
This is a repository copy of BOUT++:Recent and current developments.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/105679/

Version: Accepted Version

Article:

Dudson, Benjamin Daniel orcid.org/0000-0002-0094-4867, Allen, Andrew Robert, 
Breyiannis, George et al. (12 more authors) (2015) BOUT++:Recent and current 
developments. Journal of Plasma Physics. ISSN 1469-7807 

https://doi.org/10.1017/S0022377814000816

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Under consideration for publication in J. Plasma Phys. 1

BOUT++: Recent and current developments

B. D. Dud s on1†, A. A l l e n1, G. B r ey i a nn i s2, E. B rugg e r3,
J. Bu chanan4, L. E a s y1,4, S. F a r l e y5, I. J o s e ph3, M. K im6,

A. D. McGann1, J. T. Omo t an i4, M. V. Uman sky3,
N. R. Wa l kd en1,4, T. X i a3,7, X. Q. Xu3

1York Plasma Institute, Department of Physics, University of York, Heslington, York, YO10
5DD, UK

2Japan Atomic Energy Agency, Rokkasho Fusion Institute, Rokkasho-mura, 039-3212, Japan
3Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

4CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK
5Mathematics Department, Illinois Institute of Technology, Chicago, IL 60616, USA

6Department of Physics, POSTECH, Pohang, Gyeongbuk 790-784, Korea
7Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

(Received 19 August 2014)

BOUT++ is a 3D nonlinear finite-difference plasma simulation code, capable of solving
quite general systems of Partial Differential Equations (PDEs), but targeted particularly
on studies of the edge region of tokamak plasmas. BOUT++ is publicly available, and
has been adopted by a growing number of researchers worldwide. Here we present im-
provements which have been made to the code since its original release, both in terms of
structure and its capabilities. Some recent applications of these methods are reviewed,
and areas of active development are discussed. We also present algorithms and tools
which have been developed to enable creation of inputs from analytic expressions and
experimental data, and for processing and visualisation of output results. This includes
a new tool Hypnotoad for the creation of meshes from experimental equilibria.
Algorithms have been implemented in BOUT++ to solve a range of linear algebraic

problems encountered in the simulation of reduced Magnetohydrodynamics (MHD) and
gyro-fluid models: A preconditioning scheme is presented which enables the plasma po-
tential to be calculated efficiently using iterative methods supplied by the PETSc library
(the Portable, Extensible Toolkit for Scientific Computation) (Balay et al. 2014), with-
out invoking the Boussinesq approximation. Scaling studies are also performed of a linear
solver used as part of physics-based preconditioning to accelerate the convergence of im-
plicit time-integration schemes.

1. Introduction

The edge region of tokamak plasmas (Wesson 1997; Stangeby 2000) is of crucial im-
portance to their feasibility and economic viability as fusion reactors. It is the interface
between the hot (∼ 1 − 10 keV), fully ionised core required for fusion, and the plasma
facing material surfaces which must remain cool (< 1eV) to avoid excessive damage or
sputtering of impurities, which could contaminate the core plasma. The wide range of
temperatures and hence collisionality regimes; nonlinear plasma dynamics; atomic ionisa-
tion, charge-exchange and recombination processes; impurities; and interaction with ma-
terial surfaces, make modelling the plasma edge challenging. This is further complicated

† Email address for correspondence: benjamin.dudson@york.ac.uk



2 B. D. Dudson et al.

by the magnetic geometry, which is usually arranged into an ’X-point’ configuration, in
which the closed magnetic surfaces of the core are surrounded by open magnetic field-
lines, which transport energy and particles leaving the core away into divertor regions
designed to handle high heat fluxes.
Simulations of the edge of tokamaks which include many of the important atomic and

impurity radiation processes are routinely performed using 1-D (Goswami et al. 2001;
Fundamenski et al. 2001; Nakamura 2011) and 2-D (Rognlien et al. 1992; Schneider et al.
2006; Kawashima et al. 2006) codes. These however cannot correctly predict the plasma
transport across the magnetic field, which is usually anomalous (turbulent) (D’Ippolito
et al. 2011), and for which diffusion (Fick’s law) is a poor approximation (Garcia et al.

2007; Naulin et al. 2007; Gendrih et al. 2012). The need for a first-principles understand-
ing of cross-field transport in the edge region has received increasing attention in recent
years, and several new 3-D codes have been developed to study edge turbulence (Ricci
et al. 2012; Ricci & Rogers 2013; Tamain et al. 2010). As discussed above, the struc-
ture and dynamics of the edge region of tokamaks involves a complicated interaction
between many physical processes, and as a result it is not clear a priori which model
or combination of models is most appropriate. To minimise duplication of effort, there
is a need for a flexible code which can be adapted to solve a range of different models,
and is modular enough that it can be extended in multiple ways by a large group of
users. BOUT++ (Dudson et al. 2009) is an open-source 3D nonlinear finite difference
code which aims to fill that need.
BOUT++ was developed originally to study tokamak edge plasma physics (Dudson

et al. 2009), taking ideas and lessons learned from the earlier BOUT code (Xu et al.

1999, 2000; Umansky et al. 2006; Xu et al. 2008). It is highly modular, operates in gen-
eral curvilinear coordinates and complicated mesh topologies, and can be applied to the
solution of quite general Partial Differential Equations (PDEs) in three dimensions +
time. Recent applications of BOUT++ include the study of plasma transients (Edge Lo-
calised Modes, ELMs) (Zohm 1996; Xu et al. 2010; Xia et al. 2012; Xi et al. 2013), plasma
turbulence (Friedman et al. 2012), and the dynamics of isolated ‘blobs’ in 3D (Angus
et al. 2012b,a; Walkden et al. 2013).

The BOUT++ distribution is publicly available on Github†, and comes with a test
suite and variety of plasma physics models and examples. Some have been used to produce
results published elsewhere (e.g. ELM, turbulence in the LArge Plasma Device (Gekel-
man et al. 1991), and blob models), whilst others can be used as a starting point for
new physics studies. This paper describes the 2.0 release of BOUT++, which was used
as a basis for the 2013 BOUT++ workshop‡: Section 2 briefly describes modifications
to the structure of BOUT++ which have been made to accommodate further develop-
ment; Section 3 describes improvements and new capabilities which have been added
to BOUT++ since its original release (Dudson et al. 2009). Section 4 details the de-
velopment of pre- and post-processing tools for equilibrium input and visualisation. In
section 5 we conclude and discuss future directions for development.

2. Code structure

The BOUT++ development community has expanded significantly following its re-
lease and 2011 workshop, and with that has come the need to adopt more professional
software development practices: Git¶ is used for version control, along with a system of

† BOUT++ public distribution http://github.com/boutproject
‡ BOUT++ workshop 2013: http://bout2013.llnl.gov

¶ Git version control: http://git-scm.com/



BOUT++ developments 3

feature branches adopted from the PETSc development group (Balay et al. 1997) which
is described in detail on the BOUT++ development page‖. An important addition has
been a test suite which can be run quickly before changes are committed, to check that
nothing obvious has been broken. This has greatly simplified the process of checking code,
and has resulted in many bugs being caught before they could affect production code.
The majority of these tests are not physics simulations, as these would take too long to
perform and so discourage regular use. Instead, tests are designed to check individual
components independently for a range of inputs and processor configurations, so that the
cause of a test failure can be quickly identified.

