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Asymmetric triangular mixing densities for mixed logit1

models2

3

October 5, 20164

Abstract5

A novel method is proposed to estimate random parameter logit models using the asym-6

metric triangular distribution to describe unobserved preference heterogeneity in the pop-7

ulation of interest. The asymmetric triangular mixing density has the potential to over-8

come behavioural limitations associated with the most frequently applied mixing densities9

like the normal and log-normal distribution. With only three parameters it remains par-10

simonious whilst its bounded support can easily be brought in line with behavioural11

intuitions. The triangular mixing density is not associated with an incredibly large up-12

per (or lower) bound and it can accommodate varying degrees of skewness in unobserved13

preference heterogeneity. The proposed estimation procedure is based on the principle of14

mixture densities and circumvents additional simulation chatter arising when applying the15

inverse cumulative density function method to generate draws from the mixing density.16

Keywords: Mixed logit, Mixing density, Asymmetry, Triangular Distribution17
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1 Introduction18

The mixed logit model (MIXL), also referred to as the random parameters logit (RPL)19

model, represents one of the most popular econometric models to analyse discrete choice20

type data. Advantages of the MIXL model include i) the ability to model heterogeneity21

in the patterns of choices across respondents1; ii) non-constant error variances across22

alternatives via a relaxation of the independently and identically distributed error terms23

assumption; and iii) the potential accommodation of correlation in choices across repeated24

choice observations by the same respondent (e.g Hensher and Greene, 2003; Scarpa et al.,25

2005). Given its multi-functionality, Keane andWasi (2013) acknowledge the MIXL model26

hosts an infinite number of alternative model specifications varying in the number and27

selection of alternative mixing densities.28

The current paper adds the asymmetric triangular density to the set of potential29

mixing densities available to the analyst. By being able to control for skewness in the30

distribution of preferences over the population of interest, the asymmetric triangular31

density is more flexible than its symmetric counterpart. Its bounded support at both end32

of the distribution makes it a particularly attractive density relative to the more frequently33

used (log-)normal density. The asymmetric triangular density thereby answers the call of34

Hensher and Greene (2003) for the implementation of simple, but flexible distributional35

forms complying with behavioural expectations. So far this call mainly resulted in the36

adoption of the (constrained) symmetric triangular distribution (e.g. Brouwer et al., 2010;37

Hensher and Greene, 2003).38

The focus of this paper is on the development of a maximum simulated likelihood39

(MSL) estimation method for the asymmetric triangular density. The proposed estimation40

method is based on the principle of mixing densities and recognizes that any triangular41

density can be described by means of two one-sided triangular densities with a common42

mode. A Bayesian estimation procedure was already developed by Dekker and Rose43

(2011).44

The structure of the paper is as follows. Section 2 introduces the MIXL model and45

defines the triangular density. Section 3 then develops the MSL estimation framework.46

Section 4 presents a Monte Carlo simulation and Section 5 concludes the paper .47

2 Model structure48

2.1 The random coefficients multinomial logit model49

Suppose individual n is presented with J alternatives in choice task t = 1, . . . , T . The50

Random Utility Maximisation model postulates that the individual selects the alternative51

1Whilst it is common to interpret the random parameter coefficients as representing purely preference
heterogeneity, the confoundment between scale and preference parameters in most discrete choice models
implies that any modelled heterogeneity should more correctly be interpreted as representing a mixture
of both preference and scale or error heterogeneity (Hess and Rose, 2012)
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with the highest level of utility, i.e. ynt = i when Unit > Unjt, ∀j 6= i ∈ J . Utility Unit is52

decomposed in a structural part Vnit and a stochastic part ǫnit, where Unit = Vnit + ǫnit.53

After assuming that ǫnit follows a type-I extreme value distribution the choice probability54

for alternative i can be described by:55

Pnit =
exp(Vnit)

∑J
j=1 exp(Vnjt)

(1)

Vnit is characterised by a linear utility function Vnit = Xnitβn. Let Xnit represent a set of56

exogenous variables and βn defines the vector of marginal utility parameters. The sub-57

script in βn denotes marginal utility may vary across respondents. In most applications,58

an insufficient number of observations per respondent is available to estimate individual59

specific utility parameters. Hence, random coefficients are used to capture the heterogene-60

ity in βn across the population of interest. Let f(βn|Ω) denote a mixing density function61

describing the distribution of marginal utility over the population of interest, where Ω is62

the vector of associated hyper-parameters. The expected choice probability of observing63

the sequence of choices yn can then be described by the individual specific likelihood Ln:64

