ a−3 we have:

2a,ηη

a3
−

4a2
,η

a4
− 2k

a2
= − κ

Φ0
ρmatter −

κ

Φ0
(1 + weff

de )ρeff
de .

Finally by adding 3H2 to both sides and using Eq. (21)
we have:

2a,ηη

a3
−

a2
,η

a4
+

k

a2
= − κ

Φ0
weff

de ρeff
de .

So by rearranging the Friedmann equations we have
found that

weff
de κρeff

de/Φ0 = −2a,ηη

a3
+

a2
,η

a4
− k

a2
, (23)

=

[

Φ,ηη

Φa2
+

Φ,ηa,η

Φa3
− κΦV (φ)

]

.

By comparing Eqs. (19) and (21) we see that:

κ

Φ0
ρeff
de =

κ

Φ0
ρmatter

(

Φ0

Φ
− 1

)

+ κΦV (Φ) − 3
a,η

a3

Φ,η

Φ
.

Therefore,

(1 + weff
de )κρeff

de/Φ0 =
Φ,ηη

Φa2
− 2Φ,ηa,η

Φa3
(24)

+
κ

Φ0
ρmatter

(

Φ0

Φ
− 1

)

.

Thus, using 3Ωeff
deH

2 = κρeff
de/Φ0, we have:

(

1 + weff
de

)

Ωeff
de =

[

Φ,ηη

3Φa2H2
− 2Φ,η

3ΦaH
(25)

+

(

Φ0

Φ
− 1

)

Ωeff
m

]

.

(

1 + weff
de

)

Ωeff
de parametrizes the magnitude of deviations

from ΛCDM. If φ = −(MPl/2β) lnΦ has changed by ∆φ
in the last Hubble time, Eq. (25) implies that, in the
recent past and in the Jordan frame, to within an order
of magnitude:

∣

∣

(

1 + weff
de

)

Ωeff
de

∣

∣ ∼ O
(

β|∆φ|
MPl

)

. (26)

For later use we rewrite Eq. (25) in terms of p = ln a:

(

1 + weff
de

)

Ωeff
de =

2Φpp

Φ +
(

2Ωeff
de − Ωeff

m − 4
) Φp

Φ

3(2 +
Φp

Φ )

+
2
(

Φ0

Φ − 1
)

Ωeff
m

2 +
Φp

Φ

. (27)

In both the Einstein and Jordan frames, e
β(φ1−φ0)

MPl − 1
gives the relative change in the ratio of any particle mass,
mp, and the Planck mass, MPl between the times when
φ = φ1 and when φ = φ0. In the Einstein frame MPl

is constant but mp varies whereas in the Jordan frame
the converse holds; the ratio of the two masses, being
a dimensionless quantity, is the same in either frame.
WMAP constrains any such variation in mp/MPl be-
tween now and the epoch of recombination to be . 5%
at 2σ (. 23% at 4σ) [35]. It follows that since recombi-
nation

|e
β∆φ
MPl − 1| < 0.05. (28)

Light element abundances provide similar constraints
on any variation in Newton’s constant GN between the
present day and the time of nucleosynthesis [36].

Thin-shell constraints, however, provide an even
tighter bound on the allowed change in φ. To consider
these constraints we work in the Einstein frame, however
∆φ is the same in either frame.

We assume, as is the case for the real Universe, that the
scales of the inhomogeneous regions are small compared
to the horizon scale, and that the Universe is approx-
imately homogeneous when coarse-grained over scales
larger than some Lhom ≪ H−1. Thus over scales larger
than Lhom, φ ≈ φb(t) and since Lhom ≪ H−1, we can
work entirely over sub-horizon scales, which simplifies the
analysis greatly. We also assume that the curvature of
spacetime is weak over scales smaller than Lhom. This is
equivalent to assuming that the Newtonian potential, U ,
is small as are the peculiar velocities, vi, of any matter
particles, i.e they are non-relativistic.

Exploiting both the assumption that HLhom ≪ 1 and
that gravity is weak inside the the inhomogeneous regions
i.e. U ≪ 1 and vivi ≪ 1, we write φ = φb(t) + δφ and
have to leading order in the small quantities and over
sub-horizon scales:

∇2δφ = V ′(φ) +
βρ

MPl
+ φ̈b + 3Hφ̇b.

Now

−φ̈b − 3Hφ̇b = V,φ(φb) +
βρb

MPl
,

and so

∇2δφ = m2
bδφ +

βδρ

MPl
+ A(φ, φb).
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where

A(φ, φb) ≡
[

V ′(φb + δφ) − V ′
b − m2

bδφ
]

.

Thus

δφ = − 1

4π

∫

d3x′ e
−m|x−x′|

|x − x′|

[

βδρ(x′, t)

MPl

+A(φ(x′, t), φb(t))] . (29)

It is straightforward to show that the condition V ′′′ < 0,
which must hold for any chameleon theory, implies that
A(φ, φb) < 0 for all φ and φb. Thus

δφ > −δφ1 = − 1

4π

∫

d3x′ e
−m|x−x′|

|x − x′|
βδρ(x′, t)

MPl
.

Now if we require that a test mass at r = 0 with central
density ρc > ρb has a thin-shell, we must impose that at
r = 0, φ ≈ φc, where

V,φ(φc) = − βρc

MPl
.

Thus φ must be able to change by at least φc − φb =
−∆φbc < 0 i.e. we have the following necessary condition
for thin-shell

β∆φbc

MPl
<

βδφ1

MPl
=

1

3

∫

d3x′ e
−m|x−x′|

|x − x′| Gδρ(x′, t). (30)

The right hand side of this equation is O(U/3) or smaller,
and the largest values of the peculiar Newtonian potential
for realistic models of our Universe are roughly < 10−4,
and are generally around 10−6 − 10−5 for large clusters
and superclusters [26]. Thus we have the following con-
servative constraint on the cosmological value of the field
today:

β∆φbc

MPl
< 10−4, (31)

We have defined f(R) = R + h(R). The thin-
shell constraint certainly ensures that cosmologically to-
day |βφ/MPl| ≪ 1 and since we have 1 + h′(R) =
exp(−2βφ/MPl) by definition we are therefore justified
in assuming that we have |h′(R)| ≪ 1. Then assuming
that |h′| ≪ 1 we find that the potential, V (φ), is given
by:

κV (φ) ≈ 1

2
(Rh′(R) − h(R)) ,

and

− 1

βMPl
V,φ ≈ R(1 − 2h′(R)) + 2h(R) − Rh′(R).

To leading order then in |h′(R)| we have:

− 1

βMPl
V,φ ≈ R − 4κV (φ).

The chameleon mass squared, m2
φ = V,φφ is then given,

to leading order, by:

m2
φ = V,φφ ≈ 1

3h′′(R)
. (32)

Provided m2
φ/H2 ≪ 1, then the chameleon field will re-

main close to the minimum of its effective potential [29]
cosmological, i.e. V,φ = −βρmatter/MPl and the energy
density of the chameleon field will be dominated by its
potential. Assuming that this is the case we would have:

R ≈ 4κV (φ) + κρmatter,

and defining Ωm = κρmatter/3H2 and Ωde ≈ κV (φ)/3H2,
we have:

R ≈ 3(4Ωde + Ωm)H2,

and so m2
φ/H2 ≫ 1 becomes:

4Ωde + Ωm

Rh′′(R)
≫ 1.