2.1. Factory pattern

To enable BOUT++ to be extended, and new implementations of solvers for boundary
and initial-value problems to be added independently, components have been refactored
and organised along the Factory pattern (Gamma et al. 1995; Knepley 2012), a widely
used method to separate interface from implementation. Each component of BOUT++,
such as file I/O or time integration solver, has a well defined interface (in C++ a base class
with virtual members). Several implementations of this interface can coexist, and the user
code doesn’t depend on which implementation is used. To create a particular instance,
the static member function “create” is called. For example, time-integration schemes
implement the “Solver” interface, so creating a new solver is done by the following:

Solver *s = Solver::create();

so that s is a pointer (hence the *) to a Solver object. Which particular instance of
Solver is created (RK4, PETSc etc.) and assigned to s is set by options stored in a tree
structure, which can be set in the input file or on the command-line. By default the
options section for the Solver class is called “solver”, so to choose the rk4 method on the
command-line the user adds

solver:type=rk4

To allow multiple solvers with different settings to be used simultaneously, the option
section can be passed during creation:

Solver *s = Solver::create(

Options::getRoot()->getSection("mysolver")

);

The Options tree works in a similar manner to a file system: Options::getRoot() returns
a pointer to the root (lowest level) of the options tree structure, analogous to the root “/”
directory of a Unix file system; getSection() traverses the tree by returning pointers to
sub-trees, and is analogous to changing to a sub-directory using “cd mysolver”. By passing
this sub-tree to Solver::create(), the result is that options for this solver will be taken
from the “mysolver” section of the options tree, and can be changed independently.

This pattern enables users to experiment with different numerical methods with mini-
mal changes to the program inputs. As new capabilities are added to BOUT++, such as
new PDE and ODE solvers, existing models can take advantage of them without needing
to modify any code, only the input settings. To the extent possible, this separation of

‖ BOUT++ development model http://boutproject.github.io/devel.html



4 B. D. Dudson et al.

interface and implementation reduces the number of dependencies between parts of the
code and allows researchers to benefit from each other’s work on separate components.
A similar system is used by the Trilinos project (Heroux et al. 2005), in which parameter
lists are passed to objects on creation in order to allow changing of options at run-time.

2.2. Library interface

The interface between the core BOUT++ code and problem-specific “user” code has
also been modified since the original publication. The original BOUT++ was structured
as a framework so that the main() function was defined internally, and the user sup-
plied two functions: one for initialisation of the desired physics model, and one which
calculated the time-derivative of each evolving variable given the system state. Further
callback functions were later added for optional preconditioning (section 3.3) and system
Jacobian calculations. This method was simple to implement, and familiar to those with
a background in C programming, but caused complications when combining BOUT++
with other libraries and frameworks. In addition to this original style, an object-oriented
style is now supported: Rather than callback functions, users implement a class which in-
herits from PhysicsModel, overriding the default functions as needed. A simple example
is a diffusion equation in 1-D, which could be implemented in the following code:

class Diffusion : public PhysicsModel {

private:

Field3D T;

protected:

void init(bool restarting) {

SOLVE_FOR(T);

}

void rhs(double time) {

ddt(T) = Laplace_par(T);

}

};

This defines a 3D scalar field (Field3D) T ; specifies that T should be evolved in
the initialisation function init; and then calculates the time-derivative as ∂T

∂t
= ∇ ·

(b0b0 · ∇T ) in the function rhs, in which ddt() should be read as ∂/∂t. Users can use
a macro BOUTMAIN to define a standard main() function, or define their own to enable
BOUT++ to be combined with other libraries. Separating physics models into classes
allows the possibility of combining several models into a single simulation, for example
a model for neutral gas with a plasma model, and could be exploited for multiscale
simulations.
The above example illustrates some other minor improvements which have been made

to BOUT++: ddt() and SOLVE FOR are preprocessor macros, which are used sparingly
wherever the resulting improvement in readability outweighs their potential for causing
hard-to-find bugs.

3. Solvers and capabilities

As increasingly sophisticated plasma simulation models are studied with BOUT++, in
particular gyro-fluid extensions (Xu et al. 2013), the range of differential operators which
needs to be solved has expanded, and the computational cost of the simulations has in-
creased. To address this, new capabilities have been added to BOUT++: More general



BOUT++ developments 5

elliptic solvers for calculating the electrostatic potential φ are presented in section 3.1,
and an algorithm to solve parabolic equations along magnetic field lines is presented in
section 3.2. This latter solver has been used as part of a physics-based precondition-
ing strategy (Mousseau et al. 2000; Knoll et al. 2001) to improve convergence for large
time steps, described in section 3.3, and to calculate closure terms for gyro-fluid opera-
tors (Dimits et al. 2013). Wherever possible, these new solvers have been implemented
using the factory pattern (section 2.1) and a generic interface, so that they can be reused
in many plasma models and geometries.

3.1. Calculation of potential φ from vorticity

Reduced MHD models solved in BOUT++ are commonly formulated in terms of a vor-
ticity equation, from which the electrostatic potential is calculated. In reduced MHD,
this can be derived from either the momentum equation or charge conservation (current
continuity) (Hazeltine & Meiss 2003; Catto & Simakov 2004). Gyro-fluid models, which
are an area of current research in BOUT++ (Xu et al. 2013), can also be cast in a
vorticity formulation (Ottaviani & Manfredi 1999), or the potential can be calculated
from a polarisation equation coupling electron and ion gyro-centre densities (Beer et al.
1997; Scott 2005a). In either case, the electrostatic potential φ is calculated by solving
an equation of the form:

∇ ·
(min

B2
∇⊥φ

)

= ω (3.1)

with ion massmi, plasma density n, and magnetic field strength B. The time evolution of
the right hand side ω (vorticity) depends on the particular model. The coefficient n/B2

arises from the ion polarisation, and in general will vary in 3D as the density n is an
evolving quantity.
Elliptic equations of the same form as equation 3.1 arise in many fields, and so nu-

merical methods for their solution have been extensively studied. There are therefore
many different methods available in the literature (e.g. (Iserles 2009)); the challenge is in
finding one which is efficient enough for practical applications. Solving for φ requires the
solution of a linear (matrix) problem for every evaluation of the time-derivatives of the
system, which will usually be several times per time step. A typical turbulence or ELM
simulation might require 104 − 106 time steps, and so efficient solution to equation 3.1 is
critical for the overall run-time of the simulation.
A common approximation in plasma simulations is to neglect the variation of n/B2

in space and/or time, referred to as the Boussinesq approximation (Yu et al. 2006).
BOUT++ simulations have usually replaced the full density n in equation 3.1 with
the axisymmetric (constant in toroidal angle) equilibrium density n0. Since B is also
axisymmetric, the left hand side of equation 3.1 can then be Fourier transformed in
toroidal angle, decoupling the toroidal harmonics. Each toroidal harmonic can then be
solved efficiently as a 1D tridiagonal system of complex equations in the radial coordinate.
This scheme will be referred to here as the FFT or Boussinesq method.
The effect of the Boussinesq approximation on simulation results can be subtle, and

its importance depends on the problem being considered. As stressed elsewhere (Scott
2002, 2003, 2005b) the energetics of a model are important for long time simulations of
turbulence. Unless the Boussinesq approximation is introduced carefully, it can result in
an unphysical source of energy which can grow and eventually dominate the simulation.
In other cases, the Boussinesq approximation has been found to have little effect, for
example in BOUT++ simulations of blobs (Angus & Umansky 2014) it was found that
the Boussinesq approximation made only a small difference, and that in 3D the drift-wave
dynamics made a greater difference to the result.



6 B. D. Dudson et al.

To remove the Boussinesq approximation, and allow the solution to the full vorticity
equation, BOUT++ has been coupled to the PETSc library (Balay et al. 1997, 2010,
2014). Here we present details of the numerical scheme, and leave exploration of the
impact on simulations of plasma phenomena to a future publication.

3.1.1. Iterative solution with PETSc

By discretising equation 3.1, the calculation of φ from ω can be cast as a linear algebra
problem of the form

Ax = b (3.2)

In BOUT++ this discretisation is done by Finite Differences, but other choices such
as Finite Element are used elsewhere. The resulting matrix can then be solved using
the Krylov subspace (KSP) iterative solvers available in PETSc, such as GMRES. Itera-
tive methods are attractive because they have smaller memory requirements than direct
solvers, as A need never be explicitly stored, and in principle iterative methods can be
parallelised more efficiently.
In general, equation 3.1 will couple all points in the domain, so the N×N sparse matrix

has a size N ≃ 106. By neglecting derivatives parallel to the magnetic field, which are
assumed small in drift-ordered fluid (Hazeltine & Meiss 2003) and gyro-fluid (Ottaviani
& Manfredi 1999) models, this can be simplified to solving multiple independent N ≃
104 matrices. Since the density n is evolving in time, the coefficients in this matrix
change every time step. This makes direct solution methods based on matrix factorisation
inefficient, as the matrix must be frequently re-calculated and re-factored. It is for this
reason that iterative methods have been implemented in BOUT++, as these do not
require the explicit calculation of the matrix elements or costly matrix factorisations.

