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Abstract 

The granulation process is considered to be a crucial operation in many industrial 

applications. The modelling of the granulation process is, therefore, an important step 

towards controlling and optimizing the downstream processes, and ensuring optimal product 

quality. In this research paper, a new integrated network based on Artificial Intelligence (AI) 

is proposed to model a high shear granulation (HSG) process. Such a network consists of two 

phases: in the first phase the inputs and the target outputs are used to train a number of 

models, where the predicted outputs from this phase and the target are used to train another 

model in the second phase to lead to the final predicted output. Because of the complex 

nature of the granulation process, the error residual is exploited further in order to improve 

the model performance using a Gaussian mixture model (GMM). The overall proposed 

network successfully predicts the properties of the granules produced by HSG, and 

outperforms also other modelling frameworks in terms of modelling performance and 

generalization capability. In addition, the error modelling using the GMM leads to a 

significant improvement in prediction. 

Keywords: High shear granulation; integrated network; radial basis function; ensemble 

model; Gaussian mixture model.  

1. Introduction 

Granulation is the enlargement process of fine particles which aims to improve the 

properties of a powder and facilitate the downstream processes in different industries 

including chemical, mineral, agriculture, food, and pharmaceutical industries [1]. Research in 

granulation started more than 5 decades ago, while some of the pioneering research started 
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much earlier [2]. Although granulation has attracted a lot of interest in academia as well as in 

industry, it remains an art more than a science where neither the granulation behaviour nor 

the associated properties can be predicted well in advance, leading, as a result, to inefficient 

operations and high recycling ratios (waste) [3]. Hence, a deeper understanding of this 

process either via data, expert knowledge and laws of physics should pave the way for an 

effective and robust modelling framework to predict the associated process behaviour. 

Furthermore, exploiting the model in a ‘reverse-engineering’ framework can lead to ’optimal’ 

control of the process for right-first-time granulation. 

Several studies have been devoted to the modelling of the granulation processes, but 

because of the lack of associated physical equations that should describe the processes, such 

models are normally either empirical or semi mechanistic models [4]. A regime map has been 

used to describe the granulation mechanisms, namely; wetting and nucleation, growth and 

consolidation, and breakage and attrition [5]. Although it was not fully able to represent the 

associated mechanisms and the properties quantitatively, a comprehensive understanding of 

the granulation process at the micro level was however reached [6]. Population balance 

models, by which the rate of change in the number, mass, or volume of the granules during 

the process are investigated, have also been used to predict the properties of the granules and 

the granulation process behaviour [7]. Various granules properties and granulation 

mechanisms have hitherto been investigated. One of the difficulties in performing the 

population balance based modelling lies in the consideration of all interactions among the 

granulation mechanisms which are fundamental requirements necessary for shaping the 

properties of the granules [8]. To characterize such interactions, an integration between a 

multi-dimensional population balance model and a stochastic method (e.g. Monte Carlo) has 

been proposed [9]. In addition, the number of the properties that can be monitored using such 

a technique is limited, with up to three properties only being examined in most published 

applications. In fact, finding a solution can even prove to be a difficult exercise when more 

granules properties be included [8].  

With the recent advances in computing power, data based modelling approaches have 

been utilized to model the granulation process, where the main aim is to find a mapping 

between a set of inputs and outputs instead of deriving the real physical equations [10]. 

Linear regression models have been employed to predict the properties of granules and to 

find the optimal set of input parameters [11-12]. Such modelling paradigms are, in fact, 



incapable of accounting for the sophisticated nonlinear relationships or even the complex 

interactions among the inputs parameters that control the granulation process [10]. Artificial 

Neural Networks (ANN) and Fuzzy Systems have been investigated previously to predict the 

properties of granules and to scale-up the granulation processes [13-16]. However, because 

these so-called soft-computing techniques represent powerful interpolators there exist no 

guarantees that they will perform well beyond the training range [10]. Although these 

techniques have been extensively employed in various other equally challenging areas (e.g. 

industrial, academic, and medical) where their effectiveness and efficiency have been 

demonstrated [17], they have not been well exploited to deal with the challenges and 

uncertainties in the granulation processes. The reason for this relates to the availability of 

meaningful data/information needed to derive effective predictive models for granulation. 

Consequently, these techniques and other data-driven approaches can represent a promising 

development in dealing with the problems surrounding the granulation process if meaningful 

information can be extracted from the available data. 

In this paper a modelling framework which initially includes the idea of an integrated 

network is proposed in order to extract meaningful information from a conservative number 

of granulation data which have been collected from a series of laboratory experiments, where 

the main motivation behind this framework is to achieve a satisfactory model performance 

exploiting such a limited amount of real (systematic) data. In order to improve the model 

performance, the network-based error predictions are characterized using Gaussian mixture 

model (GMM) to account for any behaviour deemed of a stochastic nature. The paper is 

organized as follows: a brief description of the experimental work that has been conducted 

using a high shear granulator is given in Section 2. Section 3 outlines the two modelling 

stages embedded in the integrated network modelling-based approach including the 

prediction results. In Section 4, the model is extended to account for previously unmodelled 

stochastic behaviour via GMM technique. Section 5 draws the overall conclusions relating to 

the study. 

