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RESEARCH ARTICLE Open Access

Methods for network meta-analysis of
continuous outcomes using individual
patient data: a case study in acupuncture
for chronic pain
Pedro Saramago1* , Beth Woods1, Helen Weatherly1, Andrea Manca1, Mark Sculpher1, Kamran Khan2,

Andrew J. Vickers3 and Hugh MacPherson4

Abstract

Background: Network meta-analysis methods, which are an extension of the standard pair-wise synthesis framework,

allow for the simultaneous comparison of multiple interventions and consideration of the entire body of evidence in

a single statistical model. There are well-established advantages to using individual patient data to perform network

meta-analysis and methods for network meta-analysis of individual patient data have already been developed for

dichotomous and time-to-event data. This paper describes appropriate methods for the network meta-analysis of

individual patient data on continuous outcomes.

Methods: This paper introduces and describes network meta-analysis of individual patient data models for continuous

outcomes using the analysis of covariance framework. Comparisons are made between this approach and change

score and final score only approaches, which are frequently used and have been proposed in the methodological

literature. A motivating example on the effectiveness of acupuncture for chronic pain is used to demonstrate the

methods. Individual patient data on 28 randomised controlled trials were synthesised. Consistency of endpoints

across the evidence base was obtained through standardisation and mapping exercises.

Results: Individual patient data availability avoided the use of non-baseline-adjusted models, allowing instead for

analysis of covariance models to be applied and thus improving the precision of treatment effect estimates while

adjusting for baseline imbalance.

Conclusions: The network meta-analysis of individual patient data using the analysis of covariance approach is

advocated to be the most appropriate modelling approach for network meta-analysis of continuous outcomes,

particularly in the presence of baseline imbalance. Further methods developments are required to address the

challenge of analysing aggregate level data in the presence of baseline imbalance.

Keywords: Evidence synthesis, Network meta-analysis, Mixed treatment comparisons, Individual-patient data, Analysis

of covariance, Continuous outcome, Heterogeneity
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Background
Evidence synthesis tools are increasingly used to pool

estimates of treatment effects from multiple randomised

controlled trials (RCTs) to inform assessments of com-

parative effectiveness generally, and particularly in the

context of health technology assessment. One such tool is

network meta-analysis (NMA, also known as mixed treat-

ment comparisons), which extends standard pair-wise

meta-analysis by allowing the simultaneous synthesis of

evidence on multiple treatments [1–4]. Most published

work focuses on the pooling of aggregate outcome data

(AD), but with the increasing availability of individual pa-

tient data (IPD) synthesis methods have recently emerged

to utilise IPD [5–10]. The use of IPD allows the consist-

ent use of statistical methods across the body of evidence.

It also creates added value by offering the potential to

reduce and/or explain network heterogeneity, tackle exist-

ing evidence inconsistencies [11], and to examine subgroup

effects in patients where interventions might have an

effectiveness profile which differs from that of the wider

population [10, 12]. Despite its advantages, only a few

methodological studies on the synthesis of IPD in NMA

are available in the published literature and even fewer

examples of its use within cost-effectiveness (CE) analysis

exist [13]. Methods for NMA of IPD have focused mainly

on a subset of the available types of outcomes, i.e. binary

and time-to-event outcomes [10, 14]. Few publications

exist dedicated to continuous outcomes [15, 16], an

important outcome set in medical applications, as well as

in complementary medicine and beyond. Recent publica-

tions by Hong et al. [15] and Thom et al. [16] explored

and discussed the synthesis of continuous endpoints using

IPD in NMA. While the former proposes a framework to

pool multiple continuous outcomes under contrast- and

arm-based parameterisations, the latter focused mainly on

modelling observational evidence available in both IPD

and AD formats. Both papers chose the change from base-

line as their continuous outcome for synthesis but did not

adjust for baseline values of the outcome, apart from when

modelling baseline outcome as a treatment-effect modifier

[15]. In this paper we present a model for NMA of IPD on

continuous outcomes using the analysis of covariance

(ANCOVA) approach which does adjust for baseline out-

come data.

Analysis of covariance (ANCOVA), where the outcome

at follow-up is modelled whilst adjusting for its baseline

value, is the preferred method for estimating treatment

effects from continuous outcomes [17–19]. Treatment

effect estimates based on ANCOVA methods are the most

precise estimates and are robust to chance baseline imba-

lance. As such, these should be the desired outcome meas-

ure for synthesis [20–22]. Unfortunately, ANCOVA results

are frequently not reported for individual studies and,

therefore, ANCOVA is often not used in the synthesis of

aggregate evidence. Instead, sub-optimal methods are used

[23–25] such as unadjusted differences in change from

baseline or final outcome measures.

When IPD is available from each study, the full set

of statistical approaches are available to analysts. Riley et

al. [22] discuss different approaches to the synthesis of

continuous outcome data when IPD is available in a pair-

wise meta-analysis framework. The authors highlight that

availability of IPD is crucial to implement the most appro-

priate modelling approach, the ANCOVA [19, 22]. To our

knowledge, such an ANCOVA synthesis model has not

yet been extended to and/or explored in the NMA setting.

In this paper we present a Bayesian NMA model for the

synthesis of continuous IPD using the ANCOVA frame-

work. The paper aims to ensure that best practice in the

analysis of continuous outcome data within individual

trials and pairwise meta-analyses is extended to the NMA

context. We also aim to illustrate the differences (and

similarities) between NMA of IPD when using ANCOVA,

change score and final score only approaches. The method

presented is applied to a case study of acupuncture for

chronic pain. The paper is structured as follows. Section 2

presents the motivating example for the manuscript,

describes the evidence available and outlines the analysis

undertaken to obtain outcome data for synthesis. Section

3 describes the NMA ANCOVA model for IPD on con-

tinuous outcomes, followed by extensions that incorporate

treatment effect–covariate interactions. Results of apply-

ing the methods described to the motivating dataset are

reported in Section 4, which is followed by some discus-

sion topics and concluding remarks in Section 5.