3.1.2. Preconditioning of iterative solver

When solving large and/or ill-conditioned problems, iterative solvers can fail to con-
verge, or converge very slowly after a small number of iterations (referred to as stalling).
To accelerate convergence, an approximate solver is often used to “precondition” the
problem, improving the condition of the matrix which the iterative solver is inverting.
See for example (Golub & Van Loan 2013). A preconditioner P is an approximate in-
verse of A, which needs to be calculated quickly for the overall scheme to be efficient.
The equation above can be multiplied through by P as a left preconditioner:

(PA)x = Pb (3.3)

or as a right preconditioner:

(AP)
(

P−1x
)

= b (3.4)

and this modified system is solved using the iterative method. In the limit that the
preconditioner P is the inverse of A, PA is the identity, and no iterations should be
required.

To test preconditioning methods, a 2D (x, z) test case was used with a density profile
of the form:

n = sin (x) e−x
2

(1 + p cos (z)) (3.5)

where the radial coordinate x goes between 0 and 1, and the constant p in the above
equation is adjusted to change the variation of density with toroidal angle z. When p = 0
density does not vary with toroidal angle, and so the Boussinesq approximation is exact,
but as p is increased the approximation will break down. Results are shown in table 1 for
a small 40×32 mesh. For three values of p the time taken in seconds is given, followed by



BOUT++ developments 7

Table 1. Timing for solution on a 40× 32 mesh. Shown are the wall clock times in seconds,
and the iteration counts in brackets

Preconditioner Density perturbation
10% 50% 90%

None 0.157 (319) 0.110 (226) 0.142 (299)

Jacobi 0.162 (318) 0.113 (224) 0.137 (299)

SOR 0.022 (30) 0.048 (35) 0.048 (40)

FFT 0.013 (4) 0.015 (5) 0.024 (9)

the iteration count in brackets for a single solve, as the perturbation size is increased from
10% to 90% (i.e. p varies from 0.1 to 0.9). Without preconditioning the iterative method
requires ≃ 300 iterations and ≃ 1.5 seconds to converge, compared to a time of ≃ 2ms
for a single Boussinesq solve. To improve on this, several “black box” preconditioning
schemes are available in PETSc, such as Jacobi iteration or Successive Over Relaxation
(SOR) methods (Iserles 2009). These methods are not problem specific, and so require
only a run-time switch to enable and configure. For the problems tested, the SOR method
reduced the run-time (see table 1), but the number of iterations remained prohibitive.
To improve on these, a problem-specific preconditioner has been implemented.

As discussed above, the purpose of a preconditioner is to quickly find an approximate
inverse to the linear problem (matrix A above). The Boussinesq FFT-based solver is just
such a solver, as it finds a fast solution by simplifying the coefficients. We therefore use
the FFT solver as a preconditioner for the full problem, by wrapping the FFT solver in a
PETSc PCShell preconditioner object which is then passed to PETSc to be used in the
iterative solver. This preconditioner is extremely good when the density perturbation is
small, but we should expect it to become less effective as the size of the density perturba-
tion becomes large. This is what is observed in Table 1: For small perturbations (10%),
the run-time is a little over half that of the SOR method, but as the density perturbation
amplitude increases so does the iteration count and run-time for all methods. Even at
90% density perturbation, however, this preconditioner is still highly effective. Based on
this small test, a larger study was performed to compare the SOR and FFT (Boussinesq)
preconditioners.

For a 516 × 256 mesh more typical of ELM and turbulence calculations, the iterative
solver will typically stall without good preconditioning, as shown in figure 1. Using a
90% density perturbation (reducing the accuracy of the FFT preconditioner), and using
the FFT solver result as the starting point for the iterative solver gives the convergence
shown in figure 1. Without preconditioning, or using Jacobi or SOR preconditioners,
the residual is only reduced by a factor of 10 in nearly 104 iterations; using the FFT-
based preconditioner the residual is reduced by a factor of ≃ 105 in 10 iterations. This
shows that for large meshes the FFT-based solver provides a good rate of convergence
for realistic problem sizes, even when the deviation from axisymmetry is large.



8 B. D. Dudson et al.

100 101 102 103 104

KSP iteration number

10-6

10-5

10-4

10-3

10-2

10-1

100
Re

si
du

al
 n

or
m

None

Jacobi

SOR

FFT

Figure 1. Iterative KSP solver residual, as a function of iteration number. Solving elliptic
equation 3.1 on a 516× 256 mesh.

3.2. Parabolic solver along magnetic field-lines

In the reduced MHD and gyro-fluid models which BOUT++ specialises in solving, the
magnetosonic fast wave is removed analytically, and so the fastest physical processes are
usually the shear Alfvén wave and heat conduction along (parallel to) magnetic field-lines.
Preconditioning of either of these processes for implicit time integration (see section 3.3)
requires the solution to a parabolic equation of the form (Chacón et al. 2002)

(

A+ B∂2||0

)

x = b (3.6)

where ∂||0 = b0 · ∇ is the derivative along the equilibrium magnetic field b0. Even
though equation 3.6 appears to be a one-dimensional problem, due to the structure of the
equilibrium magnetic field, it is in general a two-dimensional problem: The equilibrium
magnetic field in a tokamak is helical, and lies on nested toroidal surfaces. If the pitch
angle of the magnetic field is such that it makes an irrational number of poloidal to
toroidal turns, then a single field-line will fill the 2D surface.
If magnetic perturbations were included, so that ∂2||0 became ∂2|| = (b · ∇)

2
in equa-

tion 3.6, then the magnetic field lines in general no longer lie on magnetic flux surfaces,
but fill a volume. This case is of significant interest, for example in studying the transport
of heat in ELM crashes and in the presence of externally applied magnetic perturbations,
but solving this more general problem is left to future work.

To solve equations of the form (3.6), a solver has been implemented in BOUT++
using a partitioning scheme described in (Austin et al. 2004), which has similarities to
cyclic reduction (Hockney 1965; Temperton 1975): Two interface equations are calculated
on each processor, one for each boundary. The reduced system of interface equations is
gathered onto one processor and solved using the serial Thomas algorithm. The resulting
solution for the boundary values on each processor are then scattered back and used to
solve for the remainder of the solution. As with many schemes for the solution of tridi-



BOUT++ developments 9

agonal systems, this method is suitable for diagonally dominant systems. This condition
is satisfied for equation 3.6 when coefficient B is negative, and coefficient A is positive
definite, which is the case for all cases of interest here.
In the following we assume that the magnetic flux surface has N points in toroidal

angle, and M points in poloidal angle. Firstly we exploit the toroidal symmetry of the
equilibrium to decompose the problem into Fourier harmonics in toroidal angle φ. This
then decomposes the problem into N complex tridiagonal systems, one for each toroidal
mode, each of size M . If the domain is a closed magnetic surface, then the tridiagonal
systems are cyclic, with a complex phase shift between the first and last row which is
determined by the pitch of the magnetic field-lines. Each of these N systems of equations
therefore has the form:





























b0 c0 a0
a1 b1 c1

. . .
. . .

. . .

am−1 bm−1 cm−1

am bm cm
. . .