Ln =

∫

βn

T
∏

t=1

exp(Xnitβn)
∑J

j=1 exp(Xnjtβn)
f(βn|Ω)dβn (2)

2.2 The triangular distribution65

In this paper, f(βn|Ω) is described by a triangular density. The density is a function of66

only three hyper-parameters being respectively the lower-bound a, the upper-bound b and67

the mode c. These three hyper-parameters define the density function:68

f(βn|a, b, c) =
2(βn − a)

(b− a)(c− a)
for a ≤ βn ≤ c (3)

2(b− βn)

(b− a)(b− c)
for c ≤ βn ≤ b

When βn < a or βn > b the density f(·) will be zero. In short, the triangular distribution69

qualifies as a mixing density that is simple but flexible in shape and easily complies70

with behavioural expectations. Namely, the flexible mode of the triangular distribution71

allows for both positively- and negatively-skewed distributions, but also symmetry by72

setting (c − a) = (b − c).2 The support of the distribution can be constrained by fixing73

either the lower- or the upper-bound or both. Accordingly, the triangular distribution74

can accommodate non-negative (or non-positive) marginal utilities without inducing a fat75

upper-tail.76

2Note that by drawing a straight line from the density at the mode to the zero density at the bounds
the share of the population is decreasing at a constant rate when moving away from the mode.
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3 Maximum Simulated Likelihood Estimation77

3.1 The inverse cdf problem78

The principles of MSL require that the simulated density can be obtained by means of79

rescaling and relocating a standard shape of the underlying distribution. For example,80

a normal distribution can be by simulated by taking draws from a standard normal dis-81

tribution, which are subsequently relocated by the estimated mean and rescaled by the82

estimated standard deviation. For the asymmetric triangular density, draws from f(βn|Ω)83

can be generated using an inverse cumulative density function (cdf) transformation ap-84

proach for a given a, b, c (see (4)), where U r
n represents a draw r from the standard uniform85

distribution defined over [0, 1] for individual n.86

βr
n = a+

√

U r
n(b− a)(c− a) for U r

n <
c− a

b− a
(4)

b−
√

(1− U r
n)(b− a)(b− c) for U r

n ≥ c− a

b− a

The described inverse cdf approach, however, introduces additional chatter in the simu-87

lation. During each optimization iteration the values for a, b, and c adjust, implying that88

the number of draws assigned to the first (and second) part of (4) change. The accuracy89

by which the right- and left-hand side of the triangular density are approximated thereby90

varies at each iteration and potentially causes numerical difficulties.391

3.2 Using a mixture of densities92

To work around this issue, a simulation approach comparable to the mixtures of normal93

densities (e.g. Fosgerau and Hess, 2009) is proposed. It is easily recognized that the asym-94

metric triangular distribution can be constructed by means of two one-sided triangular95

densities with a common mode c. The first one-sided density has its lower bound at a and96

its upper bound is equivalent to its mode c. For the second one-sided triangular density,97

c describes the mode and the lower bound while b describes its upper bound. Draws98

from both distributions can be generated independently using (5). Where U r
1n and U r

2n99

represent draws from two independent standard uniform distributions and βr
1n and βr

2n100

the associated transformations following from the inverse cdf method.101

βr
1n = a+ (c− a)

√

U r
1n (5)

βr
2n = b− (b− c)

√

U r
2n

Since both sides of the distribution are generated independently, the problem of addi-102

tional simulation chatter no longer prevails. The two independent densities, however, still103

3Additional chatter is not arising with the symmetric triangular density. 50% of its mass is always
situated on each side of the mode.
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need combining into a single density for which the mass is normalized to unity. This is104

accomplished by respectively assigning the weights c−a
b−a

and b−c
b−a

, i.e. the share of mass105

assigned to the left and right-hand side of the mode. The simulated likelihood function106

is accordingly described by (6).107

Ln =

(

c− a

b− a

)

1

R

R
∑

r=1

T
∏

t=1

exp(Xnitβ
r
1n)

∑J
j=1 exp(Xnjtβ

r
1n)

+

(

b− c

b− a

)

1

R

R
∑

r=1

T
∏

t=1

exp(Xnitβ
r
2n)

∑J
j=1 exp(Xnjtβ

r
2n)