Evidence on the effectiveness of acupuncture for chronic

pain in primary care

There is currently a lack of agreement about the effective-

ness of acupuncture as a treatment for chronic pain, as

reflected in debates about recent UK guidance surroun-

ding its value [26–32]. Acupuncture received a positive

recommendation from the National Institute for Health

and Care Excellence (NICE) for its use in back pain [26]

and headache/migraine [27], while a negative recommen-

dation was given for its use in osteoarthritis in 2008 and

2014 [28]. The methods in this paper were developed as

part of a project to improve evidence regarding the effec-

tiveness and CE of acupuncture for chronic non-specific

pain to inform decision making in the UK National Health

Service [33].

Dataset

The data used in this study was provided by the Acu-

puncture Trialists’ Collaboration (ATC) who performed

a systematic review in which relevant high quality trials

were identified and, for a large proportion of trials, IPD

was obtained (29 out of 31 studies) [34, 35]. The dataset
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available to us comprised 28 out of these 29 RCTs which

assessed the effectiveness of acupuncture in three pain con-

ditions: osteoarthritis of the knee (OAK) (7 trials [36–42]),

headache, including tension-type headache (TTH) and

migraine (6 trials [43–48]) and musculoskeletal conditions,

encompassing lower back, shoulder and neck pain (15

trials [49–63]). This dataset comprises 17,512 patients.

These studies are summarised in Table 1.

The dataset includes 11 trials comparing acupuncture

to sham acupuncture, 8 comparing acupuncture and

usual care, and 9 comparing all three comparators. The

resulting evidence network is presented in Fig. 1.

Outcomes

One key aspect of the evidence available in this setting is

the heterogeneous reporting of relevant outcomes across

trials. The ATC dataset varied according to the type of

outcomes reported but also on how these were collected

across time. To address this issue, two outcome measures

are used within this paper. The first is a standardised

pain-related outcome, a dimensionless measure of treat-

ment effect usually termed standardised mean difference

(SMD) [20, 21, 64, 65]. For this analysis the primary out-

come of each study was used to generate patient-level

standardised pain estimates. Pain measures varied from

days with headache in the headache/migraine pain condi-

tion, to visual analogue scale (VAS) pain in the musculo-

skeletal group or to Western Ontario and McMaster

Universities Arthritis Index (WOMAC) pain in the OAK

group, as reported in Table 1 (column on the right hand

side). Individual-level standardised pain estimates were

obtained for each trial by dividing the primary outcome

scores by the study-specific standard deviation. Note that

while these estimates were used as inputs in the synthesis

models, the outputs of the synthesis are in the SMD

format, as differences between treatments were estimated

within the modelling1.

While SMDs may be useful for detecting differences

between interventions, they are of limited value to deci-

sion making as these cannot directly inform estimates of

absolute effect or CE modelling, unless they are first

transformed [20]. These considerations motivated the sec-

ond synthesis approach used, which involved translating

(or ‘mapping’) the available patient-reported outcome data

from the trials into EuroQol five-dimension (EQ-5D)

index values [66]. The EQ-5D is a popular preference-

based generic health-related quality of life (HRQoL) mea-

sure, typically employed to weight life years gained and

thus derive quality-adjusted life-years (QALYs) for use

in CE analysis [67]. The EQ-5D preference score was the

second outcome explored. Due to its importance in

supporting health system decision making processes, the

EQ-5D preference score, used in CE analysis, has applica-

tions in many jurisdictions worldwide, including the UK

[68]. The conventional EQ-5D questionnaire includes five

domains, each of which can be at one of three severity

levels. Using an algorithm, responses to this questionnaire

can be transformed to a numeric value that reflects the

preferences of the public for different heath states (here

we used values from the UK general public [69]). Values

range from −0.594 to 1 (the bounds represent, respec-

tively, the worst imaginable health state and full health,

with zero relating to death).

Only a small number of trials (n = 2) in the dataset

directly provided EQ-5D data [36, 56]. Where such data

were not available it was predicted using other generic

and disease specific measures2 (Table 1) through pub-

lished mapping algorithms. In 50 % (n = 14) of the trials,

well established published algorithms were used to map

from Short Form (SF)-36 dimensions and SF-12 summary

scores to EQ-5D3 [58, 70, 71]. In 10 of the 28 trials, pub-

lished algorithms which map VAS pain scores [72] and

WOMAC scores [73] to EQ-5D were used4. For one trial,

a double mapping approach was necessary as, to our

knowledge, no direct mapping algorithm exists to obtain

EQ-5D values from Constant Murley Score (CMS). Thus,

an unpublished mapping algorithm (a report describing

the derivation of the mapping algorithm is available on

request from Kamran Khan: K.A.Khan@warwick.ac.uk

[74]) was used to derive VAS pain estimates from CMS,

which were then used to obtain individual-level EQ-5D

predictions using the Maund et al. [72] algorithm.

For the majority of mapping models used, the propor-

tion of total variation explained (quantified by the coeffi-

cient of determination, R2, in most cases) was low. To

account for this additional source of uncertainty, an

additional variance component was included5 [75]. This

was achieved by adding to each individual-level EQ-5D

prediction a draw from a normal distribution with mean

zero and variance equal to the study-specific residual

variance, that is, Var dEQ5D
h i

⋅ 1−R2
� �

, where dEQ5D is the pre-

dicted (mapped) EQ-5D at individual-level.

HRQoL and standardised pain estimates were obtained

at baseline and at the follow-up period closest to 3 months

following the start of treatment, as 3 months is the typical

end of treatment measurement, though not necessarily the

trial’s primary end-point. Changes from baseline were ob-

tained by calculating the difference between values for these

two time points. Missing data in the ATC dataset (9.3 %

(n = 1,622) and 15.5 % (n = 2,716) of the total number of

patients in the standardised pain and HRQoL outcome,

respectively) was assumed to be missing at random (MAR)

and a complete-case analysis was conducted.