Therefore, in many theories, an observationally viable
evolution of φ requires that it has sat close to the effective
minimum of its potential since recombination [29] i.e.:

V,φ(φb(t)) ≈ −βρmatter(t)

MPl

Since the background density of matter decreases with
time, V,φφ > 0 implies that φ increases with time. Thus
for test mass with density ρc ∼ O(1) g cm−3, we have in
the recent past, i.e. out to z ≈ 1:

φc < φb(t) < φb(t0)

where t = t0 is the current time. In this case Eq. (31)
gives the following conservative constraint:

β

MPl
(φb(t0) − φb(t)) < 10−4,

and so, from Eq. (26) we obtain that:

|1 + weff |Ωeff
de < 10−4. (33)

In the recent past where Ωeff
de is not negligible, this leads

to a stringent constraint on the deviation of the equa-
tion of state from -1. It should be noted that although
|1 + weff |Ωeff

de is constructed simply out of the scale fac-
tor, a, and its derivatives, neither weff(z) nor Ωeff

de (z) are
uniquely defined as functions of redshift in models such as
these where the scalar field interacts with normal matter.
As a result, it is possible to define Ωeff

de so that it vanishes
and even becomes negative in the past. If such a defi-
nition is made, then one would (unless the |1 + weff |Ωeff

de
also happens to vanish) predict that weff diverges, and
hence deviates significantly from −1. A behaviour such
as this was noted in Refs. [21, 22]. As a result, an ap-
parent effective deviation from ΛCDM can be deduced.
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However, because of the freedom to redefine Ωeff
de and

hence weff , one should not rush to assign any physical
meaning to the divergence of weff , and deduce that it
represents a significant deviation from ΛCDM, since one
could always remove this divergence by choosing to de-
fine Ωeff

de it such a way that it is positive definite. In
all cases, the bound (33) gives an intrinsic measure of
the deviation of the background cosmology from ΛCDM,
and it all cases it is small. Therefore, the predicted late
time cosmology is observationally very close to ΛCDM.
Additionally, the prospects for being able to detect such
small deviations for ΛCDM at the background level in
the near future are poor. Of course, as we have already
mentioned, detectably at the perturbative level might be
within reach.

This said, the thin-shell constraints do not themselves
rule out larger deviations from ΛCDM. It may be that
βφ/MPl has undergone relatively large changes in the
past i.e. much larger than O(10−4), but that we now just
happen to live at a point in time when β∆φbc/MPl <
10−4. This would, however, be a fairly remarkable co-
incidence and would inevitably require a great deal of
fine-tuning of the theory and the initial conditions. To
avoid this new coincidence problem, we would have to re-
quire that the cosmological changes in βφ/MPl have been
smaller than O(10−4) in the recent past which would
in turn, as we illustrated above, constrain any devia-
tions from ΛCDM to be unobservably small. We note,
however, that deviations can be expected on very small
scales, as in the original chameleon model [23].

In this section we have sketched how the thin-shell re-
quirement for laboratory test masses place a very strong
constraint on the recent cosmological evolution of φ, and
generally constrains any deviations from ΛCDM in the
predicted cosmology to be small. This is not, however, a
‘water tight’ constraint as it may be possible to circum-
vent it by requiring a seemingly improbable cosmological
evolution wherein such bodies would only have developed
thin-shells in the recent (in the cosmological sense) past.
The laboratory constraints which we will derive in what
follows cannot be avoided in this way.

IV. INVERSE SQUARE LAW CONSTRAINTS

In the weak field limit, the gravitational force due to a
small body drops off as 1/r2, where r is the distance to
the body’s centre of mass. If there is an additional scalar
degree of freedom to gravity with constant mass mφ, the
force instead drops off as:

(1 + α(1 + mφr)e−mφr))

r2
,

where α parametrizes the strength with which the scalar
degree of freedom couples to matter. In f(R) theories
α = 2β2 = 1/3. When mφr ≪ 1 or mφr ≫ 1, the
force still drops off, approximately, as 1/r2, however there
would be a noticeable deviation from this behaviour over

scales r ∼ 1/mφ. If, as in chameleon theories, mφ is
not a constant but instead undergoes O(1) or greater
variations, the behaviour of the force is more complicated
but generally not of inverse square law form.

It is often assumed that what is needed for an f(R) the-
ory to avoid the constraints of inverse square law tests, is
that the test bodies develop thin-shells. Generally, how-
ever, this is not the case. The presence of a thin-shell
causes the chameleonic force due to a body to drop off
much faster than 1/r2 near the surface of the body. Far
from the body, the force has a Yukawa form, although
as a result of the fast drop-off near the surface, it is
much smaller than one would normally expect it to be.
If two thin-shelled bodies are sufficiently close however
then they would be inside the region where the faster
drop-off is occurring. In these cases the detectable vio-
lation of the inverse square law can be much larger than
one might expect.

A number of different experiments have searched for
violations of the inverse square law. For gravitational
strength forces, i.e. α ∼ O(1), the best constraints are
currently provided by the Eöt-Wash experiment [32].

The Eöt-Wash experiment [32] consists of two plates:
the attractor and the detector. The detector is 0.997 mm
thick and made out of molybdenum. The detector has 42
4.767 mm diameter holes bored into it in a pattern with
21-fold azimuthal symmetry. The attractor is similar and
consists of a 0.997 mm thick molybdenum plate with 42
3.178 mm diameter, arranged in a pattern with 21-fold
azimuthal symmetry, mounted on a thicker tantalum disc
with 42 holes, each with diameter 6.352 mm. The holes in
the lower tantalum ring are displaced so that the torque
on the detector due to the attractor from forces, such as
Newtonian gravity, that have a 1/r2 behaviour vanishes.
The detection of a non-zero torque would therefore indi-
cate the presence of either a correction to gravity with
a behaviour different from 1/r2 or the presence of a new
force that also did not behave as 1/r2.

A. Chameleonic Force & Torque

We now calculate the force, due to a chameleonic scalar
field, φ, on one plate due to the other lying parallel to it.
From this we calculate the chameleonic contribution to
the torque.

In a background, where φ = φb far from the plates,
the chameleonic force per unit area between two parallel
plates, of the same or similar compositions, both with
thin-shells and with a distance of separation d between
their two facing surfaces was found, under certain condi-
tions, in Ref. [28, 31]. In Appendix A we generalise those
formulae. We find that the chameleonic force between
two parallel circular plates, with radius rp and thickness
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D ≪ rp, and separation d ≪ rp is given by:

Fφ

A
= V (φ0) − V (φb) − V ′

b (φ0 − φb) (34)

+
(V ′

b − V ′
c )2

2m2
bC(mbrp)

E(φc, φb, mbrp).

where φ0(d) is defined to the values of φ midway between
the two plates, and formulae for it are provided in Ref.
[31]. We have also defined:

E = 1 + 2C(mbrp)D(φc, φb) −
√

1 + 4CD, (35)

C =
(embrp − 1/2)

(embrp − 1)2
. (36)

D =
m2

b [V (φb) − V (φc) − V,φ(φc)(φb − φc)]

(V,φ(φb) − V,φ(φc))2
. (37)

The last term in Eq. (34) represents the only difference
between the generalized force formula and the one pre-
sented in Refs. ([28]) & ([31]), and we note that the
extra term is independent of the separation d. When
C(mbrp)D(φc, φb) ≪ 1, the last term in Eq. (34) is neg-
ligible. We note that C(mbrp) ≪ 1 when mbrp ≫ 1, and
so whenever mbrp ≫ 1, the last term is always negligible.