(6)

A step by step description of the simulation procedure is provided below:108

1. For individual n generate two independent sets of R draws from a standard uniform109

distribution. Label these sets of draws respectively as U1n and U2n.110

2. Transform U1n and U2n into draws for respectively β1n and β2n using (5).111

3. Evaluate the multinomial logit choice probability for all choices t = 1, . . . , T made112

by individual n at each draw βr
1n.113

4. Multiply the outcomes of step 3 across the T choices made by individual n and114

subsequently average across the R draws.115

5. Repeat steps 3 and 4 for β2n.116

6. Ln is then a weighted average of steps 4 and 5 using c−a
b−a

and b−c
b−a

as weights.117

7. Repeat steps 1 to 6 for each individual.118

8. Take the logarithm of each Ln and sum over all respondents for the log-likelihood.119

3.3 Alternative parameterisations120

Estimations are conducted in Ox (Doornik and Ooms, 2006). Codes are available upon121

request and easily transferable to other software packages. To avoid restrictions on the pa-122

rameters of interest during estimation, it is common practice for the symmetric triangular123

density to estimate the mode c and the log of the spread such that exp(s) = (c−a) = (b−c).124

A natural extension is the estimation of two spread parameters for the asymmetric tri-125

angular density. Empirical exploration revealed that directly estimating i) the mode and126

upper and lower bounds, or ii) the mode, mean µ and standard deviation σ of the tri-127

angular density4 may reduce the correlation patterns between parameter estimates, but128

more often results in failure of the estimation routine and higher standard errors on the129

bounds of the triangular density . This paper therefore uses the parameterisation based130

on the mode and spreads parameters. Analytical gradients are provided in A.131

4The lower and upper bound are then defined by a =
(c−3µ)−

√
−3(c2+µ2)+6µc+24σ2

2 and b = 3µ− a− c.
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4 Monte Carlo simulations132

A simple way to verify the proposed estimation procedure, whilst avoiding additional133

simulation chatter, is to estimate a model using the symmetric triangular density and134

contrast it against the inverse cdf method, which is known to work in this context. A135

simulated dataset of N = 1, 000 respondents each making T = 10 choices over J = 3136

randomly generated alternatives is generated. The scale parameter of the additive error137

term is normalised to one. The attribute values for a single explanatory variable are138

drawn from a standard normal distribution. The corresponding preference parameter βn139

follows a symmetric triangular density with c = 0 and s = ln(4). Table 1 reveals the two140

methods provide nearly identical results. The negligible differences are numerical and141

caused by the additional set of Halton draws applied in the mixing approach.5142

Table 1: Verification of the proposed estimation procedure using simulated data
Inv. Cdf Mixing approach

Estimate t-ratio Estimate t-ratio
mode 0.0172 0.297 0.0171 0.295

ln(spread) 1.3666 41.90 1.3667 41.90
LL -9,012.38 -9,012.36
obs 10,000 10,000
n 1,000 1,000

A full set of Monte Carlo simulations, based on the same data structure, is then performed143

contrasting the performance of the inverse cdf and mixing approach. For each of in total144

seven model specifications, 50 datasets are generated. Each dataset takes a unique set145

of random draws from the error term. The hyper parameters of the triangular density146

structurally vary across the model specifications controlling the degree of skewness.147

Table 2 describes the results for the symmetric density as defined above. The table148

includes estimation results for the symmetric triangular density to act as a point of refer-149

ence. As expected, the model fit is highly comparable, but on average slightly better when150

using the asymmetric triangular density. This is a direct result of including an additional151

parameter in the model. The asymmetric estimation procedure is more data intensive as152

reflected by the increase in the standard errors on all parameters, in particular the mode.153

This also causes a slight bias and more variation in the actual parameter estimates across154

the 50 datasets for the asymmetric triangular density. On average, the size of the bias is155

limited and comparable between the inverse cdf and the mixing approach.156

The subsequent six model specifications all keep the mode at zero whilst shifting both157

bounds by one unit at a time to the left or right. As such, the [lower,upper ] bounds158

range between [-7,1] and [1,7]. Tables 3 and 4 reflect that estimation of the mode remains159

somewhat of an issue. Especially when one of the bounds moves close to the mode, the160

mode tends to be drawn somewhat to that bound and the bias of the mode and that161