. . .
. . .

cM−1 aM−1 bM−1





























x = b (3.7)

The domain is split between processors in the poloidal direction θ, with m rows per
processor, illustrated by a horizontal line in the above equation. Within each processor the
rows are eliminated, reducing the problem to two boundary equations for each processor,
which forms a smaller (cyclic) tridiagonal matrix:













β0 γ0 α0

α1 β1 γ1

α2 β2 γ2
γ3 α3 γ3













χ = ξ (3.8)

where ξ and χ are the boundary values of b and x respectively. When solving N inde-
pendent systems of equations (one for each toroidal mode), they are divided between
processors, and all boundary equations for a given system are gathered onto a single
processor. For example if N systems are split between 2 processors, then N/2 sets of
boundary equations are gathered onto each processor. Once on a single processor, the
serial Thomas algorithm (with Sherman-Morrison-Woodbury formula for cyclic tridiago-
nal systems (Temperton 1975)) is used to solve for the boundary values. These are then
scattered back, and substituted into the original equation to obtain the solution inside
each processor’s domain.

The number of boundary equations for each system of equations, and number of com-
munications is independent of the size of the problemM , and proportional to the number
of processors. This means that the algorithm scales well with problem size, but uses gather
and scatter operations which reduces performance on large numbers of processors. Scaling
of the solver with processor number and problem size has been performed on HECToR,
with 32 cores per node, and up to 2048 cores in total. Soft scaling, in which the problem
size is increased proportionally with the number of processors, is shown in figure 2. The
factor of ≃ 10 increase in wall clock time above 32 processors in figure 2 is because above
this point communications occur between nodes, rather than solely within a single node.
Waiting for global gather operations from across nodes is significantly slower than within



10 B. D. Dudson et al.

100 101 102 103 104

Number of processors

10-5

10-4

10-3

10-2

10-1
W

al
l c

lo
ck

 ti
m

e 
fo

r a
 s

in
gl

e 
so

lv
e 

[s
]

m=5, N=64
m=5 N=256
m=10 N=64
m=20 N=64
m=40 N=64

Figure 2. Soft scaling of parallel solver. m is the number of rows per processor, and N is the
number of separate problems which are inverted simultaneously, corresponding to the number
of toroidal Fourier modes

a node, and so becomes a bottleneck: for more than 64 processors the run time becomes
almost independent of problem size m.
For fewer than 32 processors, it can be seen that doubling the number of independent

systems N has a similar effect to doubling the size of each systemM , and the wall time is
approximately proportional to the problem size. This can also be seen in figure 3: on single
core the algorithm scales approximately linearly with problem size, for larger numbers of
processors there is a constant offset which depends on the number of processors, but only
weakly on the number of rows per processor. The result is that as the number of rows per
processor m is increased, the scaling with processor number appears more favourable: In
the limit that each processor only has a two rows, the algorithm becomes equivalent to
gathering all rows onto one processor, and using a serial algorithm, which would result
in a linear scaling with number of processors Np. In figure 2, when m = 5, the wall time
scales with N0.77

p , whilst for m = 40 the exponent is ≃ 0.20.
This scaling analysis demonstrates that the use of boundary equations to reduce the

problem within each domain to two rows, results in an approximately linear scaling with
problem size on a fixed number of processors. The global gather and scatter operations
used to solve these boundary equations is a bottleneck for large numbers of processors,
and leads to poor parallel scaling. Improving this will be the subject of future investiga-
tion. A possible solution is to use the cyclic reduction algorithm to solve the boundary
value equations, which would eliminate global gather/scatter operations in favour of more
point-to-point communications. In practice, the current solver has been found to be suffi-
ciently fast for simulations to-date: the domain is decomposed in both radial and poloidal
directions, so the poloidal direction is typically not divided into more than 32 processors.
In addition, the total run-time spent in solving parallel parabolic equations is a small
fraction of the total. As a result, this method has enabled the use of algorithms which
have overall good scaling (Dudson et al. 2012; Dimits et al. 2013).



BOUT++ developments 11

0 5 10 15 20 25 30 35 40 45
Number of rows per processor m

0.0

0.1

0.2

0.3

0.4

0.5
W

al
l c

lo
ck

 ti
m

e 
fo

r a
 s

in
gl

e 
so

lv
e 

[m
s] Np=1

Np=4
Np=16
Np=32

Figure 3. Soft scaling of parallel solver showing same data as figure 2 for N = 64. Shows
variation of wall-clock time with problem size per processor m for different numbers of processors
Np.

This tridiagonal solver has been used to implement physics-based preconditioning (Mousseau
et al. 2000; Knoll et al. 2001) in BOUT++ (Dudson et al. 2012), which is discussed in
section 3.3. It has also been used to implement gyro-fluid parallel closures such as those
due to (Hammett & Perkins 1990) by approximating to high accuracy the k/ |k| using
a small number of Lorentzians, which take the form of equation 3.6. This has enabled
these closures to be applied in situations where Fourier methods cannot be used, such as
global simulations in realistic toroidal geometry. Further details can be found in (Dimits
et al. 2013; Xu et al. 2013).

3.3. Time integration

The time integration schemes available in BOUT++ have been expanded to include ex-
plicit schemes (RK4, Euler (Iserles 2009)), a scheme derived by Karniadakis et al (Kar-
niadakis et al. 1991; Scott 2005b), and a range of implicit schemes through coupling
to the SUNDIALS (SUite of Nonlinear and Differential/ALgebraic equation Solvers)
( (Hindmarsh et al. 2005) and PETSc (Portable, Extensible Toolkit for Scientific Com-
putation) (Balay et al. 1997, 2010) libraries.
The need to solve increasingly complicated models at increasingly high resolution has

made efficiency and parallel scaling of algorithms used important. Plasma models are
typically stiff, meaning that explicit time-integration methods are limited to small time-
steps relative to the time-scales of interest. Implicit time integration methods overcome
this restriction, but require the solution of a large linear system (N ×N where N is the
number of evolving variables, typically 1− 10 million) at every timestep. Unless this can
be done efficiently, the overall time taken by an implicit solver may not be less than an
explicit solver.
As discussed in section 3.1.2, a preconditioner is an approximate inverse of the large

matrix being solved, which should be efficient to evaluate. At each timestep an implicit



12 B. D. Dudson et al.

time integration method is solving a nonlinear problem to find the state at the next time
point. Using a scheme such as Newton’s method, this nonlinear problem is reduced to one
or more steps which require the solution to a linear problem of the form Ax = b where
b is known, and depends on current and previous state and their time-derivatives; x is
related to the unknown state at the next timestep; and A is a large matrix. Advancing
a single time-step therefore involves an outer loop to solve the nonlinear problem, which
contains an inner loop to find the solution to a series of linear problems. Preconditioning
targets this inner loop, improving convergence of the linear solve in order to reduce the
overall run time.

Physics-based preconditioning describes a family of approaches to deriving precon-
ditioners, which use knowledge of the physical system to simplify the model equa-
tions (Mousseau et al. 2000; Knoll et al. 2001). The aim is to retain in the preconditioner
only those processes (oscillatory or diffusive) which are limiting the timestep. This then
improves the condition number of the matrix which the iterative (usually Krylov sub-
space) method has to solve. Because the iterative method converges towards the solution
to the full system, approximations can be made in the preconditioner without affecting
the final solution, only the convergence rate towards the solution. The approach we have
followed is based on work by Chacon and others (Chacón et al. 2002). Preconditioning
of the implicit solvers in BOUT++ (using SUNDIALS and PETSc libraries) has been
implemented in BOUT++, described in (Dudson et al. 2012).

An example is the shear Alfvén wave which is present in all 3D turbulence models.
In the simplest form of the reduced MHD equations, this wave can be described by the
following coupled equations for vorticity ω (equation 3.1), and magnetic potential A||

which describes the perturbed magnetic field δB = ∇×
(

b0A||

)

:

∂ω

∂t
= ∇||0

(

j||
) ∂A||

∂t
= −∂||0φ (3.9)

ω = ∇ ·
(min

B2
∇⊥φ

)

∇2
⊥A|| = −µ0j||

where ∇||0f = ∇· (b0f), ∂||0 = b0 ·∇, ∇⊥f = ∇f −b0 (b0 · ∇f), and ∇2
⊥f = ∇· (∇⊥f).