The details of how Fφ(d)/A drops off with d will de-
pend on the form of V (φ). For many choices of V (φ),
e.g. V (φ) ∝ φn for n < −2 or n > 2, one finds that
Fφ(d)/A drops off faster than 1/d, for all d > d2 is small
compared to both rp and the radius, rh, of holes in the
plates. Indeed, this will certainly be the case, no matter
what form V (φ) takes, if mbrh ≫ 1 where mb = mφ(φb).
Provided this is the case, we can define the potential en-
ergy, Vφ(d) due to the chameleonic force for two plates
with separation d ≪ Rh thus:

Vφ(d) ≈ A

∫ ∞

d

(

Fφ(s)

A

)

ds. (38)

The faster 1/d drop off has been used to set the upper
limit of the above integral to ∞.

In the Eöt-Wash experiment the plates have a number
of holes in them. This means that as one plate is rotated,
by an angle θ say, relative to another, the surface area,
A(φ), of one plate that faces the other changes. Note
that Fφ/A does not depend on A. The torque due to the
chameleonic force is given by the rate of change of the
potential Vφ(d) with θ:

Tφ(d) =
dA

dθ

∫ ∞

d

(

Fφ(s)

A

)

ds. (39)

We therefore have:

Tφ(d) = aT

∫ ∞

d

(

Fφ(s)

A

)

ds, (40)

where aT = dA/dθ is a constant that depends only on the
details of the experimental set-up rather than the theory

being tested. For the 2006 Eöt-Wash experiment [32] we
find

aT = 3.0 × 10−3 m2.

If Fφ/A drops off too slowly over scales of the order of
rh then a more complicated analysis must be performed,
and knowing the force between two infinite parallel plates
is no longer enough to find a good approximation to the
torque. Instead a full numerical analysis would have to be
undertaken to get accurate results. This said, for d & rh,
we do not expect Fφ(d) to depend strongly on θ because
the effect of the holes will be largely smeared out over
separation distances much larger rh. On scales ≪ rh, we
found that Fφ ∝ A(φ). Since Tφ = dVφ/dθ, dVφ/dd =
Fφ, and we expect Fφ to be largely θ independent for
d ≫ rh and ∝ A(θ) on smaller scales, we expect, to
within an order of magnitude, that:

Tφ(d) ≈ aT

∫ rh

d

(

Fφ(s)

A

)

ds.

in these cases, where once again aT = dA/dθ. By pick-
ing rh as an upper bound for the integral we are probably
under estimating the torque as we are dropping the con-
tributions from larger separations.

B. The Effect of an Electrostatic Shield

Up to now we have not considered the role played by
the electrostatic shield. Because the shield is so thin
(ds = 10 µm) compared to the plates but has similar
density to the plates, it is safe to say that the shield will
only have a thin-shell when the plates have thin-shells.
Assuming the plates do have thin-shells, we define ms to
be the mass the chameleon would have deep inside the
shield if the shield has a thin-shell i.e. ms = mφ(φs)
where V ′(φs) = −βρs/MPl. Since the shield is sand-
wiched between the two plates, the thin-shell condition
for the shield is simply msds & 1. When the shield has a
thin-shell, its presence attenuates the chameleonic force
and torque on the detector due to the attractor by a fac-
tor of exp(−msds). Since exp(−msds) ≈ 1 in the absence
of a thin-shelled shield, we can take account of the shield,
thin-shell or not, by changing the definition of Tφ thus:

Tφ(d) ≈ aT e−msds

∫ Rh

d

(

Fφ(s)

A

)

ds. (41)

This expression provides a very good approximation for
theories in which the precise value of rh is unimportant
(e.g. ones with mbrh ≫ 1) and an order of magnitude
estimate otherwise.

C. Inverse Square Law Constraints

The 2006 Eöt-Wash experiments requires that

|Tφ(d = 55 µm)| < 0.87 × 10−17 Nm,
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with 95% confidence. We define Tφ(d = 55µ m) = aT Λ3
T

and find that the above bounds correspond to:

ΛT < 0.89 × 10−12 GeV, (42)

Importantly this is smaller than the energy scale as-
sociated with dark energy: Λde = 2.4 × 10−12 GeV;
ρde = Λ4

de.
Using our expression Eq.(41) for the chameleonic

torque, we find that the constraints we must apply are
as follows:

e−msds

∫ Rh

55 µm

(

Fφ(s)

A

)

ds < 7.0 × 10−37 GeV3.(43)

V. APPLICATION OF CONSTRAINTS TO f(R)
THEORIES

A. Chameleonic force

The chameleonic force per unit area between two par-
allel plates is given by Eq. (34). To prevent large de-
viations from general relativity occurring over solar sys-
tem, and smaller, scales, one must require that f(R) ≈
R + h(R) where |h′(R)| ≪ 1 and |h(R)/R| ≪ 1. In this
case the expression for Fφ/A becomes:

Fφ

A
≈ M2

Pl

2
[(R0 − Rb)h′(R0) + (h(Rb) − h(R0)) + F0] .

where for Rc ≫ Rb

F0 =
R2

ch
′′(Rb)

4C(mbrp)
E0, (44)

E0 = 1 + 2C(mbrp)D0(Rc, Rb) −
√

1 + 4CD0, (45)

D0 =
h(Rc) − h(Rb) − (Rc − Rb)h

′(Rb)

h′′(Rb)R2
c

. (46)

where rp is the radius of the parallel plate(s). We shall
now consider several potential forms for h(R).

B. Logarithmic potentials

We begin by considering a simple chameleon gravity
model that was recently suggested in Ref. [37] for a gen-
eral β. The theory, when written as a chameleon theory,
would have a potential V (φ) = V0 − Λ4

0 ln(φ/MPl), it
was suggested that this would result in an experimen-
tally viable and cosmologically interesting dark energy
model, where Λ4

0/M
2
Pl ∼ O(H2

0 ) [37] for β ≤ 1/4
√

3. We
will analyse the same model in the f(R) setting where

β = 1/
√

6 > 1/4
√

3 and show that local tests already
lead to difficulties, see also [38].

On laboratory scales we would have f(R) ≈ 1 + h(R)
and so we find:

h(R) = − 2Λ4
0

M2
Pl

[

V0

Λ4
0

+ ln(2β) + ln

(

M2
PlR

2Λ4
0

)

+ 1

]

.

Assuming that mb ≪ mc where mc is the chameleon mass
inside the plates, it follows that Fφ/A has the following
form:

Fφ

A
= Λ4

0

[

ln

(

R0

Rb

)

+
Rb

R0
− 1

]

+
1

2
Λ4

0

m2
cE0

m2
bC(mbrp)

. (47)

where

E0 = 1 +
2C(mbrp)mb

mc
−
√

1 +
4C(mbrp)mb

mc
.

When C(mbrp)mb/mc ≪ 1 we have E0 ≈ 2C2m2
b/m2

c

and so the last term in Eq. (47) is:

Λ4
0

m2
c

2m2
bC(mbrp)

E0 ≈ Λ4
0C(mbrp).

Alternatively if C(mbR)mb/mc ≫ 1 we would have:

Λ4
0

m2
c

2m2
bC(mbrp)

E0 ≈ Λ4
0

mc

mp
.

If C(mbrp) ≪ 1 i.e. mbrp ≫ 1, then it is clear that this
last term is always small compared to the other terms,
however if mbrp ≪ 1, then the last term will dominate
the expression for the force.

The chameleon mass for a given R in this set-up is

mφ(R) =
MPlR√

6Λ2
0

.