Additional file 1: Table A1 presents the standardised

pain outcome and (mapped/predicted) EQ-5D data. For

both outcome measures baseline imbalance can be ob-

served in some trials. The source of this imbalance is not

clear, but should be addressed in the synthesis [76, 77].
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Table 1 Main characteristics of the data and study outcomes used for analysis

ID Study 1st author, year Location Pain group (type) Age – mean
(SD)

Trial follow-up period /
Time point used in the
analysis (months)

Treatment Obser-vations HRQoL outcome
mapped

Pain outcome
standardised

1 Diener 2006 [46] Germany Headache (migraine) 37.62 (10.4) 6 / 3 Usual care 328 SF-12 Migraine days

Sham acupuncture 202

Acupuncture 305

2 Endres 2007 [47] Germany Headache (TTH) 38.44 (11.77) 6 / 3 Sham acupuncture 200 SF-12 TTH days

Acupuncture 209

3 Jena 2008 [48] Germany Headache (headache) 43.66 (12.69) 6 / 3 Usual care 1613 SF-36 Headache days

Acupuncture 1569

4 Linde 2005 [44] Germany Headache (migraine) 42.55 (11.35) 6 / 3 Usual care 76 SF-36 Days of moderate
to severe pain

Sham acupuncture 81

Acupuncture 145

5 Melchart 2005 [45] Germany Headache (TTH) 42.68 (13.18) 6 / 3 Usual care 75 SF-36 Headache days

Sham acupuncture 62

Acupuncture 132

6 Vickers 2004 [43] UK Headache (headache) 46.34 (10.39) 12 / 3 Usual care 161 SF-36 Severity score

Acupuncture 140

7 Brinkhaus 2006 [55] Germany Musculoske-letal (low back) 58.81 (9.13) 12 / 2 Usual care 79 SF-36 VAS pain score

Sham acupuncture 73

Acupuncture 146

8 Carlsson 2001 [50] Sweden Musculoske-letal (low back) 49.84 (15.4) 6 / 3 Sham acupuncture 16 VAS pain VAS pain score

Acupuncture 34

9 Guerra 2004 [53] Spain Musculoske-letal (shoulder) 59.19 (11.37) 6 / 3 Sham acupuncture 65 VAS pain VAS pain score

Acupuncture 65

10 Haake 2007 [61] Germany Musculoske-letal (low back) 50.15 (14.68) 6 / 3 Usual care 388 SF-12 Von Korff pain
intensity score

Sham acupuncture 387

Acupuncture 387

11 Irnich 2001 [51] Germany Musculoske-letal (neck) NA 3 / 3 Sham acupuncture 61 VAS pain VAS pain score

Acupuncture 56

12 Kennedy 2008 [62] Northern Ireland Musculoske-letal (low back) 45.58 (11.1) 3 / 3 Sham acupuncture 24 VAS pain Roland Morris
disability score

Acupuncture 24

13 Kerr 2003 [52] Northern Ireland Musculoske-letal (low back) NA 6 / 1 Sham acupuncture 20 VAS pain VAS pain score

Acupuncture 26

14 Kleinhenz 1999 [49] Germany Musculoske-letal (shoulder) NA 3 / 1 Sham acupuncture 27 CMS and predicted
VAS pain

CMS

Acupuncture 25
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Table 1 Main characteristics of the data and study outcomes used for analysis (Continued)

15 Salter 2006 [56] UK Musculoske-letal (neck) 47.71 (16.51) 3 / 3 Usual care 14 no mapping – EQ-5D
available

Northwick Park
pain score

Acupuncture 10

16 Thomas 2006 [58] UK Musculoske-letal (neck) 42.62 (10.71) 24 / 3 Usual care 80 no mapping – EQ-5D
available

SF-36 bodily pain score

Acupuncture 159

17 Vas 2006 [57] Spain Musculoske-letal (neck) 46.73 (13.2) 6 / 1 Sham acupuncture 62 SF-36 VAS pain score

Acupuncture 61

18 Vas 2008 [63] Spain Musculoske-letal (shoulder) 55.68 (11.37) 12 / 3 Sham acupuncture 220 VAS pain CMS

Acupuncture 205

19 White 2004 [54] UK Musculoske-letal (neck) 53.36 (15.61) 12 / 3 Sham acupuncture 65 VAS pain VAS pain score

Acupuncture 70

20 Witt 2006 [59] Germany Musculoske-letal (neck) 50.57 (12.93) 6 / 3 Usual care 1698 SF-36 Neck pain and
disability score

Acupuncture 1753

21 Witt 2006 [60] Germany Musculoske-letal (low back) 52.83 (13.33) 6 / 3 Usual care 1390 SF-36 Hanover functional
ability score

Acupuncture 1451

22 Foster 2007 [41] UK Osteoarthritis of the knee 63.23 (8.81) 12 / 1 Usual care 116 VAS pain WOMAC pain score

Sham acupuncture 119

Acupuncture 117

23 Berman 2004 [36] USA Osteoarthritis of the knee 65.46 (8.62) 6 / 2 Usual care 189 no mapping – EQ-5D
available

WOMAC pain score

Sham acupuncture 191

Acupuncture 190

24 Scharf 2006 [39] Germany Osteoarthritis of the knee 62.81 (10.07) 6 / 3 Usual care 316 SF-12 WOMAC total score

Sham acupuncture 365

Acupuncture 326

25 Vas 2004 [37] Spain Osteoarthritis of the knee 67.04 (10.09) 3 / 3 Sham acupuncture 49 WOMAC total WOMAC total score

Acupuncture 48

26 Williamson 2007 [42] UK Osteoarthritis of the knee 70.67 (8.94) 3 / 3 Usual care 61 WOMAC total Oxford knee score

Acupuncture 60

27 Witt 2005 [38] Germany Osteoarthritis of the knee 64.01 (6.49) 12 / 2 Usual care 70 SF-36 WOMAC total score

Sham acupuncture 75

Acupuncture 149

28 Witt 2006 [40] Germany Osteoarthritis of the knee 61.2 (10.39) 6 / 3 Usual care 310 SF-36 WOMAC total score

Acupuncture 322
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Methods

Statistical models for the data

All analyses were conducted using Bayesian methods. A

contrast-based modelling approach is taken throughout

featuring relative treatment effects, in line with the param-

eterisation used by Lu and Ades [78], Saramago et al. [10]

and others. A one-step modelling approach, where the

likelihood for data at the IPD level and that of parameter

estimates were described simultaneously, was preferred

because we intended to explore treatment-by-covariate

interactions at the patient-level [7, 79]. Note that all

four models described below include pain type inter-

actions which are specific to the current case-study.