These equations can be combined to give a wave equation, which in the case that n/B2

is a constant reduces to:

∂2ω

∂t2
= ∇||0

∂j||

∂t
= ∇||0

(

1

µ0

∇2
⊥∂||0

B2

min
∇−2

⊥ ω

)

(3.10)

By further assuming that the magnetic field B varies slowly, and so neglecting derivative
of B terms,

∇||0∇
2
⊥∂||0∇

−2

⊥ ≃ ∂2||0 (3.11)

and the shear Alfvén wave propagates only along the (equilibrium) magnetic field:

∂2ω

∂t2
=

B2

µ0min
∂2||0ω = V 2

A∂
2
||0ω (3.12)

where VA is the Alfvén speed. In tokamak simulations, this speed can be VA ≃ 107m/s,
severely restricting the time step for explicit time integration schemes. If hyperbolic
equation 3.12, or the original equations 3.9 are solved implicitly, then this requires the
solution to a parabolic equation. For example using a backwards Euler method:

(

ω
ω′

)t+1

=

(

ω
ω′

)t

+ δt

(

0 1
V 2
A∂

2
||0 0

)(

ω
ω′

)t+1

(3.13)



BOUT++ developments 13

the equation to be solved at each timestep is parabolic:

(

1− δt2V 2
A∂

2
||0

)

(

ω
ω′

)t+1

=

(

1 δt
δtV 2

A∂
2
||0 1

)(

ω
ω′

)t

(3.14)

and of the same form as equation 3.6. To precondition waves of this type, the parabolic
solver discussed in section 3.2 can therefore be used.
The above procedure has converted a wave equation 3.12 into a parabolic equation, so

that waves which are not resolved by the time integration, for which the Courant number
is greater than 1, are slowed and damped. This is an inevitable consequence of implicit
time integration (Chacón et al. 2002), rather than a property of this preconditioning
scheme. Implicit time integration with preconditioning (physics-based or otherwise) is
only effective if the timescales of interest are long compared with the smallest timescales
in the system. This is almost always the case in simulations of tokamak plasmas, for which
drift or resistive timescales of interest are usually slow compared to dynamics such as
electron heat conduction and shear Alfvén wave propagation along magnetic field-lines.

The assumptions made to reduce the full set of equations 3.9 to wave equation 3.12
cannot be made in the calculation of time-derivatives for the full problem, as this would
affect the solution, but they can be made in the preconditioner since this is used to
find an approximate solution to accelerate convergence to the solution of the full set
of equations. The full procedure to derive a preconditioner using Schur factorisation is
described in (Dudson et al. 2012), and is somewhat more involved than outlined here,
but it makes the same assumptions and so results in the same form of equations. The
resulting preconditioner using the solver presented in section 3.2 has been found to result
in significant speed-ups for sets of equations where the timestep was limited by the shear
Alfven wave and parallel heat conductivity (Dudson et al. 2012), reducing overall wall-
clock time by an order of magnitude in some cases.

4. Pre- and Post-processing tools

A simulation code is of little use without the tools to create high quality inputs such
as meshes, and to analyse and present the results of the simulations. For post-processing
the most important requirement is to be able to read the simulation output data in the
user’s language of choice. Routines to do this are now available for IDL†, Python, Matlab,
Octave, and Mathematica (Wolfram Research, Inc. 2014) as part of the public BOUT++
repository.
For most publications, 1D plots and 2D contours are sufficient, but there are occasions

when the ability to visualise data in three dimensions is useful. In the early stages of a
scientific investigation, seeing the entire simulation domain rather than slices through it,
can help spot anomalies or unexpected features. When presenting results, particularly at
conferences, 3-D visualisation can quickly convey a large amount of information. Wrap-
pers have been developed to enable two scientific data visualisation packages to be used
with BOUT++: Mayavi‡ and VisIT¶.

Tools have also been developed to enable more convenient input of initial profiles
and sources (section 4.1), and processing of experimental equilibria into input meshes
(section 4.2).

† IDL: http://www.exelisvis.co.uk/ProductsServices/IDL.aspx
‡ Mayavi project, http://code.enthought.com/projects/mayavi/

¶ VisIT tool https://wci.llnl.gov/codes/visit



14 B. D. Dudson et al.

×

sin()

−

z×

3 y

· · ·

Figure 4. A tree of generator objects (Abstract Syntax Tree) to evaluate the expression
(...)*sin(3*y-z)

4.1. Input expression parser

Many simulations do not require complex geometry, but are intended to study basic phys-
ical mechanisms in slab or cylindrical geometries. For these cases the initial conditions
and parameters often follow analytic expressions. If these expressions can be stored in the
input files rather than preprocessing scripts, then inputs can be modified more quickly,
and a clearer record of simulation inputs is kept for later reference. Examples include 2D
blob simulations, where the initial density profile is a Gaussian in x specified using:

function = 1 + 0.2*gauss(x-0.25, 0.1)

In slab simulations of forced reconnection, a helical external magnetic potential is
applied to an initial sheared magnetic field. This external field can be specified in the
input file using:

function = (1-4*x*(1-x))*sin(3*y - z)

A recursive descent parser with operator precedence (see e.g.(Aho et al. 2006; LLVM
Project 2014)) is used to build an Abstract Syntax Tree (AST) of generator objects from
the input text: A constant generator like ’3’ or ’pi’ always returns the same value; a
coordinate generator like ’x’ returns a value depending on the cell location; and a binary
operation generator like ’+’ or ’sin’ depends on the value of its children generators.
Part of the AST for the above example is shown in figure 4. This tree is then evaluated
for each cell in the domain to obtain the required initial conditions. This method is not
computationally efficient, but is only used during initialisation and provides the flexibility
to adapt the code in future.

Initially a learning exercise in compilers, the capability to construct ASTs from inputs,
then manipulate and execute them at runtime has proved to be useful for scientific
applications, eliminating the need to write input preprocessing scripts in many cases.
This is proving particularly useful for verification using the Method of Manufactured
Solutions (Roache 1998; Salari & Knupp 2000), in which analytic expressions for sources



BOUT++ developments 15

and boundary conditions need to be specified. This verification activity is ongoing, and
will be presented in a future publication.
As demonstrated by libraries such as SciPy (Jones et al. 2001–), the combination of an

efficient statically compiled library with the flexibility of an run-time interpreter can be
very powerful. A possibility for future exploration is to use a scripting language such as
Python, Lua, or Scheme to provide input and output to BOUT++, or even to implement
parts of physics modules. These languages provide a complete programming environment,
but would require significant work to interface with the C++ classes in BOUT++.

4.2. Mesh generation

The accuracy and robustness of plasma simulations is strongly dependent on the quality
of the input mesh: noise in the metric components, or large variations in the grid spacing
leads to noise in the solution, restrictions in the timestep, and occasionally numerical
instabilities.
Generating meshes for tokamak equilibria with X-points is challenging due to the

change in topology across the separatrix, the shape of the boundary around the plasma,
and the variation in geometry between machines. The original BOUT code used UEDGE (Rogn-
lien et al. 1992, 2002) to generate grids, and BOUT++ can also use these input files with
a little preprocessing. There are several other tools available for generating these meshes
such as CARRE (Marchand & Dumberry 1996), but none are open-source licensed and
suitable for distribution with BOUT++.
To generate X-point meshes for BOUT++ from experimental free boundary equilibria,

a new code named Hypnotoad has been developed, and is available in the BOUT++
public repository. The main features of this grid generator are that it:

(a) Was originally written entirely in IDL. This allows Hypnotoad to be run anywhere
where IDL is available, without the need for a compilation step and complicated depen-
dencies. IDL is widely available and used in fusion research institutions, and comes with
a large library of built-in functions. Work is currently ongoing to port the algorithms
which have been developed into Python, and indeed many of the figures shown here will
be from the Python version, due to the superior graphical capabilities of the Python
library Matplotlib†.

(b) Automatically adjusts settings when needed. The grid produced can be customised,
but the minimum number of inputs is very small (number of grid points and a range of
poloidal flux ψ). The ψ range asked for is adjusted to fit within the boundary, with
configurable levels of strictness.