In between the two plates, φ satisfies [31]:

d2φ

dz2
= V,φ(φ) − V,φ(φb),

and φ0 is defined to be value of φ midway between the
two plates (i.e. a distance d/2 from either plate), where
by symmetry dφ/dz = 0. Integrating the above equation
we therefore have:

(

dφ

dz

)2

= 2(V (φ) − V (φ0) − V,φ(φb)(φ − φ0)).

Integrating this again and defining φs ∼ O(φc) to be the
value of φ on the surface of the plates, we have:

d√
2

=

∫ φ0

φs

dx
√

V (x) − V (φ0) − V,φ(φb)(φ − φ0)
.

Following Ref. [31], when mb ≪ m0 ≪ mc we have that
φs ∼ O(φc) ≪ φ0 ≪ φb and so V (φ)−V (φ0)−V,φ(φb)(φ−
φ0) ≈ V (φ) − V (φ0) = Λ4

0 ln(φ0/φ) and so:

d√
2
≈ φ0

Λ2
0

∫ 1

0

dx
√

ln(1/x)
.

Noting that m0 = Λ2
0/φ0 and evaluating the integral we

find:

m0d =
MPlR0d√

6Λ2
0

=
√

2π.
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Now mb ≪ m0 ≪ mc is clearly equivalent to Rc ≫ R0 ≫
Rb, and in these cases we therefore have:

R0 =
2
√

3πΛ2
0

MPld
. (48)

It follows that, irrespective of the value of E0, Fφ/A
drops off more slowly than 1/d for all mbd ≪ 1. In
the latest version of the Eöt-Wash experiment [32], the
plate radius, rp, is 3.5 cm, and the smallest hole radius
is 1.6 mm. The pressure of the laboratory vacuum is
10−6 torr which corresponds to a background density of
ρb = 1.6 × 10−9 kg m−3 = 6.7 × 10−30 GeV4.

Now if the vacuum region is large enough then Rb =
ρb/M

2
Pl and so mb = m̄b ≡ ρb/

√
6Λ2

0MPl. However, it
was shown in Refs. [28, 30, 31] that if the vacuum re-
gion only have length scale Lvac and m̄b ≪ 1/Lvac, then
generically mb ∼ O(1/Lvac). For the moment we only
assume that rp/Lvac ≪ 1.

We therefore find that for d = 55 µm we have mbd < 1
for all Λ0 > 5.6 × 10−19 GeV, mbrh < 1 for Λ0 > 3.0 ×
10−18 GeV and mbrp < 1 for Λ0 > 1.4 × 10−17 GeV.
The suppression factor due to the electrostatic shield is
exp(−msds) where:

msds =
βρshieldds

MPlΛ2
0

= 0.30

(

10−12 GeV

Λ0

)2

,

where we have used ds = 10 µm and ρs = 8.3 g cm−3.
Thus, whenever msds . 1, we are therefore firmly in the
mbrp mbrh ≪ 1 region and hence C(mbrp) ≫ 1. Thus
C(mbrp) ≈ 1/2m2

br
2
p and:

Fφ

A
≈ Λ4

0

[

− ln(mbd/
√

2π) + mbd/
√

2π − 1
]

+Λ4
0m

2
cr

2
pE0

From Eq.(41), in the absence of the electrostatic shield,
the chameleonic torque for rh ≫ d would be:

Tφ ≈ aT Λ4
0rh

[

ln

( √
2π

mbrh

)

+
mbrh√

2π
(49)

+m2
cr

2
pE0

]

.

Here mc is the chameleon mass inside the plates which
have density ρc ≈ 10.2 g cm−3.

We note that the requirement that the plates have
a thin-shell constrains the value of mb, and it is im-
portant to check that this constraint holds. Conser-
vatively, the thin-shell constraints for the plate require
β(φb − φc)/MPl < ΦN/3 where ΦN is the Newtonian
gravitational potential of the whole experiment at the
surface of the plate. Since the geometry of the experi-
ment is complicated, we do not calculate ΦN . Instead, we
estimate ΦN/3 . 10−26, and so φb −φc . 7× 10−8 GeV.
Given that ρc ≫ ρb, we take φc ≪ φb and then from
mb = Λ2

0/φb we must have

1/mb < 14 m

(

10−12 GeV

Λ0

)2

. (50)

If this condition does not hold, then the plates would
not have thin-shells and the Eöt-Wash data would au-
tomatically rule out the theory. The experiment takes
place inside a vacuum chamber with smallest dimension
Lvac = 0.2 m [33]. We assume that the walls of the vac-
uum chamber have thin-shells. Approximating the walls
of the vacuum chamber perpendicular to the shortest di-
mension as being parallel plates, we use Eq. (48) above
to tell us that when the background density of matter in
the vacuum chamber is very small, we have in the centre
of the chamber:

Rb = R̄vac =
2
√

3πΛ2
0

MPlLvac
.

This formula holds as long as R̄b = ρb/M
2
Pl . R̄vac. In

the opposite limit we just have Rb = R̄b. In all cases we
have Rb ≥ R̄vac and so:

mb ≥ MPlR̄vac√
6Λ2

0

=

√
2π

Lvac
≈ 12 m−1 (51)

and so condition (50) is always satisfied for Λ0 . 1.2 ×
10−11 GeV.

Given Eq. (51), we find that for the allowed values of
Λ0 we always have:

C(mbrp)mb

mc
≈ 1

2mbmcr2
p

≪ 1,

where we have used mc = ρc/
√

6MPlΛ
2
0. Thus:

E0 ≈ 2C2m2
b/m2

c = (mcmbrp)−4/2.

It follows that, in the absence of the electrostatic shield,
the chameleonic torque for rh ≫ d is

Tφ ≈ aT Λ4
0rh

[

ln
(√

2πmbrh

)

+
mbrh√

2π
(52)

+
1

2m2
br

2
p

]

.

Including the suppression factor due to the electrostatic
shield, which is exp(−msds), we therefore find the fol-
lowing constraint on y0 = Λ0/(10−12 GeV):

e−0.30y−2
0 /4y0 < 0.21,

which gives y0 < 0.37 and so:

Λ0 < 3.7 × 10−13 GeV. (53)

Cosmologically, the mass of the scalar field at the min-
imum of its potential is given by

mcos =

[

√

3

2

ΩmMplH

Λ2
0

]

H,

and the value of φ at this minimum is given by:

βφmin
cos

MPl
=

Λ4
0

3ΩmH2M2
Pl

.
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Now H = 2.1h×10−42 GeV and from WMAP [39]: Ωm =
0.127h−2 and h = 0.73. We find that

mcos/H =
1.1

y2
0

, (54)

βφmin
cos

MPl
= 0.06y4

0 (55)

and so the Eöt-Wash constraint on Λ0 gives:

mcos/H > 8.