Table 2 summarises the key characteristics of the four

models implemented, highlighting existing differences

across these.

ANCOVA analysis (model 1)

The main modelling approach considered (model 1) is a

variation of the ANCOVA approach that models the

change score adjusting for baseline outcome values and

with no stratification variables [19, 22, 80, 81] – such an

approach is seen as equivalent to the existing ANCOVA

approach.

The model considers a set of J studies for which IPD

was available. The set of treatments included in these

trials are labelled [A,B,C], where A is the reference treat-

ment and there are K (=3) treatments in total. At baseline,

patient i in study j allocated to treatment k provides a

baseline measurement Yijk0 (where 0 indicates time t at

baseline). Each patient provides a follow-up measurement

(the assessment closest to 3 months), Yijk3. The change

from baseline (Yijk3 − Yijk0) is denoted ΔYijk and is assumed

normally distributed with mean θijk and study-level vari-

ance of Vj.

θijk, is assumed to be a function of μjb, the outcome for

treatment b (the lowest indexed treatment in each study)

in study j for a patient with a baseline utility of 0,Yijk0; δjbk,

the study-specific treatment effect for treatment k relative

to treatment b; and Xjp, p - 1 dummy variables represent-

ing pain type p in the jth study. The latter terms were in-

cluded to allow treatment effects to vary according to pain

type (i.e. OAK; headache - including TTH and migraine;

and musculoskeletal conditions - including lower back,

shoulder and neck pain). There are different ways in

which interaction effects can be specified in NMAs [82].

For this example we assumed that pain treatment inter-

action effects, βbkp, were different for each treatment but

exchangeable across treatments. Estimates of βbkp were

Fig. 1 Network of RCTs. Legend: In the network, a unique treatment category is indicated by a circle. Arrows between circles indicate that these

treatments have been compared in a trial (trials are identified using ‘[]’, numbered according to column ‘ID’ in Table 1. (Pain groups: H – Headache/

migraine; MSK – Musculoskeletal; OAK – Osteoarthritis of the knee)

Table 2 Summary of key characteristics of implemented models

Model 1 Model 2 Model 3 Model 4

Outcome type Continuous Continuous Continuous Continuous

Outcome synthesised Change from baseline Change from baseline Change from baseline Final score

Approach ANCOVA
(baseline adjustment)

ANCOVA
(baseline adjustment)

No baseline adjustment No baseline adjustment

Pain interactions
(case-study specific)

Yes Yes Yes Yes

Further adjustments None Patients characteristics as
treatment-effect modifiers

None None
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therefore assumed to be drawn from a random distribu-

tion with a common mean (Bp) and between treatment

variance (σBp
2 ). An exchangeable interaction approach for

pain was thought to be the most appropriate as it allowed

pain interactions to be different across treatments but

related. Pain interaction effects were not included for

OAK as this is used as the reference pain indication. Pain

interaction terms were specific to the current application

and may be excluded if not of interest. However, we

emphasise that adjustment for baseline should always be

included regardless of the need to model interactions.

A random treatment effect approach was taken due to

the expected between-study heterogeneity, the variance

of which is described as σ2.

This model can be written as:

ΔY ijk ∼N θijk ;V j

� �

θijk ¼ f μjb þ β0jY ijk0 if k ¼ b; b∈ A; B; C;…f g

μjb þ β0jY ijk0 þ δ jbk þ βbkpX jp if k > b

δjbk∼N dbk ; σ
2

� �
∼N dAk−dAb; σ

2
� �

βbkp ¼ βAkp−βAbp βAkp∼N Bp; σ
2
Bp

� �
dAA; βAAp ¼ 0

ð1Þ

Prior distributions were defined independently as follows:

1/Vj ∼Gamma (0.001, 0.001); μjb ∼N(0, 10
6); βoj~N(0, 106);

dAk ∼N(0, 10
6); σ ∼Unif(0, 2); Bp ∼N(0, 10

6); σBp ∼Unif(0, 2).

Correlations in the random effects from trials with three or

more arms were accounted for using publishedmethodology

[3, 64]. In this paper, k > b indicates that k is after b in the

alphabet.

Controlling for treatment effect modifying patient-level

characteristics (model 2)

For the EQ-5D endpoint, model 1 was extended to include

patient-level covariates as potential treatment effect modi-

fiers. Clinical expectations were that older age or higher

body max index (BMI) may make patients more difficult

to treat and, thus, potentially reduce the effect of treat-

ment. Data on age were available from most studies and it

was included as a covariate (centred) in the synthesis

model. Again, a range of approaches can be used to in-

corporate treatment-effect interactions. In this analysis we

assumed a common effect across pain types and for both

acupuncture and sham acupuncture (i.e. a single inter-

action term is assumed to apply to all comparisons with

usual care) [82] as this was deemed more clinically plaus-

ible. A non-linear effect of age was expected a priori, and

thus squared terms were included for both main effects

and treatment interaction effects. BMI data were only

available in 10 of the 28 studies and for this reason we did

not explore this variable further.

Model 2 thus differs from model 1 in that it considers

the effects of the covariate Z (age). Differences to model

1 are shown below:

θijk ¼ f μjb þ β0jY ijk0 þ ϕ0Zijk þ φ0Zijk
2

if k ¼ b; b∈ A;B;C;…f g

μjb þ β0jY ijk0 þ ϕ0Zijk þ φ0Zijk
2 þ δjbk

þβbkpX jp if k > b and b≠A

μjb þ β0jY ijk0 þ ϕ0Zijk þ φ0Zijk
2 þ ϕZijk þ φZijk

2
þ δjbk

þβbkpX jp if k > b and b ¼ AZijk eN m; σ2Z
� �

ð2Þ

Coefficients on the main covariate effect and the effect

squared are represented by ϕ0 and φ0. Coefficients on the

treatment-by-covariate interaction term and the inter-

action between treatment and the squared covariate term

are represented by ϕ and φ. No interaction term for com-

parisons of k and b were included when b ≠A because the

common regression coefficient cancels out.