(c) Can handle an arbitrary number of X-points. Whilst not of obvious benefit since
most tokamak equilibria are single or double-null, this means that Hypnotoad is quite
generalised and can cope with unusual configurations. It has been applied to Snowflake-
like configurations (Ma et al. 2014), but only in snowflake-plus configurations where the
second X-point was not included in the mesh.
Because this grid generator is intended to be used for many different tokamaks, robust
algorithms have been developed which can handle the large number of possible configu-
rations encountered. To date, this grid generator has been successfully used to generate
meshes from C-MOD, DIII-D, EAST, ITER, JET, MAST and NSTX tokamak equilib-
ria (Wesson 1997), without requiring any machine-specific alterations or inputs beyond
the EFIT generated G-EQDSK or ’g’ file (Lao et al. 1985, 2005; General Atomics 2014).
The production of a BOUT++ input mesh consists of three stages: Analysis of the

equilibrium to determine X-point locations, construction of mesh points, and calculation

† Matplotlib plotting library http://matplotlib.org/



16 B. D. Dudson et al.

0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

0

0

1 1

2

2

3

4

5

3

6

7

4

8

-0
.0
0
0
8
0
3

Major radius [m]

H
ei
g
h
t
[m

]

Figure 5. Automated identification of O- and X-points in a MAST double-null configuration

of metric tensor and equilibrium quantities. The key features and algorithms used in each
of these stages are described in the following sections.

4.2.1. Finding X-points

The first task in generating a mesh is to determine the number and location of the
O- and X-points of the plasma. These correspond to critical points (maxima, minima, or
saddle points) of the poloidal flux function ψ (R,Z), which for tokamak equilibria is a 2D
function of major radius R and height Z. The most robust technique for finding these has
been found empirically to be to produce contour lines of dψ

dR
= 0 and dψ

dZ
= 0. Intersections

of these lines then give locations of critical points. By comparing second derivatives of ψ
at these critical points it can be determined whether they are O-points (minima/maxima)
or X-points (saddle points). An example of a double-null equilibrium from the Mega-Amp
Sherical Tokamak (MAST) is shown in figure 5. Contours of dψ

dZ
= 0 and dψ

dR
= 0 are

plotted, and their intersections identified and categorised. Some additional heuristics are
needed to eliminate false positives or duplicate critical points, which can occur if the input
data contains grid-scale features or noise. The primary O-point can be reliably identified
as the one closest to the middle of the grid, but identifying the plasma X-points is more
prone to error, as a typical equilibrium will contain several X-points.



BOUT++ developments 17

Major radius [m]

H
ei
gh

t
[m

]

Major radius [m]

a)

b)

Figure 6. Mesh produced for MAST double-null equilibrium (shot 14220)

When the boundary shape is specified, critical points close to the poloidal field coils
can be discarded as being outside the boundary, though ripples in the solution due to
the central solenoid at major radius R = 0 can lead to spurious O- and X-points on the
inboard side: In figure 5 two O-points (labelled ’0’ and ’2’), and one X-point (labelled ’1’)
can be seen close to the centre column. These can usually be excluded through choice of
ψ range or boundary contour.

4.2.2. Meshing

Transport of heat and particles in magnetised plasmas are strongly anisotropic, and as
a result fluid simulations commonly use meshes aligned with magnetic flux surfaces, in
order to minimise mixing the directions perpendicular and parallel to the magnetic field.
The coordinates currently used by BOUT++ for tokamak simulations are orthogonal in
the poloidal (R-Z) plane, illustrated in figure 6 for a typical MAST double-null discharge.
A region close to the X-point is shown enlarged, showing coordinate lines passing around
the X-point, but leaving a hole at the null itself. The mesh has a branch-cut around the
magnetic X-point, which must be treated carefully to avoid creating large variations in
mesh spacing, which could lead to poor numerical behavior.
A starting contour line is created, aligned with a magnetic flux surface. In the plasma

core this line is just inside the separatrix, whilst for the divertor legs the separatrix is used.
From this starting line the locations of the X-points are found, and the regions between
X-points are then meshed independently, adjusting the distance to the X-point to obtain
a smoothly varying mesh spacing. From these starting locations the gradient of ψ is
found using either a Discrete Cosine transform (DCT) method, or 2D cubic convolution
interpolation (Park & Schowengerdt 1983) provided in the IDL standard library. The
DCT method provides smooth interpolation, but is slow for large input meshes and sharp
features in the input can lead to ringing (Gibbs phenomena). The interpolation method is
therefore generally preferred. The gradient in ψ is followed using the LSODE (Livermore



18 B. D. Dudson et al.

Solver for Ordinary Differential Equations) algorithm (Hindmarsh 1983; Radhakrishnan
& Hindmarsh 1993) through IDL or SciPy, to construct the mesh points for each value
of θ. This is then repeated for each θ coordinate to construct a 2D mesh. Once the mesh
points have been found, the metric tensor and equilibrium components are calculated.

4.2.3. Calculating metric components

Experimental equilibria are often of low resolution (65×65 is the standard EFIT output
for many tokamaks), and once the pressure P and magnetic field B is interpolated onto a
new mesh there is no guarantee that the new values will still obey ideal MHD force balance
(∇×B)×B = µ0∇P . Ideal MHD force balance may not be an equilibrium solution to
the plasma model being simulated, but is almost invariably a good approximation, and
it is important that the mesh generation process does not lead to artefacts or sources
of numerical noise and instability. Care is therefore taken to ensure the accuracy and
smoothness of the interpolated solution, and quantities such as parallel current density
J|| are calculated multiple ways and compared as a consistency check. The interpolation
method used can have a significant impact on the quality of the results: many terms such
as the curvature and parallel current involve second derivatives of equilibrium flux, and
these quantities should themselves be smoothly varying inputs to the simulation.
As discussed elsewhere (Xu et al. 2008; Dudson et al. 2009), in order to efficiently simu-

late structures (predominantly) aligned to the magnetic field, BOUT++ uses grid-points
placed in a field-aligned coordinate system. From the standard, orthogonal, toroidal co-
ordinate system (ψ, θ, ζ) new coordinates (x, y, z):

x = σBθ (ψ − ψ0) y = θ (4.1)

z = σBθ

(

ζ −

∫ θ

θ0

ν (ψ, θ) dθ

)

where σBθ ≡ Bθ/ |Bθ| is the sign of the poloidal field, and ν is the local field-line pitch
given by

ν (ψ, θ) =
B · ∇ζ

B · ∇θ
=
Bζhθ
BθR

(4.2)

where Bζ is the toroidal magnetic field, Bθ the poloidal magnetic field, R is the major
radius, and hθ is poloidal arc length divided by 2π. In the limit of a circular cross-section
equilibrium, hθ becomes the minor radius r. The coordinate system is chosen so that x
increases radially outwards, from plasma to the wall. The sign of the toroidal field Bζ
can then be either positive or negative.
By equating contravariant x components of J × B = ∇P , radial force balance in

field-aligned coordinates can be written as:

∂

∂x

(

B2hθ
Bθ

)

−BζR
∂

∂x

(

Bζhθ
RBθ

)

+
µ0hθ
Bθ

∂P

∂x
= 0 (4.3)

Close to the X-points, Bθ → 0 and the above expression becomes singular, so a better
way to write this is:

∂

∂x

(

B2hθ
)

− hθBθ
∂Bθ
∂x

− BζR
∂

∂x

(

Bζhθ
R

)

+ µ0hθ
∂P

∂x
= 0 (4.4)

This expression is used to calculate the pressure, by integrating ∂P
∂x

, and compared with
the input pressure profile. By using the input pressure profile for P , hθ is also calculated



BOUT++ developments 19

Radial index

(a) Radial pressure profiles from input
(solid line) and from equation 4.4 for radial

force balance (symbols)

Radial index

P
o
lo
id
a
l
a
rc

le
n
g
th

a
t
m
id
p
la
n
e
[m

/r
a
d
]