5Sets of 1,000 Halton draws are used in all estimations for each mixing component.
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Table 2: Monte Carlo simulations for 50 datasets using the symmetric triangular density
Symmetric Inverse CDF Mixing approach

value st. error∗ value st. error∗ value st. error∗

LL average -8975.72 -8975.47 -8975.47
5% -9063.37 -9062.86 -9062.84
95% -8886.73 -8886.58 -8886.57

mode average -0.003 0.059 0.0316 0.2410 0.0306 0.2406
5% -0.033 0.057 -0.1938 0.1859 -0.1939 0.1862
95% 0.040 0.061 0.2857 0.3137 0.2847 0.3139

lower average -4.014 0.021 -4.0313 0.0401 -4.0310 0.0401
5% -4.146 0.019 -4.2428 0.0325 -4.2425 0.0325
95% -3.870 0.023 -3.8222 0.0495 -3.8219 0.0496

upper average 4.009 0.020 3.9855 0.0408 3.9859 0.0407
5% 3.844 0.018 3.7620 0.0330 3.7627 0.0330
95% 4.167 0.023 4.2191 0.0490 4.2191 0.0492

∗ These are summary statistics for the st. errors, not st. errors of the reported values.

bound slightly increase. Estimation of the bounds, however, remains reasonably accurate162

although the standard errors tend to increase slightly with the degree of asymmetry in163

the distribution. Despite this minor issue, these Monte Carlo simulations illustrate the164

asymmetric triangular distribution can be used as an alternative mixing density for the165

mixed logit model.166
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Table 3: Monte Carlo simulations for 50 datasets using positive skewed triangular densities
Bounds [-3,5] Bounds [-2,6] Bounds [-1,7]

Inverse cdf Mixing approach Inverse cdf Mixing approach Inverse cdf Mixing approach
value st. error value st. error value st. error value st. error value st. error value st. error

LL average -8836.374 -8836.35 -8416.39 -8416.35 -7653.25 -7653.24
5% -8909.503 -8909.49 -8506.42 -8506.41 -7726.82 -7726.81
95% -8755.417 -8755.44 -8326.74 -8326.75 -7573.95 -7573.87

mode average -0.042 0.252 -0.042 0.252 -0.059 0.232 -0.059 0.231 -0.092 0.231 -0.086 0.223
5% -0.286 0.197 -0.286 0.198 -0.355 0.173 -0.355 0.172 -0.488 0.047 -0.480 0.060
95% 0.240 0.333 0.239 0.332 0.153 0.314 0.151 0.312 0.126 0.357 0.130 0.304

lower average -2.982 0.033 -2.982 0.033 -1.959 0.028 -1.960 0.027 -0.893 0.040 -0.898 0.033
5% -3.220 0.027 -3.221 0.026 -2.179 0.021 -2.178 0.021 -1.124 0.002 -1.124 0.004
95% -2.770 0.046 -2.769 0.046 -1.741 0.047 -1.741 0.044 -0.515 0.085 -0.533 0.065

upper average 5.024 0.052 5.024 0.052 6.012 0.062 6.012 0.062 6.984 0.074 6.983 0.074
5% 4.797 0.045 4.797 0.045 5.704 0.052 5.704 0.052 6.721 0.065 6.719 0.064
95% 5.357 0.063 5.358 0.063 6.286 0.075 6.284 0.074 7.315 0.086 7.317 0.085
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Table 4: Monte Carlo simulations for 50 datasets using negative skewed triangular densities
Bounds [-5,3] Bounds [-6,2] Bounds [-7,1]

Inverse cdf Mixing approach Inverse cdf Mixing approach Inverse cdf Mixing approach
value st. error value st. error value st. error value st. error value st. error value st. error

LL average -8827.68 -8827.69 -8390.17 -8390.19 -7616.27 -7616.27
5% -8899.51 -8899.52 -8458.76 -8458.75 -7707.00 -7707.05
95% -8765.68 -8765.71 -8294.21 -8294.20 -7537.79 -7537.79

mode average 0.028 0.238 0.028 0.239 -0.021 0.234 -0.020 0.234 0.086 0.292 0.088 0.282
5% -0.204 0.190 -0.204 0.190 -0.361 0.187 -0.362 0.187 -0.318 0.102 -0.317 0.047
95% 0.254 0.308 0.255 0.309 0.331 0.297 0.333 0.300 0.505 0.469 0.516 0.494