Due to the possibility of missing covariate information

for some individuals in some studies, Zijk was assumed

to be a normally distributed random variable with

mean m and variance σZ
2 , common across all IPD studies.

This represents a Markov chain Monte Carlo (MCMC)

multiple imputation technique which generates indepen-

dent draws of the missing data from its predictive distri-

bution assuming MAR covariate data. Additional priors

were required for this model: ϕ0, ϕ, φ0, φ ∼N(0, 10
6);

m ∼Unif(−50, 50), σz ~Unif(0, 30)

Analysis with restricted evidence (model 3 and 4)

Although model 1 is the preferred choice, this model

would not be feasible in the absence of outcome informa-

tion at the individual-level for both baseline and follow-up

time points. Sub-optimal models which do not rely on

the availability of IPD were therefore run for comparison

purposes. Three options are typically available to the ana-

lyst when only AD are available [22] – i) in the event of

ANCOVA estimates being available, synthesise these using

published literature [22]; or ii) model the change score

without baseline adjustment (model 3); or iii) model the

final outcome score without baseline adjustment (model

4). We note that – though suboptimal - model 3 has also

been presented in the context of an NMA of continuous

outcomes when IPD were available [15, 16].

Models 3 and 4 are simplifications of model 1 where the

baseline outcome variable is omitted and where model 4

considers the final score, rather than the change score, as

dependent variable. The synthesis of data using models that

ignore baseline outcomes may provide biased treatment

effect estimates because of potential baseline imbalances

(unless addressed within trials themselves) and due to

ignoring potential correlation between the change/final

score and the baseline value [77, 83]. It may also reduce
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the precision of treatment effect estimates, even if balance

at baseline is observed across all synthesised evidence [22].

Calculating the residual deviance

The total residual deviance, TRD – a measure of model fit

- can be estimated for each of the described models by

summing study-level residual deviances, RD. Study-level

RDs are the ratio of the sum across studies of the squared

differences between the observed changes from baseline,

ΔYijk, and the estimated mean, θijk, divided by the study-

level variance,Vj [84]:

Dijk ¼ ΔY ijk−θijk
� �2

RDj ¼ sum Dj

� �
=V jTRD

¼ sum RDð Þ ð3Þ

For a model that fits the data well, it is assumed that

the contributions to the RD to have a chi-squared distri-

bution with N degrees of freedom if a sum over N

unconstrained data points is made. On this basis, it is

expected that the posterior mean of the TRD should be

close to the number of unconstrained data points if the

model predictions are a good fit to the data [20, 84, 85].

Model selection and implementation

Data management was performed in the freely available

software package R version 3.0.0 (Copyright © 2013 The

R Foundation for Statistical Computing [86]). The NMA

analyses were undertaken in WinBUGs [87] version

1.4.3 (Copyright © 2008 Medical Research Council (UK)

and Imperial College (UK)), linked to the R software

through the packages R2WinBUGS [88] and CodaPkg

[89]. Annotated code, sample data and initial values for

model 1 are provided in the Additional file 2 to allow

readers to adapt it for their own purposes.

In all models the MCMC Gibbs sampler was initially

run for 10,000 iterations and these were discarded as

‘burn-in’. Models were run for a further 5,000 iterations,

on which inferences were based. Chain convergence was

checked using autocorrelation and Brooks-Gelman-Rubin

diagram [90, 91] diagnostics. Goodness of fit was assessed

using the deviance information criterion (DIC) and TRD

[84]. Results are presented as EQ-5D preference scores

and SMD treatment effect estimates (and associated 95 %

credibility intervals, CrIs) and also using the probability of

treatment being the ‘best’ treatment in terms of being the

most clinically effective [4].

Results

ANCOVA analysis results (model 1)

Table 2 and Fig. 2 show the evidence from model 1 on

relative treatment effect estimates adjusted for baseline

and treatment-by-pain interaction effects (medians of

the MCMC posterior samples and 95 % CrI shown).

Measures of model fit (TRD and DIC) are also shown.

The reference category for the pain interaction effects is

the OAK pain type.

For both endpoints, model 1 indicates that acupuncture

treatment increases the HRQoL of patients and/or re-

duces pain more than usual care and sham acupuncture

treatments, irrespective of pain group. For the EQ-5D

endpoint the treatment effect of acupuncture vs. usual

care in the OAK population is 0.079 (median, 95 % CrI:

0.042 to 0.114), for headache/migraine and musculoske-

letal pain patients the comparable treatment effects are

0.056 (median, 95 % CrI: 0.021 to 0.092) and 0.082

(median, 95 % CrI: 0.047 to 0.116), respectively. The

results also favour acupuncture over sham acupuncture,

although with a greater degree of uncertainty, as reflected

by the fact that CrIs include zero for all pain types (OAK:

0.022, 95 % CrI −0.014 to 0.060; headache/migraine:

0.004, 95 % CrI −0.035 to 0.042; and musculoskeletal

0.023, 95 % CrI −0.008 to 0.053). The probability that

acupuncture is the best treatment at improving HRQoL is

0.89 for OAK, 0.64 for headache/migraine and 0.95 for

musculoskeletal pain.

Results for the SMD endpoint followed a similar pattern.

However, in contrast to the EQ-5D analysis, in the latter

comparison the CrIs do not include zero in the standar-

dised pain analysis for OAK (0.438, 95 % CrI 0.121 to

0.715) and musculoskeletal (0.527, 95 % CrI 0.323 to 0.735)

pain types, though they do for headache/migraine (0.256,

95 % CrI −0.073 to 0.560). The probability that acupuncture

is the best treatment at improving standardised pain is 0.96

to 1.00 depending on pain type.

It is interesting to note that sham acupuncture vs.

usual care treatment effect 95 % CrIs across pain types

do not include 0 in the EQ-5D endpoint but they do for

SMD, except for the headache/migraine group. These

results suggest that sham acupuncture effects may well

go beyond pain. Also interesting is the estimated magni-

tude of the uncertainty over the pain type interactions

(not reported) as these, particularly for the EQ-5D

endpoint, do not provide strong evidence of a difference

between pain types.