(b) Radial profile of poloidal arc length hθ

measured geometrically (solid line), and
using equation 4.4 for radial force balance

(symbols)

Figure 7. Comparison of pressure and hθ profiles calculated using radial force balance
(equation 4.4) with a reference calculated independently.

and compared with the values calculated from geometric arc-length. An example result
of this comparison is shown in figure 7. In figure 7(a) the pressure at the outermost
radial point has been set to the value from the EFIT input, and then integrated inwards
according to equation 4.4. In figure 7(b) the pressure gradient from EFIT has been
used, and equation 4.4 solved for hθ. Both show good agreement, indicating that the
mesh generation is sufficiently accurate and smooth to retain radial force balance. This
is not always observed, and where large discrepancies are observed the equilibrium should
not be used.
Many reduced MHD models make use of the quantity

B

2
∇×

(

b

B

)

≃ b× κ (4.5)

where κ = b · ∇b is the curvature vector, which arises from magnetic particle drifts.
Calculation of this quantity involves second derivatives of the input poloidal flux ψ, and
so must be calculated carefully to avoid introducing noise. Several methods have been
tried, including:
(a) Calculate curvature on the original R-Z mesh supplied as input, then interpolate

onto the new field-aligned mesh. This has been found to usually produce the smoothest
result and so is the default. Using DCTs to calculate differentials of the magnetic field
components was found to produce oscillatory results, so a 3-point Lagrangian interpola-
tion is used instead.
(b) Calculate curvature on the field-aligned mesh in toroidal coordinates, using nearest

neighbours and least-square fitting.
(c) Calculate curvature in field-aligned coordinates using

∇×

(

b

B

)

=
Bθ
hθ

[(

∂

∂x

(

hθ
Bθ

)

−
∂

∂y

(

σBθBζIR

B2

))

ez

+
∂

∂y

(

σBθBζR

B2

)

ex

+
∂

∂x

(

σBθBζR

B2

)

ey

]

(4.6)



20 B. D. Dudson et al.

0 10 20 30 40 50 60 70

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

P
ar
al
le
l
cu

rr
en
t
d
en

si
ty
j |
|
[×

10
5
A
/m

2
]

Poloidal (y) grid index

Figure 8. Comparison of j|| from input profiles (equation 4.8) and divergence of current
(equation 4.7)

Methods (b) and (c) are based on calculating differentials on the output (field-aligned)
mesh. They work well when the input is of high resolution, but become noisy once the
resolution of the output grid significantly exceeds that of the input. Since high resolutions
are required for BOUT++ simulations, this is nearly always the case, and so method (a)
is preferred. Methods (b) and (c) are retained for cross-comparison.

Finally, a cross-check is made between the parallel current and the curvature. In a
tokamak equilibrium the divergence of the parallel current balances the divergence of
diamagnetic current, so that the total current is divergence free. In reduced MHD models
this appears through the vorticity equation. The following relationship should therefore
be satisfied:

∇||0j||0 +∇×

(

b

B

)

· ∇P = 0 (4.7)

From this the parallel current can be calculated, and compared with the parallel current
calculated from the input f = RBζ and pressure P profiles:

µ0j|| = −B
∂f

∂ψ
− µ0

f

B

∂P

∂ψ
(4.8)

For the MAST equilibrium shown in figure 6 and figure 7 the parallel current calcu-
lated from the curvature and pressure gradient (equation 4.7) is shown in figure 8, and
compared to the current given by equation 4.8.

These comparisons between quantities such as J|| and curvature calculated in multiple
ways allow an assessment of the quality of the input equilibrium. If the values obtained
are inconsistent, then a higher accuracy input can be generated using a free boundary
equilibrium solver such as EFIT or CORSICA (Tarditi et al. 1996). The result is a robust
process for generating BOUT++ input grids from tokamak experimental equilibria, which
has been successfully used for a range of devices.



BOUT++ developments 21

5. Conclusions

Recent improvements to the BOUT++ simulation framework have been summarised.
Since its original release (Dudson et al. 2009), BOUT++ has been adopted by a growing
number of users, who have extended its capabilities in a number of ways: the structure
of the code has been improved; more complex elliptic and parabolic equations can be
solved, through coupling to the PETSc library and built-in implementations; the input
and output tools have been improved to enable experimental or theoretical equilibria and
profiles to be imported into BOUT++.
A preconditioning scheme has been presented which enables simulations to be per-

formed without invoking the Boussinesq approximation in the vorticity. This method
can now be used to perform more accurate simulations of tokamak edge turbulence and
Edge Localised Modes (ELMs) (Zohm 1996), the exploration of which is the subject of
future work. More general elliptic and parabolic solvers for preconditioning and vortic-
ity inversion problems in 3D are currently under development, and will be presented
elsewhere.
Soft scaling studies have been performed for a parabolic solver along equilibrium field-

lines. We find that although the scaling with problem size is good (being based on the
O(n) serial Thomas algorithm), the scaling with processor number is quite poor due to
the global gather and scatter operations used. Improving this will be a subject of future
work.
The use of software development practices such as version control with Git and au-

tomated testing has been described. A more rigorous set of tests using the Method of
Manufactured Solutions (Roache 1998; Salari & Knupp 2000) for code verification are
currently under development, and will be described elsewhere.

In addition to the improvements described herein, significant progress has also been
made in improving the calculation of heat fluxes along magnetic field-lines, which are of-
ten poorly described by the Spitzer formula (Wesson 1997) or limiter schemes (Schneider
et al. 2006; Tskhakaya 2012; Tskhakaya et al. 2008): An extension of the Hammett-
Perkins model to non-Fourier methods (Dimits et al. 2013), and a method based on solv-
ing a 1-D time-independent kinetic equation along magnetic field-lines (Ji et al. 2009;
Omotani & Dudson 2013), have both been implemented in BOUT++. Testing of these
methods against kinetic simulations, primarily for simulation of transients such as ELMs,
is the subject of ongoing work.

Acknowledgements

This work was funded by EPSRC grant EP/K006940/1 using HECToR computing
resources through the Plasma HEC consortium grant EP/L000237/1. EURATOM Mo-
bility support is gratefully acknowledged. The views and opinions expressed herein do
not necessarily reflect those of the European Commission.

REFERENCES

Aho, A V, Lam, M S, Sethi, R & Ullman, J D 2006 Compilers: Principles, Techniques, and
Tools. Addison-Wesley.

Angus, J R & Umansky, M V 2014 Physics of Plasmas 21, 012514.
Angus, J R, Umansky, M V & Krasheninnikov, S I 2012a 3d blob modelling with bout++.

Contrib. Plasma Phys. 52, 348–352.
Angus, J R, Umansky, M V & Krasheninnikov, S I 2012b Effect of drift waves on plasma

blob dynamics. Phys. Rev. Lett. 108, 215002.



22 B. D. Dudson et al.

Austin, T M, Berndt, M & Moulton, J D 2004 Tech.Rep. LA-UR 03-4149. LANL, USA.

Balay, Satish, Gropp, William D., McInnes, Lois Curfman & Smith, Barry F. 1997
In Modern Software Tools in Scientific Computing (ed. E. Arge, A. M. Bruaset & H. P.
Langtangen), pp. 163–202. Birkhauser Press.

Balay, S et al. 2010 Tech. Rep. ANL-95/11 - Revision 3.1. Argonne National Laboratory.

Balay, Satish et al. 2014 PETSc Web page. http://www.mcs.anl.gov/petsc.

Beer, M A et al. 1997 Physics of Plasmas 4 (5), 1792–1799.

Catto, P J & Simakov, A N 2004 A drift ordered short mean free path description for
magnetized plasma allowing strong spatial anisotropy. Physics of Plasmas 11 (1), pp. 90–
102.

Chacón, L., Knoll, D. A. & Finn, J. M. 2002 J. Comput. Phys. 178 (1), 15–36.

Dimits, A M, Joseph, I & Umansky, M V 2013 A fast non-Fourier method for Landau-fluid
operators. Physics of Plasmas 21 (5), 055907.