At its minimum then, the φ-field is still heavy today. This
should be contrasted with the requirement obtained in
[37] that the mass of the φ-field should be small compared
to the Hubble rate in order to drive acceleration. Here we
find that local tests and the thin shell requirement impose
that the mass of the φ-field at the cosmological minimum
is so large that the field must sit there on cosmological
scales. It is easily checked that mcos/H is a decreasing
function of time, and so in the past φ was heavier still
relative to H . Therefore φ will have remained stuck close
to the minimum of its effective evolution throughout the
matter era. Additionally the Eöt-Wash constraint on Λ0

implies that:

βφmin
cos

MPl
< 0.001

We have considered the potential V (φ) = V0 −
Λ4

0 ln(φ/MPl). The constraint on Λ0 implies that
Λ4

0/3M2
PlH

2 < 0.00026 and so if V (φ) is to be the source
of dark energy and there is to be a realistic amount of it
today, we would need V0 & O(1000)Λ4

0. Note that this is
very different from the original scenario envisaged in ref.
[37], where V0 ∼ Λ4

0 so that the whole potential could
be written in the form V = −Λ4

0 ln(φ/M) where M ∼
O(MPl). The Eöt-Wash constraint on Λ0 therefore rules

out a scenario where V0 ∼ Λ4
0 for β = 1/

√
6, confirming

the cosmological obstruction noted when β > 1/4
√

3. If
we moved away from f(R) theories and allowed for dif-
ferent couplings, we would find similar constraints on Λ0

for other O(1) values of the coupling β.
Relaxing the constraint V0 ∼ Λ4

0 and allowing much
smaller values of Λ0, it should also be noted that the
conservative thin-shell constraint for a test mass with
density ≫ Λ4

0 on the cosmological value of φ (as derived
in Section III) actually provides a stronger constraint on
the cosmological value of the field today and as such gives
a tighter bound on Λ0. Specifically Eq. (31) implies:

βφcos

MPl
< 10−4 ⇔ Λ0 < 1.8 × 10−13 GeV. (56)

This leads to the following constraint on the mass of φ
at its minimum cosmologically:

mcos/H > 35. (57)

Since mcos/H ≫ 1, φ lies close to its cosmological mini-
mum and so, in the Jordan frame, by Eq. (18):

−2Φ3V,Φ =
MPl

β
Φ2V,φ = −ρmatter,

where Φ = e−2βφ/MPl and so Φ ≈ 1. To leading order
with p = ln a we have φp ≈ 3φ. Therefore

Φp

Φ
= −2

βφp

MPl
≈ −6βφ

MPl
= − 6Λ4

0

ρmatter
,

and to the same order

Φpp

Φ
≈ −18βφ

MPl
= − 18Λ4

0

ρmatter
.

We define θ = Λ4
0/ρmatter and then using Eq. (27) we

arrive at

(1 + weff)Ωeff
de ≈ (2Ωeff

de − Ωeff
m + 2)θ

3θ − 1
(58)

+
(θ − θ0)Ω

eff
m

1 − 3θ

where θ0 is the value of θ at the present time. Assuming
that the Universe is flat (k = 0) and taking Ωeff

de = 0.76,
we find today when t = t0:

1 + weff(t0) ≈ −4.32θ0.

Notice that the effective equation of state is below -1,
this is a consequence of the scalar-tensor character of the
chameleon model.

The Eöt-Wash constraint on Λ0 gives

|1 + weff | < 0.0085,

while the thin-shell constraint on Λ0 gives

|1 + weff | < 10−4,

which is in line with our expectations from Section III.
Whilst the thin-shell constraint on the cosmology is much
stronger than the Eöt-Wash bound, the cosmological con-
straint makes a number assumptions above the nature
of inhomogeneities in the Universe, in particular about
their scale at the present time. One could presumably
argue that the cosmological constraint could be relaxed.
The same line of argument cannot be used for the Eöt-
Wash constraint, and as such represents a strong con-
straint on the magnitude of deviations from ΛCDM in
this model. As such, the model cannot be distinguished
from a ΛCDM model at the background level. At the
perturbative level, the situation is very different as the
bound (57) implies that density contrast would have an
anomalous growth on scales lower than 100h−1Mpc. This
may be testable in the near future with next generation
red-shift surveys[25].

The version of the logarithmic potential f(R) theory
suggested in Ref. [37] required Λ4

0 ≥ ρmatter today i.e.
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Λ0 > 1.7 × 10−12 GeV. Even from a conservative point
of view (and indeed for any β where 2β2 ∼ O(1)), such
a value of Λ0 would produce a torque in the Eöt-Wash
experiment that is almost 100 times larger than the 95%-
confidence level upper bound. The scenario suggested in
Ref. [37] is therefore strongly ruled out by local tests of
gravity.

C. Power-law form

In many cases [24, 26, 34] one finds that for R ≫ H2
0 ,

where H2
0 is the Hubble constant today, h(R) has a power

law form i.e.:

h(R) ≈ p

p + 1
R̄

(

R

R̄

)p+1

, (59)

for some p 6= 0 and some constant R̄ > 0. For a
chameleon mechanism to exist we need V ′ < 0, V ′′ > 0
and V ′′′ < 0, and so must require p < 1. Relative di-
vergences from GR such as those parametrized in the
PPN formalism or measured by observing the motions
of planets would scale as h(R)/R and h′(R) or by the
ratio of any variable component of the effective cosmo-
logical constant to the local matter density . However,
the Eöt-Wash test probes changes in V (φ), which scales
as h(R) and Rh′(R), although they are only sensitive to
this when the chameleon mass in the background, which
scales as 1/h′′(R), is not too large.

In theories with 0 < p < 1, both h(R)/R and V (φ)
would be largest for large values of R. These theories
would therefore diverge most markedly from General Rel-
ativity in the UV (i.e. large R) regime. Increasing R̄
would make both h(R)/R and h′′(R) smaller, and so ulti-
mately one could ensure compatibility with all laboratory
tests by making R̄ very large. Provided h′′ is not small,
however, the changes in V (φ) that could be detected by
the Eöt-Wash experiment would increase.

If −1 < p < 0 then h(R)/R and h′(R) are largest
in the IR regime where R is small. However V (φ) still
increases with R, and since R increases as the separa-
tion of the plates in the Eöt-Wash experiment is de-
creased, the smaller the separations the stronger the po-
tentially detectable signal would be. Ultimately compat-
ibility with all local tests could be ensured by making R̄
small enough. Additionally in all theories where p > −1,
Fφ/A would be dominated by the d-dependent (i.e. R0

dependent) terms and only weakly depend on Rb when
mbd ≪ 1.

Finally, in theories with p < −1 both V (φ) and h(R)/R
would decrease with R. This would mean that Fφ/A
would only very weakly depend on d and generally be
much smaller in a given set-up than for the other classes
of theories. Again compatibility with all local tests could
be ensured by making R̄ small enough.

The −1 < p < 0 theories are the most testable type
of theory as they would result in deviations from GR in

both the UV and IR regimes. In the UV regime there
would be potentially detectable fifth-forces between par-
allel plates, and in the IR regime the ratio of the density
dependent part of the effective cosmological constant to
the ambient matter density would increase cosmologically
at late times as the ambient density decreased.

In all of these theories:

Fφ

A
=

M2
PlR0p

2

2(p + 1)

(

R0

R̄

)p

(60)

+
M2

PlRbp

2(p + 1)

(

Rb

R̄

)p

− M2
PlRbp

2

(

R0

R̄

)p

+
M2

Plp
2R2

c

8C(mbrp)Rb

(

Rb

R̄

)p

E0.

where E0 is given in terms of C and D0 by Eq. (45) and

D0 =
1

p(p + 1)

[

(

Rb

Rc

)1−p

+ p

(

Rb

Rc

)2

− (p + 1)

(

Rb

Rc

)

]

.

Note that the last term in Eq. (60) is independent of the
plate separation d and vanishes in the limit mbrp → ∞.