Expectations were that some level of heterogeneity

existed between-trials. Possibly as a consequence of the

mapping work performed, this expectation was not ful-

filled for the EQ-5D endpoint (the between-study variance

estimate is 0.001). For the SMD endpoint the between

study variance was also small relative to the magnitude of

the treatment effects (the between-study variance estimate

is 0.09). The TRD suggests that the models provide an

adequate fit to the data (see Table 3).

Controlling for patient-level characteristics (model 2)

Table 1 provides information on age for each of the trials

included in the dataset. The average age was lower in the
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Fig. 2 Forest plot showing network meta-analysis results for standardised pain and EQ-5D outcomes

Table 3 IPD NMA ANCOVA synthesis model results (model 1), EQ-5D preference score and standardised pain endpoints

IPD NMA ANCOVA results: EQ-5D preference score and SMD endpointsa Model 1, ANCOVA, change in outcome score, adjusted for
baseline median MCMC posterior sample (95 % CrI)

Change EQ-5D Change standardised pain

Relative treatment effects Osteoarthritis of the knee SHAM vs UC 0.057 (0.013, 0.095) 0.271 (-0.007, 0.537)

ACU vs UC 0.079 (0.042, 0.114) 0.703 (0.399, 0.984)

ACU vs SHAM 0.022 (-0.014, 0.060) 0.438 (0.121, 0.715)

Headache SHAM vs UC 0.052 (0.010, 0.095) 0.332 (0.022, 0.669)

ACU vs UC 0.056 (0.021, 0.092) 0.588 (0.311, 0.869)

ACU vs SHAM 0.004 (-0.035, 0.042) 0.256 (-0.073, 0.560)

Musculoskeletal SHAM vs UC 0.059 (0.017, 0.101) 0.063 (-0.241, 0.378)

ACU vs UC 0.082 (0.047, 0.116) 0.588 (0.334, 0.863)

ACU vs SHAM 0.023 (-0.008, 0.053) 0.527 (0.323, 0.735)

Between-study variance 0.001 (0, 0.003) 0.090 (0.049, 0.170)

Total residual devianceb 15,850 (15,480; 16, 230) 17,060 (16,660; 17,450)

Deviance information criterionc -6,420.4 37,394.2

aUC usual care, SHAM sham acupuncture, ACU acupuncture, Headache group headache, migraine and TTH, Musculoskeletal group neck, shoulder and low back pain
bFor the EQ-5D endpoint models used approx. 14800 observations; for the SMD endpoint models used approx. 15900. Models should be preferred when total

residual deviance mean posterior is close to the actual number of data points
cDeviance information criterion (DIC) is a statistical measure of model fit and model comparison. Models with smaller DIC are preferred
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headache/migraine pain group than in the musculoskeletal

group, which in turn was lower than the OAK group.

Using the change in EQ-5D as the outcome for syn-

thesis, Table 4 presents the results of applying model 2

(an extension of model 1) to include patient-level infor-

mation on age – with age considered as a potential treat-

ment effect modifier. The model fit statistics show that

the adjusted by age model is marginally better than model

1, providing lower DIC statistics and reduced posterior

RD. The results are very similar to model 1 and do not

suggest age is a strong effect modifier or that non-linear

effects of age on the effect of treatments are present.

Analysis with restricted evidence (model 3 and 4)

Models 3 and 4 model the change score and the final out-

come score, respectively. These are seen as simplifications

of model 1 where no baseline adjustment is done. Results

for models 3 and 4 are presented in Table 5, together with

model 1 results for comparison. Generally, all three models

convey the same message in relation to which treatment

provides higher increases in patients’ HRQoL; that is,

acupuncture is found to be better than sham and usual care

treatments. As expected, models 3 and 4 (model 3 in

particular) provide different summary results of treatment

effects when compared to model 1. Compared with the

ANCOVA model (model 1), model 3, the change score

approach, generally inflates the summary treatment effects

across pain types, with potential losses in precision (e.g. for

OAK the median EQ-5D treatment effect is inflated 19 %

in model 3 compared to model 1 for the acupuncture vs

usual care comparison). Compared to model 1, model 4

summary treatment effects are generally similar or lower;

CrIs are however consistently wider in model 4 compared

to model 1.

Discussion
This study presents methods for conducting NMA of

IPD on continuous outcomes, building on previous work

on ANCOVA models for pairwise meta-analysis [22].

IPD availability avoided the use of non-baseline-adjusted

models, allowing for ANCOVA models to be applied,

thus improving precision of treatment effect estimates

while adjusting for baseline imbalance [22]. Our results

generalise the findings from Riley et al. [22] to the NMA

setting and reinforce the idea that different approaches

to the synthesis of continuous outcomes will produce

different results. The ANCOVA approach is advocated

to be the most appropriate modelling approach. Due to

limited reporting of ANCOVA results in trial publica-

tions, IPD will typically be required to facilitate imple-

mentation of the ANCOVA NMA approach. The

appropriate analysis of continuous endpoints therefore

provides a further rationale for obtaining access to IPD,

in addition to those well documented in the NMA litera-

ture [10, 12, 15, 92].