2. Experimental Work     

Calcium Carbonate (D50=0.085mm) has been granulated using a high shear Eirich 

mixer (1 Litre vertical axis granulator with a top-driven impeller, Maschinenfabrik Gustav 

Eirich GmbH & Co KG, Germany). Polyethylene Glycol (PEG 1000) with a melting point of 

approximately 40ºC has been used as a binder, which has been poured-in in the liquid phase. 



The Eirich granulator is equipped with two types of impeller differing in shape. The impeller 

shape is considered as an input variable in addition to three other variables, as listed in Table 

1, while the speed of the vessel is kept constant at 170 rpm. Although, there are many 

parameters that affect the granulation process, the aforementioned ones are the most crucial 

for the high shear granulation (HSG) process using specific materials [18]. The levels of each 

variable have been defined by conducting a set of trial experiments. 

Table 1. The inputs and outputs of the granulation process. 

Inputs  Inputs’ levels  Outputs 

Impeller speed  1000, 2000… 6000 (rpm)  Size (µm)  

Granulation time  6, 10, and 15 (minutes)  Binder content (%)  

L/S ratio (w/w) 13, 14, and 15 (%) Porosity (%)  

Impeller shape  Two different shapes    

The granulation experiments have been carried-out based on a full factorial design of 

experiments resulting in 108 experiments. After completing the granulation process, the 

granules have been cooled down at room temperature to solidify the binder. The size of the 

granules has then been measured.  The porosity and the binder content of the granules have 

been measured using a Pycnometer [19] and the method discussed in [20], respectively. The 

granulation data are very difficult to model because of (i) the nonlinear behaviour, (ii ) the 

significant effect of the interactions among the input variables, (iii ) the uncertainty in the 

measurements, and (iv) the sparse and limited data. Figure 1 shows examples of data 

distributions using two variables at a time. 

 

Figure 1. Data density for the granulation time with impeller speed and L/S ratio. 

 



3. Integrated Network 

3.1 Integrated Network: Model Development  

Recently, the development of computational intelligence has been positively reflected 

in several disciplines such as medicine and metallurgy [21], where the observed data are 

utilized to establish data driven models that can replace or complement physical models 

where they simply do not exist or they may be too complex to elicit. Therefore, the core of 

such type of modelling rests with process data [22]. In the case of the granulation process, the 

difficulty stems from the lack of representative information. In addition, the complex 

input/output relationships may not be captured by the available amount of sparse data [23]. 

As stated previously, an integrated network as a data-driven model has been proposed in this 

paper. Developing such a structure does not only consist of mapping the inputs to the outputs, 

but also discovering knowledge that may not be easy to extract by the already available 

approaches. The idea of the network relies on having a number of models with different 

structures, thus, (i) complex input/output relationships could be captured because of the 

number of functions and weights included [24], (ii) models with different structures could 

play a complementary role in modelling the possible patterns of the process, and (iii) training 

the data through two stages could help to extract the associated knowledge required for 

accurate property predictions [25]. 

Figure 2 depicts the integrated network architecture for multi-input single-output 

(MISO). The network relies on predicting the final output using two modelling phases. In 

phase I, the N inputs (xn) and the target output (yT) are used to train M models with different 

structures. These models can be neural networks or neuro-fuzzy models. The predicted 

outputs from each model (yP1, yP2… yPM) and the target output (yT) are then utilized to train 

another model in phase II to lead to the final predicted output (Py ), where this model should 

be capable of modelling linear and non-linear relationships to extract the hidden information 

and to capture the complex relationships in the original data. The efficiency of the radial basis 

function (RBF) network has been proved in several application areas [10], thus it has been 

employed in this paper to model the HSG process.  

 



 

Figure 2. The architecture of the integrated network. 

Generally, an RBF network consists of three layers, namely; an input layer, basis 

functions acting as a hidden layer, and an output layer. Each basis function is a function of 

the radial distance from a defined centre. These functions are used to map an input vector to 

its corresponding target. Thus, the predicted output is presented [10] as follows: 
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where wi and w0 are the coefficient connecting the ith basis function to the output neuron and 

the bias, respectively, and i  is the basis function. A popular selection of such a function is 

Gaussian [10]. The RBF network has also been used in phase II. Analytically, the two phases 

of the integrated network are simply a combination of composition and superposition of the 

basis functions. To prove the capabilities of the presented structure, let us use a single RBF 

model in phase I, the final predicted output can then be written in the form: 
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the parameters are as defined previously, where the superscript number is used to distinguish 

the parameters of the second phase from the ones used in the first phase. Assuming that both 

models are optimized in terms of the number of basis functions and the connecting 

coefficients, the composite function (2) could minimize the error. It has been proved that the 



composite function is dense in a convex data space [26, 27], which means that the difference 

between the predicted and the target values would be smaller.  