D’Ippolito, D A, Myra, J R & Zweben, S J 2011 Physics of Plasmas 18, 060501.

Dudson, B, Farley, S & Curfmann McInnes, L 2012 arXiv:1209.2054 .

Dudson, B D et al. 2009 Comp. Phys. Comm. 180, 1467–1480.

Friedman, B, Carter, T A, Umansky, M V, Schaffner, D & Dudson, D 2012 Physics of
Plasmas 19, 102307.

Fundamenski, W et al. 2001 J. Nucl. Materials 290-293, 593.

Gamma, Erich, Helm, Richard, Johnson, Ralph & Vlissides, John 1995 Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

Garcia, O E et al. 2007 J. Nucl. Materials 363, 575.

Gekelman, W et al. 1991 Rev. Sci. Instr. 62, 2875.

Gendrih, Ph et al. 2012 J. Phys.: Conf. Ser. 401, 012007.

General Atomics 2014 G EQDSK file format. https://fusion.gat.com/theory/Efitgeqdsk.

Golub, G H & Van Loan, C F 2013 Matrix Computations. The Johns Hopkins University
Press.

Goswami, R et al. 2001 Physics of Plasmas 8, 857.

Hammett, G W & Perkins, F W 1990 Phys. Rev. Lett. 64, 3019.

Hazeltine, R D & Meiss, J D 2003 Plasma Confinement . Dover publications.

Heroux, M A et al. 2005 ACM Trans. Math. Softw. 31 (3), 397–423.

Hindmarsh, A C 1983 In Scientific Computing (ed. R. S. Stepleman et al.), IMACS Transac-
tions on Scientific Computation, vol. 1, pp. 55–64. North-Holland, Amsterdam.

Hindmarsh, A C et al. 2005 SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers. ACM Transactions on Mathematical Software 31 (3), 363–396.

Hockney, R W 1965 J. Assoc. Comput. Mach. 12, 95.

Iserles, Areih 2009 A First Course in the Numerical Analysis of Differential Equations. Cam-
bridge University Press, ISBN: 978-0-521-73490-5.

Ji, J Y, Held, E D & Sovinec, C R 2009 Physics of Plasmas 16 (2), 022312.

Jones, Eric, Oliphant, Travis, Peterson, Pearu et al. 2001– SciPy: Open source scientific
tools for Python.

Karniadakis, G E, Israeli, M & Orszag, S A 1991 J. Comput. Phys. 97, 414.

Kawashima et al. 2006 Plasma Fusion Res. 1, 31.

Knepley, M G 2012 arXiv:1209.1711 .

Knoll, D A et al. 2001 SIAM J.Sci.Comput. 23 (2), 381.

Lao, L L, St. John, H, Stambaugh, R D, Kellman, A G & Pfeiffer, W 1985 Recon-
struction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25,
1611–22.

Lao, L L et al. 2005 MHD equilibrium reconstruction in the DIII-D tokamak. Fusion Science
and technology 48, p968.

LLVM Project 2014 Implementing a language with LLVM. http://llvm.org/docs/tutorial/.

Ma, J F, Xu, X Q & Dudson, B D 2014 54, 033011.

Marchand, R & Dumberry, M 1996 CARRE: a quasi-orthogonal mesh generator for 2D edge
plasma modelling. Comp. Phys. Comm. 96, 232–246.

Mousseau, V A, Knoll, D A & Rider, W J 2000 J. Comput. Phys. 160, 743.



BOUT++ developments 23

Nakamura, M 2011 J. Nucl. Materials 415, S553.
Naulin, V et al. 2007 J. Nucl. Materials 24, 363–365.
Omotani, J T & Dudson, B D 2013 Plasma Phys. Control. Fusion 55, 055009.
Ottaviani, M & Manfredi, G 1999 Physics of Plasmas 6, 3267.
Park, S & Schowengerdt, R 1983 Computer Vision, Graphics & Image Processing 23, 256.
Radhakrishnan, K & Hindmarsh, A C 1993 Tech. Rep.. LLNL,

http://computation.llnl.gov/casc/nsde/pubs/u113855.pdf.
Ricci, P & Rogers, B N 2013 Physics of Plasmas 20, 010702.
Ricci, P et al. 2012 Plasma Phys. Control. Fusion 54 (124047).
Roache, P J 1998 Verification and Validation in Computational Science and Engineering .

Hermosa Publishers, Albuquerque NM.
Rognlien, T D, Xu, X Q & Hindmarsh, A C 2002 Application of Parallel Implicit Methods

to Edge-Plasma Numerical Simulations. J. Comput. Phys. 175, 249–268.
Rognlien, T D et al. 1992 J. Nucl. Materials 196198, 347.
Salari, K & Knupp, P 2000 Code verification by the method of manufactured solutions. Tech.

Rep. SAND2000-1444. Sandia National Laboratories.
Schneider, R et al. 2006 Contrib. Plasma Phys. 46, 3–191.
Scott, B 2003 Plasma Phys. Control. Fusion 45, A385–398.
Scott, B 2005a Physics of Plasmas 12, 102307.
Scott, B D 2002 New J. Physics 4, 52.1–52.30.
Scott, B D 2005b GEM - an energy conserving electromagnetic gyrofluid model.

arXiv:physics/0501124 .
Stangeby, P C 2000 The Plasma Boundary of Magnetic Fusion Devices. IoP.
Tamain, P et al. 2010 TOKAM-3D: A 3D fluid code for transport and turbulence in the edge

plasma of Tokamaks. J. Comput. Phys. 229 (2), 361–378.
Tarditi, A et al. 1996 Contrib. Plasma Phys. 36, 132.
Temperton, C 1975 Algorithms for the solution of cyclic tridiagonal systems. J. Comput. Phys.

19 (3), 317–323.
Tskhakaya, D 2012 Contrib. Plasma Phys. 52 (5-6), 490–499.
Tskhakaya, D., Subba, F., Bonnin, X., Coster, D. P., Fundamenski, W., Pitts, R. A.

& Contributors, JET EFDA 2008 On kinetic effects during parallel transport in the
sol. Contrib. Plasma Phys. 48 (1-3), 89–93.

Umansky, M V, Rognlien, T D, Xu, X Q, Dudson, B D & Kirk, A 2006 Modelling of edge
plasma turbulence in a spherical tokamak.

Walkden, N R, Dudson, B D & Fishpool, G 2013 Characterization of 3d filament dynamics
in a mast sol flux tube geometry. Plasma Phys. Control. Fusion 55, 105005.

Wesson, J A, ed. 1997 Tokamaks, 2nd edn. Clarendon Press.
Wolfram Research, Inc. 2014 Mathematica. Champaign, Illinois.
Xi, P W, Xu, X Q, Xia, T Y, Nevins, W M & Kim, S S 2013 53 (11), 113020.
Xia, T Y, Xu, X Q, Dudson, B D & Li, J 2012 Contrib. Plasma Phys. 52, 353–359.
Xu, X et al. 2013 Physics of Plasmas 20, 056113.
Xu, X Q, Cohen, R H, Porter, G D, Myra, J R, D’Ippolito, D A & Moyer, R 1999

Turbulence in Boundary Plasmas. J. Nucl. Materials 266-269, 993–996.
Xu, X Q, Cohen, R H, Porter, G D, Rognlien, T D, Ryutov, D D, Myra, J R,

D’Ippolito, D A, Moyer, R A & Groebner, R J 2000 Turbulence studies in toka-
mak boundary plasmas with realistic divertor geometry. Nucl. Fusion 40 (3Y), 731–736.

Xu, X Q, Umansky, M V, Dudson, B & Snyder, P B 2008 Boundary plasma turbulence
simulations for tokamaks. Comm. in Comput. Phys. 4 (5), pp. 949–979.

Xu, X Q et al. 2010 Phys. Rev. Lett. 105, 175005.
Yu, G Q, Krasheninnikov, S I & Guzdar, P N 2006 Physics of Plasmas 13, 042508.
Zohm, H 1996 Plasma Phys. Control. Fusion 38, 105–128.