Recent work by Hong et al. [15] and Thom et al. [16]

presented and discussed IPD NMA models for continu-

ous outcomes. While Hong and colleagues [15] intro-

duced contrast-based and arm-based models for

multiple outcomes, Thom et al. [16] synthesised AD and

IPD, some of which was observational rather than RCT

data. They also considered interactions between treat-

ment effects and covariates. The existence of ecological

bias was explored in Hong et al. [15] by partitioning

within- and across-study interactions [10]. Both publica-

tions used the change from baseline as their continuous

outcome measure. In both publications models were

presented that did not incorporate an adjustment for

baseline outcome values, and in Hong et al. [15] adjust-

ment for baseline outcome values was only considered

in the context of modelling baseline outcomes as a treat-

ment effect modifier. Thom et al. [16] recognised that

the approach taken was not the recommended one, but

noted that an ANCOVA-type approach was not possible

Table 4 IPD NMA ANCOVA synthesis model (model 2) results

with adjustments, EQ-5D preference endpoint

IPD NMA results:
EQ-5D preference
scores endpointa

Model 2, ANCOVA, with
adjustment for baseline
score, age and
treatment-by-age
interactions, median
MCMC posterior sample
(95 % CrI)

Relative
treatment
effects

Osteoarthritis
of the knee

SHAM vs UC 0.040 (-0.006, 0.084)

ACU vs UC 0.066 (0.025, 0.105)

ACU vs SHAM 0.026 (-0.012, 0.066)

Headache SHAM vs UC 0.056 (0.012, 0.098)

ACU vs UC 0.060 (0.023, 0.095)

ACU vs SHAM 0.004 (-0.036, 0.043)

Musculoskeletal SHAM vs UC 0.045 (-0.001, 0.094)

ACU vs UC 0.074 (0.038, 0.109)

ACU vs SHAM 0.029 (-0.009, 0.067)

Main effects Age -0.002 (-0.002, -0.001)

Age2 0.000 (0.000, 0.000)

Age common
interactions

Age 0.000 (0.000, 0.001)

Age2 0.000 (0.000, 0.000)

Between-study
variance

0.001 (0.000,0.003)

Total residual
devianceb

15,590 (15,210; 15,970)

Deviance information
criterionc

-6,462.0

aUC usual care, SHAM sham acupuncture, ACU acupuncture, Headache group

headache, migraine and TTH, Musculoskeletal group neck, shoulder and low

back pain
bCompare to approx. 14, 800 observations
cDeviance information criterion (DIC) is a statistical measure of model fit and

model comparison. Models should be preferred with smaller DIC
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as, for most studies in their motivating example, only AD

was accessible to them. Our work emphasises that where

IPD is available, all models of continuous outcomes

should include adjustment for the baseline outcome, and

unadjusted models should not be presented.

Analyses in this paper were conducted to explore the

implications of using non-ANCOVA models in a NMA

framework, as other methods have been used in the litera-

ture [15] to analyse continuous outcome IPD, and these

methods are often necessary in the absence of IPD. The re-

sults showed some differences with the ANCOVA results.

Modelling final scores or change scores without baseline

adjustment produced estimates of treatment effect which

differed by up to 19 % compared to the baseline adjusted

model. By explicitly accounting for correlation between the

change score and the baseline score in the presence of

baseline imbalance, the tested ANCOVA model (model 1)

avoids bias in the pooled treatment effect estimates. These

results emphasise how important it is to adjust for baseline

to adequately synthesise evidence in this setting; tasks very

much facilitated with the availability of IPD. We hope that

by highlighting the consequence of using suboptimal

model(s) may encourage readers to obtain IPD so that the

most appropriate methods may be implemented. When

IPD is available ANCOVA should always be used. There

has been a discussion in the literature about the fact that

final or change score analyses may ‘bound’ the true relative

effect estimate. Although this may be true for a single trial,

it may not hold for NMA models [18]. This emphasises

the importance of conducting appropriate analyses as the

potential direction of bias is difficult to predict. Any bias

in treatment effect or impact on precision could lead to

inappropriate decisions regarding adoption and further

research.

The motivating example related to the effectiveness of

acupuncture for the treatment of chronic pain. The ana-

lyses found acupuncture to be more effective than usual

care with respect to reducing pain and improving EQ-5D

preference scores in patients with chronic pain of OAK,

musculoskeletal and headache/migraine origin. The bene-

fits of acupuncture over sham acupuncture are smaller

than when compared to usual care. The methods used

provided outputs in a format that can be used to directly

inform CE considerations once the full set of relevant

comparators are considered.

A recent study by Vickers et al. [35] also explored the

effectiveness of acupuncture for chronic pain. This study

performed an IPD pair-wise meta-analysis using the same

data plus data from an additional trial [93] – data which,

due to lack of consent, was not available to be used in the

current analysis. Using study-specific primary outcome

measures and the ANCOVA methodology, the Vickers et

al. [35] study conducted meta-analyses separately for com-

parisons of acupuncture with sham acupuncture and usual

care, and within each pain type. Despite the methodo-

logical differences, and differences for some trials in

choice of primary outcome measure and/or primary end

point, the authors’ findings are similar.

The instruments used to measure health outcomes

differed between trials. Standardisation and mapping

Table 5 IPD NMA results for models (1), (3) and (4), EQ-5D preference score endpoint

IPD NMA results: EQ-5D
preference scores endpointa

Model 1, ANCOVA, change in
EQ-5D scores, adjusted for
baseline

Model 3, change in EQ-5D
scores, without baseline
adjustment

Model 4, follow-up EQ-5D
score, without baseline
adjustment

Median MCMC posterior
sample (95 % CrI)

Median MCMC posterior
sample (95 % CrI)

Median MCMC posterior
sample (95 % CrI)

Relative treatment
effects

Osteoarthritis of the knee SHAM vs UC 0.057 (0.013, 0.095) 0.077 (0.033, 0.118) 0.051 (0.008, 0.094)

ACU vs UC 0.079 (0.042, 0.114) 0.093 (0.054, 0.129) 0.074 (0.035, 0.113)

ACU vs SHAM 0.022 (-0.014, 0.060) 0.016 (-0.022, 0.054) 0.023 (-0.014, 0.065)

Headache SHAM vs UC 0.052 (0.010, 0.095) 0.044 (0.002, 0.086) 0.052 (0.007, 0.098)

ACU vs UC 0.056 (0.021, 0.092) 0.057 (0.023, 0.090) 0.054 (0.016, 0.092)

ACU vs SHAM 0.004 (-0.035, 0.042) 0.013 (-0.025, 0.051) 0.002 (-0.038, 0.040)

Musculoskeletal SHAM vs UC 0.059 (0.017, 0.101) 0.062 (0.019, 0.104) 0.054 (0.010, 0.099)

ACU vs UC 0.082 (0.047, 0.116) 0.084 (0.048, 0.119) 0.080 (0.044, 0.118)