1. Relationship to chameleon theories

Converting these theories to chameleon theories we
have for h′ ≪ 1:

−2
βφ

MPl
= h′(R) = p

(

R

R̄

)p

,

and so R ∝ φ1/p and h(R), Rh′(R) ∝ φ(p+1)/p. It follows
that

V (φ) = const +
p2M2

PlR̄

2(p + 1)

(−2βφ

MPlp

)

p+1
p

.

and so defining n = −(p + 1)/p, we see that, neglecting
the constant term in the potential, |V (φ)| ∝ |φ|−n. In
the context of chameleon theories these potentials have
been studied in great detail [16, 28, 29, 30, 31], and so
we are able to apply a raft of results to the analysis of
these theories.

In appendix B, we show the mass of the chameleon
field for mc ≫ m0 ≫ mb (mc is the chameleon mass
deep inside the plates and mb is the chameleon mass in
the background) is given by m0d = ap where:

ap =

√

2

1 + p
p2B

(

1

2
,

p

(1 + p)

)

p ≤ −1,

ap =

√

2

1 + p
B

(

1

2
,

(1 − p)

2(1 + p)

)

− 1 ≤ p ≤ 1.

Using m0 ≈ 1/3h′′(R0) we therefore have when Rb ≪
R0 ≪ Rc:

R0

R̄
=

(

3p2a2
p

R̄d2

)
1

1−p

. (61)
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For what follows we also define:

Kp =
(

3p2a2
p

)

1+p
1−p . (62)

Using m0 ≈ 1/3h′′(R0) we therefore have when Rb ≪
R0 ≪ Rc:

Using the relationship between R0 and d derived above
when Rc ≫ R0 ≫ Rb Eq. (60) becomes:

Fφ

A
≈ M2

PlKpp
2R̄

2(p + 1)

(

1

R̄d2

)

1+p
1−p

Gp

(

mbd

ap

)

, (63)

+
M2

Plp
2R2

c

8C(mbrp)Rb

(

Rb

R̄

)p

E0.

where

Gp

(

mbd

ap

)

= 1 +
1

p

(

mbd

ap

)

2(1+p)
1−p

(64)

−p + 1

p

(

mbd

ap

)
2

1−p

.

We note that Gp = 0 when mbd/ap = 1 which corre-
sponds to R0 = Rb. We now consider the integral:

I(d, rh) =

∫ rh

d

Fφ(s)

A
ds

The approximation used to calculate R0(d) breaks down
when R0 ≈ Rb, which corresponds to mbd/ap ≈ 1. In
the case mbrh/ap > 1 we cannot simply use Eq. (63) to
calculate I(d, rh) as we must integrate over values of d for
which Eq. (63) is not valid. However we should be able to
trust Eq. (63) for smaller values of d. For mbd/ap ≫ 1
we expect an exponential drop-off in the force, just as
one would find in a Yukawa theory at distances larger
than the inverse mass of the scalar field. We therefore
do not expect the dominant contribution to I(d, rh) to
come from values of d < ap/mb. We also note that if
mbrh/ap ≫ 1 then mbrp ≫ 1 as rh < rp and as such the
second term in Eq. (63) is negligible. The first term in
Eq. (63) vanishes when mbd/ap = 1, and since we do not
expect a significant contribution to the integral to come
from larger separations, we evaluate I(d, rh) by using Eq.
(63) for Fφ(s)/A but if mbrh/ap we cut the integral off
at a separation ap/mh.

Thus we define x(d) = mbd/ap and xmax =
min(mbrh/ap, 1) and find:

I(d, rh) ≈ p2M2
PlKpR̄

1/2

2

(

mb

R̄1/2ap

)

1+3p
1−p

(65)

×{[Hp(x(d)) − Hp(xmax)]

+
R2

c(xmax − x)

4R2
bC(mbrp)

E0

}

,

where

Hp(x) =
1

(1 + p)

[

1 − p

1 + 3p
x− 1+3p

1−p − x

p

+
1 − p2

p(1 − 3p)
x

1−3p
1−p

]

.
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FIG. 1: Eöt-Wash constraints (thick solid blue line) on
f(R) gravity theories with f(R) = R + h(R) where h(R) =
R̄(R/R̄)p+1; R̄ = Λ4

0/M
2
Pl and −5 < p < −1, −1 < p < 0

and 0 < p < 1. For this constraint we have assumed that the
test bodies have thin-shells (which is necessary to avoid local
tests). We have also shown : (1) the cosmological thin shell
constraint (thick red dashed line) for test bodies in the labo-
ratory derived in Section III, (2) the naive constraint (thick
black dotted line) one could derive by simply requiring that,
inside the test bodies, the mass of the chameleon at the min-
imum of its effective potential, mcis large compared with the
length scale of the body, Dp. This was the constraint con-
sidered in Ref. [34]. For all such theories we see that the
correctly evaluated constraint provided by the Eöt-Wash ex-
periment [32] is stronger than both this näıve constraint and
the cosmological thin-shell bound for all for p & −1. The
mcDp ≫ 1 constraint never provides the strongest constraint.
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With this formula we are able to evaluate the Eöt-Wash
constraint for all theories with h(R) ∝ Rp+1. We do this
further below. However, we discuss first the cosmological
thin-shell constraint on these theories.

2. Cosmological Constraints

On cosmological scales, the field φ is stuck at the min-
imum of the effective potential provided m2

φ/H2 ≫ 1
which becomes:

4Ωde + Ωm

Rh′′(R)
≫ 1.

If h(R) ∝ Rp+1 this becomes:

4Ωde + Ωm

|ph′(R)| ≫ 1. (66)

The cosmological thin-shell constraint requires that:

β|∆φ|
MPl

. 10−4,

where ∆φ is the difference between the value of φ cosmo-
logical and the value of φ at the minimum of the effective
potential in a region with density O(1) g cm−3. This gen-
erally implies that cosmologically β|φ|/MPl . 10−4 and
1
2 |h′(R)| . 10−4. It is clear then that Eq. (66) holds

provided p × 10−4 ≪ 1 and so for O(1) values of p, we
are always in the region where m2

φ/H2 ≫ 1 and φ lies
close to the minimum of its effective potential.

To leading order we take V,φ ≈ −βρmatter/MPl and,
defining p = ln a, where a is the FRW scale factor in the
Jordan frame and Φ = e−2βφ/MPl , we find that:

Φp

Φ
≈ −3ΩmH2

m2
φ

= −3f0Rh′′(R) ≪ 1, (67)

where f0 = Ωm/(Ωm + 4Ωde)

Φpp

Φ
≈ 9f0Rh′′

[

1 +
f0Rh′′′(R)

h′′(R)

]

. (68)

Today from Eq. (27), with Ωeff
m = Ωm, Ωeff

de = Ωde ≈
1 − Ωm we have f0 ≈ Ωm/(4 − 3Ωm):

(1 + weff
de )Ωde ≈ 3f0Rh′′(R)

[

4

3
+

f0Rh′′′(R)

h′′(R)
+

Ωm

2

]

,

(69)
and so for Ωm = 0.24 and h(R) ∝ Rp+1 we have:

|1 + weff
de |Ωeff

de ≈ 0.32|ph′(R)| |1 + 0.050(p− 1)| .

The cosmological thin-shell constraint ensures that cos-
mologically |h′(R)| . 10−4 today and so:

|1 + weff
de |Ωeff

de . 3.2|p| |1 + 0.050(p− 1)| × 10−5.

3. Collected Constraints

We will consider now how the Eöt-Wash data, when
thin-shells are assumed, constrains the properties of
power-law f(R) theories. It should be stressed that in
the absence of thin-shells, the Eöt-Wash would automat-
ically rule out these theories.