lower average -5.035 0.050 -5.035 0.051 -5.970 0.063 -5.970 0.063 -7.019 0.078 -7.019 0.078
5% -5.241 0.044 -5.241 0.044 -6.263 0.053 -6.263 0.053 -7.371 0.069 -7.371 0.069
95% -4.831 0.058 -4.830 0.058 -5.618 0.074 -5.618 0.074 -6.663 0.089 -6.663 0.088

upper average 2.980 0.032 2.980 0.032 1.999 0.026 1.999 0.026 0.923 0.091 0.920 0.071
5% 2.779 0.025 2.779 0.025 1.767 0.020 1.767 0.020 0.552 0.008 0.539 0.002
95% 3.187 0.043 3.187 0.043 2.211 0.038 2.211 0.038 1.153 0.168 1.153 0.198
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The amount of simulation chatter appears negligible between the inverse cdf and mixing167

approach. To investigate this further, the number of draws is systematically decreased168

for the [-7,1] dataset whilst comparing the performance of both estimators.6 Table 5169

highlights that at lower numbers of draws the MSL procedure becomes less accurate and170

differences start to arise from the log-likelihood values at 1,000 draws when using the171

mixing approach. The Root Means Square Difference (RMSD) for the log-likelihoods172

shows more rapidly increasing degrees of simulation chatter for the inverse cdf relative173

to the mixing approach. Not surprisingly, this chatter mainly affects the estimation of174

the upper bound and the mode, i.e. the short-end of the asymmetric triangular density.175

The bias and RMSD for the lower bound, relative to the true model parameter of -7, stay176

fairly constant, also at a lower number of draws in both approaches. The bias and RMSD177

on the mode and upper bound, however, increase more rapidly for the inverse cdf.178

5 Conclusions179

The Monte Carlo simulations illustrate that the asymmetric triangular density can be180

added to the toolbox of the discrete choice modeller. The recommended mixing approach181

relies on a mixture of densities. Its application will therefore have an impact on esti-182

mation time. Namely, when z random parameters are assumed to follow an asymmetric183

triangular density then 2z ‘classes’ of respondents can possibly formed. This rapidly in-184

creases the number of times the likelihood function needs to be evaluated. The Monte185

Carlo simulations, however, reveal that the amount of simulation chatter associated with186

the more traditional and quicker inverse cdf approach is limited, even at a reasonably low187

number of draws. More draws may, however, be required when the underlying density is188

heavily skewed or when complex models are estimated with multiple random parameters.189

The data requirements of the asymmetric triangular density are higher than those190

for its symmetric counterpart, or other two-parameter densities such as the normal and191

log-normal density. Increasing degrees of correlation between the parameter estimates192

and limited empirical identification are not uncommon when estimating more complex193

densities such as the Johnson-SB density or off-set parameters for the log-normal den-194

sity(e.g. Train and Sonnier, 2005). In empirical applications it may therefore be useful to195

fix one of the bounds. This is not controversial since in many empirical applications we196

which to restrict βn to a particular domain. The asymmetric triangular density might,197

however, not be the best choice when modelling heterogeneity in cost sensitivities. Daly198

et al. (2012) point out that no moments of the willingness-to-pay density exist when the199

upper bound is strictly positive. Moreover, when fixing the upper bound at zero only the200

mean will be defined, but not any higher moments.201

The contributions of this paper hopefully spur the empirical application of what has202

extensively been discussed as a potentially attractive distribution for mixed logit models.203

6The number of draws used should not be used as a benchmark. Empirical datasets may require
more draws to ensure stability of the likelihood function. This is especially the case when using multiple
random parameters or more complex model specifications.
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Table 5: Simulation chatter at lower numbers of draws
Mixing approach Inverse CDF approach Mixing approach

1,000 draws 500 draws 250 draws 200 draws 100 draws 500 draws 250 draws 200 draws 100 draws
LL average -7616.27 -7616.25 -7616.21 -7616.46 -7616.75 -7616.24 -7616.24 -7616.25 -7616.31

average diff 0.0192 0.0627 -0.1827 -0.4773 0.0320 0.0372 0.0248 -0.0353
RMSD 0.0977 0.1978 0.2541 0.6266 0.0486 0.1314 0.0896 0.1899

mode bias 0.088 0.0857 0.0863 0.0999 0.1216 0.0837 0.0933 0.0782 0.0691
RMSD 0.265 0.2653 0.2713 0.2781 0.2938 0.2586 0.2696 0.2579 0.2443

lb bias 0.019 0.0183 0.0185 0.0217 0.0272 0.0188 0.0211 0.0163 0.0150
RMSD 0.224 0.2238 0.2242 0.2249 0.2261 0.2235 0.2254 0.2207 0.2166

ub bias 0.080 0.0780 0.0786 0.0877 0.1026 0.0756 0.0833 0.0722 0.0643
RMSD 0.204 0.2046 0.2106 0.2154 0.2268 0.1976 0.2060 0.1988 0.1873
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∂
exp(si)

exp(si)+exp(sj)