ACU vs SHAM 0.023 (-0.008, 0.053) 0.022 (-0.011, 0.055) 0.026 (-0.006, 0.056)

Between-study variance 0.001 (0, 0.003) 0.001 (0, 0.003) 0.001 (0, 0.003)

Total residual devianceb 15,850 (15,480; 16,230) 16,990 (16,570; 17,420) 15,370 (15,010; 15,730)

Deviance information criterionc -6,420.4 -69.9 -3,823.7

aUC usual care, SHAM sham acupuncture, ACU acupuncture, Headache group headache, migraine and TTH, Musculoskeletal group neck, shoulder and low back pain,

OAK osteoarthritis of the knee
bCompare to approx. 14,800 observations
cDeviance information criterion (DIC) is a statistical measure of model fit and model comparison. Models should be preferred with smaller DIC
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approaches were used to derive, pain-related outcomes

and EQ-5D, respectively. Analysis of the pain outcome

required development of methods for conducting stan-

dardised mean difference analysis with IPD. Analysis of

the EQ-5D data required an extensive mapping exercise

whereby separate mapping functions were applied to

each study, with choice of mapping dependent on the

available outcome data. Access to IPD in this context

also avoided the use of any assumptions regarding the

distribution of HRQoL instrument scores – thus allow-

ing the observed distributions to be adequately reflected

in the mapped EQ-5D estimates.

This study has a number of limitations. The applicability

of these methods is conditional on the access to IPD. If

IPD is not available or is partially available, other methods

need to be used and limitations stressed. Often a mixture

of IPD and AD is available – anecdotally a 50 % success

rate of obtaining IPD is attained in the academic world,

lower success rates may be achieved elsewhere, where it is

common to have, for instance, only a company’s own RCT

data and not that for competitor interventions. In the

context of continuous outcomes the advantages of access

to IPD are significant and efforts to share data should be

pursued. As access to IPD for all studies in all NMAs is

likely to be unrealistic in the medium-term, it would be

useful to have available a methodology which had the

advantages of the ANCOVA approach but could be used

when only some (or even no) studies in the database were

available in IPD form.

Additionally there are a series of limitations related to

the case study. Firstly, the synthesis of heterogeneous out-

comes relied on imperfect standardisation processes

(which assume that any differences in within trial outcome

variability are due to the use of different instruments) and

mappings which are typically able to explain only a mino-

rity of variation in EQ-5D. The availability of key out-

comes across trials would have reduced these concerns, as

would the collection of generic preference based measures

of HRQoL in all trials. Also, the outcome data closest to

3 months were selected for synthesis. For some trials, the

nearest reported outcome data were at only months 1 or

2. If the effect of acupuncture increases gradually, these

effects may underestimate 3 month outcomes. Further-

more, some of the trials show increased benefits of acu-

puncture over comparators at 12 [94] and 24 months [95]

compared to 3 months. This evidence may be an indica-

tion of the long-term clinical benefits of acupuncture and

has implications for estimating long-term HRQoL and

CE. Collection of trial data for more than 3 months is

therefore warranted together with further work analysing

repeated outcome measurements in a NMA to evaluate

the importance of these effects.

A complete-case analysis was conducted. This approach

to missing data has been thoroughly documented in the

methods literature as not being optimal as it can lead to

bias if observations with missing values systematically

differ from the complete cases and may inflate standard

errors due to the reduction in sample size. Some recent

work has been done in this area [96], although it does not

consider the case where IPD is available. Finally, another

potential issue for future exploration is that the impact

of each pain condition on treatment effects was assumed

to be exchangeable [82]; this assumption could be ex-

plored further by comparing different assumptions over

the inclusion of the interaction effects, or even with the in-

clusion of no interaction effects. In summary, a worthwhile

extension to this work would be to develop a multivariate

ANCOVA modelling framework considering both multiple

endpoints and time points, missing data and which enables

relevant aggregate data to be included, building on recent

work [15, 97–101].

Conclusion
In conclusion, this paper has reiterated the importance of

accessing and analysing IPD and presented methods to fully

exploit the benefits of access to this data in the context of

continuous outcomes. Methods for conducting ANCOVA

IPD NMA of continuous outcomes are presented and dis-

cussed. The methods developed are applicable to contexts

in which endpoints are reposted consistently and to con-

texts in which outcome measures differ across trials. Given

the demonstrable benefits of access to IPD, we suggest that

more effort should be made to share and develop reposito-

ries for data in this format [102].

Endnotes
1Considering stx

t as the standardised value of the pain

measurement p made at the time point t in patients under

treatment tx, it can be demonstrated that (Stx1
t1

− Stx1
t0 )

− (Stx0
t1

− Stx0
t0 ) = (Stx1

t1
− Stx0

t1 ) − (Stx1
t0

− Stx0
t0 ) = ΔSMD

2The selection of the outcome to be mapped was not

at random. Preference was given to generic preference-

based instruments (i.e. SF-12 and SF-36) and, in its

absence, to condition-specific ones (i.e. WOMAC, VAS

pain and CMS), conditional on the existence of a valid

and published algorithm. WOMAC was used in prefe-

rence to VAS pain and CMS as it covers a broader defi-

nition of HRQoL.
3A random effects generalised least squares algorithm

considering dimensions, dimensions squared and interac-

tions from Rowen et al. [71] was used. A multinomial logit

using PCS and MCS summary scores, summary scores

squared and interaction terms from Gray et al. [70] was

used.
4An OLS including total WOMAC score, total WOMAC

squared, age and gender as covariates from Barton et al.

[73] was used. An OLS including VAS pain and VAS pain

squared as covariates from Maund et al. [72] was used.
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5A mapping process involves additional sources of

uncertainty - the uncertainty in the mapping function

regression coefficients and the structure of the mapping

model. These additional sources of uncertainty are not

accounted for in this analysis.

Additional files

Additional file 1: Provides summary information of mapped EQ-5D and

standardised pain data by study. (DOCX 105 kb)

Additional file 2: Provides WinBUGS modelling code for models 1 and

2 as described in the main text. (DOCX 41 kb)
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