Defining R̄ = Λ4
0/M

2
Pl we have plotted the Eöt-Wash

constraints on Λ0 for −5 < p < 1 in Fig. 1 as a thick
(blue) solid line. The cosmological thin-shell constraint
is shown as a thick (red) dashed line. For theories with
0 < p < 1 we find a lower bound on Λ0 and for theories
with p < 0 we recover an upper bound. We also show,
as a thick (black) dotted line, the näıve constraint on
the parameters that one would find by simply requiring
that the chameleon mass at the minimum of the effective
inside the plate, mc, is large compared to the plate thick-
ness Dp = 0.997 mm. It is a commonplace assumption in
the literature (see e.g. [34, 37]) that assuming mcDp ≫ 1
(where more generally Dp would be the length scale of
the test body) is enough to satisfy local tests of grav-
ity. It is clear from the plots that this näıve bound never
provides the tightest constraint on the parameters of the
theory.

The constraints on R̄ constrain the equation of state
parameter of the dark energy described by the f(R) the-
ory. Taking Ωm = 0.23 today, we plot the collected con-
straints on the effective Jordan frame equation of state
parameter (as defined in Section III) in Fig. 2. We see
that at the current epoch |1 + wde| < 10−4 for all O(1)
values of p with the largest values occurring for p < −1,
and hence the late time cosmology produced by any vi-
able theory would be observationally indistinguishable
from that described by the standard ΛCDM model.

VI. CONCLUSIONS

In recent years, modifications of General Relativity
have been suggested as a possible explanation for the ob-
served accelerated expansion of the universe. A popular
class of models are the so–called f(R) theories. While
cosmologically viable theories can be found, local con-
straints on such theories have to be worked out, since
the gravitational sector is modified, which could result in
unacceptable deviations from Newton’s law of gravity.

In this paper we have constrained f(R) theories, us-
ing the well known equivalence between these and scalar-
tensor theories. For an f(R) theory to be consistent with
both cosmology and local gravity experiments, the equiv-
alent scalar-tensor theory must be a chameleon field the-
ory. We have shown that the requirement of the thin-
shell mechanism at work in Eöt-Wash experiments re-
sults in an equation of state for dark energy very near to
that of a cosmological constant. Thus, viable f(R) mod-
els (those which are compatible with local experiments)
behave on cosmological scales similarly to the standard
ΛCDM model and deviations are expected only on very
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FIG. 2: Combined Eöt-Wash constraints on the effective dark
energy equation of state parameter produced by f(R) gravity
theories with f(R) = R + h(R) where h(R) = R̄(R/R̄)p+1.
R̄ = Λ4

0/M
2
Pl and −5 < p < −1, −1 < p < 0 and 0 < p < 1.

These constraints have been derived by requiring both that
the Eöt-Wash test masses have thin-shells and by requiring
that the chameleonic torque produced between the two thin-
shelled test masses is small enough to have avoided detection
to date. We see that in all cases we have |1 + weff

de | < 10−4

today. As a result, the late time cosmology of any viable the-
ory would be virtually indistinguishable from that described
by the ΛCDM model

small (sub-galactic) scales. The expected deviations from
the cosmological constant equation of state w = −1 now
in viable f(R) theories are unmeasurably small (at least
with current technologies). As examples, we have stud-
ied f(R) theories with logarithmic potentials (based on

[37] for a fixed coupling β = 1/
√

6) as well as power-law
potentials (such as those presented in [26, 34]). The for-
mer are ruled out by local gravitational tests, while there
is still room for the latter models.

To conclude, while on cosmological scales viable f(R)
theories behave like ΛCDM, deviations are expected on
scales which could be large enough to be within the reach
of next generation galaxy surveys [25]. Hopefully, future
measurements of the dark matter distribution on those
scales can be used to find such deviations from the stan-
dard ΛCDM model. For this, a detailed understanding of
galaxy formation is necessary, including an understand-
ing of both the dynamics of baryons as well as that of
dark matter in ΛCDM and f(R)/chameleon theories.
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APPENDIX A: THE FORCE BETWEEN TWO

PLATES

In previous works [28, 31], the chameleonic force per
unit area between two parallel plates was calculated and
found to be:

Fφ

A
= V ′(φ0) − V ′(φb) +

βρb

MPl
(φ0 − φb),

where φ0 depends on d. We assume that both plates have
radius R and thickness D and that D ≪ R. However as
these calculations treat the plates as being infinite, they
required for consistency that:

• either, for an isolated plate, φ → φb at a distance,
d ≪ R, from the plate so that the infinite plate
approximation was still valid,

• or, the precise value of φb was not important when
the plates were separated by a distance d ≪ R.
This means that provided V ′(φ0)/V ′(φ∗) ≪ 1, one
could replace φb in the above expression by φ∗ with-
out altering the prediction for Fφ/A greatly. In
these cases, the behaviour of φ far from the plates,
where the infinite plate approximation is invalid,
would be unimportant.

These approximations held for all of the chameleon the-
ories considered in Refs. [28, 31], however in this work
we consider a wider range of theories, and it is often the
case that both of these assumptions fail to hold. In this
appendix, we therefore derive an improved version of the
force formula.
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Outside of a body in a region where the background
density is ρb, the chameleon field obeys:

∇2φ = V,φ(φ) +
βρb

MPl
.

Consider this equation near one of the circular surfaces
of a cylindrical plate, of uniform density, and with radius
R and thickness D ≪ R. Defining z to be the distance
from one of the circular surfaces of the plate we have:

∂2φ

∂z2
= V,φ(φ) − V,φ(φb) −

1

r

∂

∂r

(

r
∂φ

∂r

)

. (A1)

We begin by consider the case where only one plate is
present. Here φ → φb, ∂φ/∂z → 0 as z → ∞. Integrating
Eq. (A1) with these boundary conditions give:

1

2

(

∂φ

∂z

)2

= V (φ) − V (φb) − V,φ(φb)(φ − φb)

+

∫ ∞

z

1

r

∂

∂r

(

r
∂φ

∂r

)

∂φ

∂z
dz. (A2)

We solve this approximately by assuming that for z <
z∗ the z-dependence of the r-derivative terms is weak
compared to that of the potential terms, and that for
z > z∗, the non-linear terms in the potential, i.e. terms
that depend on 3rd or higher derivatives of V , are sub-
dominant. In z > z∗, we have φ ≈ φ̃ where:

1

2

(

∂φ̃

∂z

)2

=
1

2
m2

b(φ̃ − φb)
2, (A3)

+

∫ ∞

z

1

r

∂

∂r

(

r
∂φ̃

∂r

)

∂φ̃

∂z
dz.

or equivalently:

∂2φ̃

∂z2
≈ m2

b(φ̃ − φb) −
1

r

∂

∂r

(

r
∂φ̃

∂r

)

.

Assuming that the plate is thin (D ≪ R), and solving
Eq. (A3), we find that for the z > z∗ and along r = 0:

φ̃ − φb ∝
(

e−mbz − e−mbr
)

,

and here z is the distance from the plate surface. It
follows that for z ≪ R we have:
∫ ∞

z

1

r

∂

∂r

(

r
∂φ̃

∂r

)

∂φ̃

∂z
dz = m2

b(φ̃ − φb)
2 (embR − 1/2)

(embR − 1)2
.