∂si
=

exp(si + sj)

(exp(si) + exp(sj))
2 (7)

∂
exp(si)

exp(si)+exp(sj)

∂sj
= − exp(si + sj)

(exp(si) + exp(sj))
2 (8)

The first order derivatives of the two one-sided triangular probability density functions235

give rise to (9)-(12). Recognizing that the first term is always the original pdf, from236

which it is easy to take draws, makes writing the simulated equivalent of the gradient237

convenient. Before we do that define E(P 1
n) and E(P 2

n) as the expected choice probability238

for individual n based on either the first (or second) one-sided triangular density for239

notational convenience.240

∂
2(βn−c+exp(s1))

exp(2s1)

∂c
=

2(βn − c+ exp(s1))

exp(2s1)

[ −1

βn − c+ exp(s1)

]

(9)

∂
2(βn−c+exp(s1))

exp(2s1)

∂s1
=

2(βn − c+ exp(s1))

exp(2s1)

[

exp(s1)

βn − c+ exp(s1)
− 2

]

(10)

∂
2(c+exp(s2)−βn)

exp(2s2)

∂c
=

2(c+ exp(s2)− βn)

exp(2s2)

[

1

c+ exp(s2)− βn

]

(11)

∂
2(c+exp(s2)−βn)

exp(2s2)

∂s2
=

2(c+ exp(s2)− βn)

exp(2s2)

[

exp(s2)

c+ exp(s2)− βn

− 2

]

(12)

When (13) defines the likelihood function of interest for individual n241

Ln =
exp(s1)

exp(s1) + exp(s2)

∫

β1n

T
∏

t=1

exp(Xnitβ1n)
∑J

j=1 exp(Xnjtβ1n)

β1n − c+ exp(s1)

exp(2s1)
dβ1n (13)

+
exp(s2)

exp(s1) + exp(s2)

∫

β2n

T
∏

t=1

exp(Xnitβ2n)
∑J

j=1 exp(Xnjtβ2n)

c+ exp(s2)− β2n

exp(2s2)
dβ2n

=
exp(s1)

exp(s1) + exp(s2)
E(P 1

n) +
exp(s2)

exp(s1) + exp(s2)
E(P 2

n)

Then the simulated gradients are provided by (14)-(16). Note that the same draws as242

used in the main estimation procedure can be used to evaluate the gradient.243
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∂Ln

∂c
=

exp(s1)

exp(s1) + exp(s2)

1

R

R
∑

r=1

T
∏

t=1

exp(Xnitβ
r
1n)

∑J

j=1 exp(Xnjtβ
r
1n)

[ −1

βr
1n − c+ exp(s1)

]

(14)

+
exp(s2)

exp(s1) + exp(s2)

1

R

R
∑

r=1

T
∏

t=1

exp(Xnitβ
r
2n)

∑J

j=1 exp(Xnjtβ
r
2n)

[

1

c+ exp(s2)− βr
2n

]

∂Ln

∂s1
=

exp(s1 + s2)

(exp(s1) + exp(s2))2
(

E(P 1
n)− E(P 2

n)
)

(15)

+
exp(s1)

exp(s1) + exp(s2)

1

R

R
∑

r=1

T
∏

t=1

exp(Xnitβ
r
1n)

∑J

j=1 exp(Xnjtβ
r
1n)

[

exp(s1)

βr
1n − c+ exp(s1)

− 2

]

∂Ln

∂s2
=

exp(s1 + s2)

(exp(s1) + exp(s2))2
(

E(P 2
n)− E(P 1

n)
)

(16)

+
exp(s2)

exp(s1) + exp(s2)

1

R

R
∑

r=1

T
∏

t=1

exp(Xnitβ
r
2n)

∑J

j=1 exp(Xnjtβ
r
2n)

[

exp(s2)

c+ exp(s2)− βr
2n

− 2

]
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