(A4)
In z < z∗, we have assumed that the z-dependence of the
r-gradient terms is relativity weak. We therefore approx-
imate the r gradient terms in Eq. (A2) using the z > z∗

solution i.e. we approximate them using Eq. (A4) with

φ̃ → φ. For z ≪ R we then have

1

2

(

∂φ

∂z

)2

≈ V (φ) − V (φb) + V,φ(φb)(φ − φb)

+m2
b(φ − φb)

2 (embR − 1/2)

(embR − 1)2
. (A5)

The above equation also holds approximately in the
z > z∗ region, provided z ≪ R, and so provides an
approximation to the evolution of φ everywhere when
z ≪ R. In particular we see that on the surface of the
plate, at z = 0, where say φ = φ̄s:

1

2

(

∂φ

∂z

)2

≈ V (φ̄s) − V (φb) + V,φ(φb)(φ̄s − φb)

+m2
b(φ̄s − φb)

2 (embR − 1/2)

(embR − 1)2
. (A6)

We assume that the plate has a thin-shell, so that deep
inside it φ → φc where:

V,φ(φc) = − βρc

MPl
.

Provided the shell is thin, we can treat the system as
being essentially 1 dimensional [28, 31] and so:

1

2

(

∂φ

∂z

)2

= V (φ) − V (φc) − V,φ(φc)(φ − φc). (A7)

Thus by evaluating and equating the left hand sides of
Eqs. (A6) and (A7) at the surface we find:

V (φc) − V (φb) − V,φ(φc)(φc − φb) + (V,φ(φc)

−V,φ(φb))(φ̄s − φb)

+m2
bC(mbR)(φ̄s − φb)

2 = 0,

where

C(mbR) =
(embR − 1/2)

(embR − 1)2
.

Thus:

φ̄s − φb =
(V,φ(φb) − V,φ(φc))

2m2
bC(mbR)

[1

−
√

1 + 4C(mbR)D(φc, φb)
]

(A8)

where

D(φc, φb, mbR) =
m2

b [V (φb) − V (φc) − V,φ(φc)(φb − φc)]

(V,φ(φb) − V,φ(φc))2
.

We now consider the force between two parallel plates.
This derivations make uses of results found in Refs. [28]
and [31], and proceeds along roughly similar lines.

In between two parallel plates with radius R and with
separation d ≪ R in the z-direction, the chameleon field
obeys:

∂2φ

∂z2
= V,φ(φ) − V,φ(φb) (A9)

For simplicity we treat the plates as having the same com-
position. This assumption was dropped in Ref. [28], how-
ever, it was also shown there that for most purposes the
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assumption provides an excellent approximation. This is
because the chameleonic force generally exhibits very lit-
tle composition dependence [28]. We define z = 0 to be
the surface of one of the plates, and z = d to be the facing
surface of the second plate. The system is symmetric and
so dφ/dz = 0 at z = d/2. We define φ(z = d/2) = φ0(d).
A formulae for φ0(d) have been provided in Ref. [31].
Integrating Eq. (A9) we have:

1

2

(

∂φ

∂z

)2

= V (φ) − V (φ0) − V,φ(φb)(φ − φ0). (A10)

Following Ref. [31], inside either plate, Eq. (A7) holds.
By equating both Eqs. (A10) and (A7) at the surface of
one of the plates, where φ = φs say, we find:

φs =
[V (φc) − V (φ0) + V,φ(φb)φ0 − V,φ(φc)φc]

V,φ(φb) − V,φ(φc)
.

In Ref. [31] it was shown that the attractive
chameleonic force unit area between two thin-shelled
plates is given by −V,φ(φc)(φs − φ̄s), and if, as is usually
the case, the plates are much denser than their environ-
ment so that V,φ(φc)/V,φ(φb) = ρc/ρb ≫ 1, we have:

Fφ

A
= V (φ0)−V (φb)−V ′

b (φ0−φb)+m2
bC(mbR)(φ̄s−φb)

2.

(A11)
This coincides with the formulae found in Refs. [28, 31]
when mbR ≫ 1 ⇒ C(mbR) ≈ 0, or more generally when-
ever the final term is small compared with the other
terms, which is when C(mbR)D(φc, φb) ≪ 1. φ̄s − φb

is given by Eq. (A8).
When mbR ≪ 1, we have C(mbR) ≈ 1/2m2

bR
2 ≫ 1.

If this is the case we also have C(mbR)D(φc, φb) ≫ 1:

m2
bC(mbR)(φ̄s−φb)

2 ≈ V (φb)−V (φc)−V,φ(φc)(φb−φc),

and then in this limit Eq. (A11) becomes:

Fφ

A
= V (φ0) − V (φc) − V ′

c (φb − φc) − V ′
b (φ0 − φb).

APPENDIX B: CHAMELEON MASS BETWEEN

TWO PLATES

In this appendix we generalize the calculation of the
chameleon mass between two parallel plates, as per-
formed in Refs. [28, 31], to include the wider range of
chameleon theories considered here.

In between two parallel plates with, say, a circular cross
section, in the x − y plane, with radius rp, and a sepa-
ration, d, in the z-direction where d ≪ rp, Eq. (6) for φ

simplifies to be essentially one dimensional � → d2

dz2 :

d2φ

dz2
= V,φ(φ) − V,φ(φb), (B1)

where φb is the background value of φ. We define φ0

to be the value of φ when dφ/dz = 0, which will occur
midway between the two plates when z = d/2.

Thus integrating the φ equation we find:

1

2

(

dφ

dz

)2

= V (φ) − V (φ0) − V,φ(φb)(φ − φb).

In this work we have considered power law potentials

where V ∝ ǫp(−ǫφ/(p + 1))
p+1

p and where ǫ = sgn(p(p +
1)) and p < 1. For these potentials we have m2

φ = V,φφ =

(p + 1)/p2V (φ)/φ2. Thus, defining Y = φ/φ0 and m0 =
mφ(φ0) we have:

1

2

(

dY

dz

)2

=
p2m2

0

(p + 1)

[

Y
p+1

p (B2)

−1 − p + 1

p

(

φb

φ0

)
1
p

(Y − 1)
V (φ0)

φ0

]

.

Now

R ∝ φ1/p,

and so defining R0 = R(φ0) we have (φb/φ0)
1/p = Rb/R0.

Thus when Rb/R0 ≪ 1, the last term in Eq. (B2) is very
small and can be dropped. Working in this limit we have:

1

2

(

dY

dz

)2

≈ p2m2
0

(p + 1)

[

Y
p+1

p − 1
]

.

Now on the surface of the plates φ ∼ O(φc) where φc is
the value of φ inside the body, and assuming Rc ≫ R0

i.e. mc ≫ m0, we can we treat (φ/φ0)
p as becoming very

large as z → 0 (i.e. as we approach the surface of the
plate). We define X = Y −p = (φ/φ0)

−p and then in the
limit mb ≪ m0 ≪ mc we have:

(

dX

dz

)2

≈ 2m2
0X

2+2/p

(p + 1)

[

X
− p+1

p2 − 1
]

.

Integrating this equation and using X = 0 at z = 0,
X = 1 at z = d/2 we have for p ≤ −1:

m0d
√

2|p + 1|
=

p2

|p + 1|B
(

1

2
,

p)

(1 + p)

)

,

which simplifies to:

m0d =

√

2

|1 + p|p
2B

(

1

2
,

p

(1 + p)

)

. (B3)

If −1 ≤ p ≤ 1 then we find:

m0d =

√

2

|1 + p|B
(

1

2
,

1 − p

2(1 + p)

)

. (B4)
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