Although, the number of models in the first phase has been neglected in the 

discussion above, it plays a crucial role in the proposed structure. By including the M models, 

the inner function of (2) could be written as a superposition of the basis function. In a similar 

way, the theorem that has been presented in [28, 29] demonstrates that the approximated 

function is also dense in the data space. Thus, the combination of the superposition and 

composition of the basis functions could considerably improve the model performance.           

In this paper, the scaled conjugate gradient (SCG) algorithm has been utilized with the 

backpropagation network to determine the network parameters for both phases [10, 30]. The 

root mean square error (RMSE) is employed to select the best network structure (i.e. the 

number of basis functions) that achieves a trade-off between a good training and 

generalization capability [30]. These steps are shown in Figure 3. 

3.2 Integrated Network: Results and Discussion  

A single RBF network is developed here to model the HSG process. The data have 

been divided into two sets: training and testing. The training data set allows the model to 

learn the relationships among the granulation inputs and the outputs, while the testing data set 

assesses its generalization performance. The division of the data into these sets has a 

significant influence on the performance of the model; by the division of the data one means 

not only the number of data points in each set but also their distribution in the space under 

study. Different division methods have hitherto been investigated, including the 10-fold 

cross-validation technique, but it has been found that dividing the data randomly into a 

training set (5/6) and a testing set (1/6) was the best methodology in order to develop a 

meaningful model with a reliable performance [30]. The number of RBFs that has been 

selected corresponds to the minimum error evaluated via the RMSE. The SCG optimization 

algorithm has been employed for training. For a single size class (710-1000µm) and using 8 

RBFs, the average performance of 10 networks for the binder content is shown in Figure 4, 

with a RMSE (training, testing) = [0.916, 0.958]. The coefficient of determination value is R2 

(training, testing) = [0.54, 0.31]. These performance measures indicate that the RBF-based 

model on its own was not able to capture the complex input/output relationships and to 

achieve adequate generalization capability.  



 

Figure 3. Flow chart of the integrated network. 

 



In a similar manner, the results obtained for the other variables are summarized in Table 2, 
where the size is represented by its three diameters: D10, D50, and D90. 

3.2 Integrated Network: Results and Discussion  

A single RBF network is developed here to model the HSG process. The data have 

been divided into two sets: training and testing. The training data set allows the model to 

learn the relationships among the granulation inputs and the outputs, while the testing data set 

assesses its generalization performance. The division of the data into these sets has a 

significant influence on the performance of the model; by the division of the data one means 

not only the number of data points in each set but also their distribution in the space under 

study. Different division methods have hitherto been investigated, including the 10-fold 

cross-validation technique, but it has been found that dividing the data randomly into a 

training set (5/6) and a testing set (1/6) was the best methodology in order to develop a 

meaningful model with a reliable performance [30]. The number of RBFs that has been 

selected corresponds to the minimum error evaluated via the RMSE. The SCG optimization 

algorithm has been employed for training. For a single size class (710-1000µm) and using 8 

RBFs, the average performance of 10 networks for the binder content is shown in Figure 4, 

with a RMSE (training, testing) = [0.916, 0.958]. The coefficient of determination value is R2 

(training, testing) = [0.54, 0.31]. These performance measures indicate that the RBF-based 

model on its own was not able to capture the complex input/output relationships and to 

achieve adequate generalization capability. In a similar manner, the results obtained for the 

other variables are summarized in Table 2, where the size is represented by its three 

diameters: D10, D50, and D90.  

To improve the prediction performance of the RBF network, an ensemble model has 

been implemented [24], where the outputs of multiple networks are combined, commonly, by 

a simple averaging method [31].  Ten RBF networks have been initialized using different 

number of basis functions, as listed in Table 2, and different values for the connecting 

coefficients. The prediction performance for the ensemble model is superior to that of the 

single network above, with an improvement of 28% in RMSE for the testing data set. 



 

Figure 4. The RBF model for the binder content: (a) Training, (b) testing (with 10% 
bands). 

Furthermore, the new integrated network structure based on the 10 RBF models in the 

first phase, having the same structure as that of the ensemble model, and a single RBF model 

in the second phase has been established. The integrated network performance for the binder 

content (710-1000µm) is R2 (training, testing) = [0.75, 0.74], as shown in Figure 5, while 

examples of the predicted and the experimental distributions for all the investigated 

properties are presented in Figure 6. The obtained results prove the ability of the integrated 

network in dealing with the difficulties and complexity of the granulation behaviour. The R2 

value for the integrated network is approximately twice the value for the single RBF network, 

whereas the overall improvement over the ensemble model is approximately 34%. 



 

Figure 5. The integrated network based on 10 RBF models for the binder content: (a) 
Training, (b) testing (with 10% bands). 

 

Figure 6. The integrated network: the predicted (* ) and the experimental (--) 
distributions for the size, binder content and porosity (a) using impeller type II, 

speed=2000rpm, L/S ratio (w/w)=14% and granulation time=10min, (b) using impeller type 
II, speed=6000rpm, L/S ratio (w/w)=15% and granulation time=15min. 



4. Error Modelling Using Gaussian Mixture Model  

4.1 Error Modelling Using Gaussian Mixture Model: Model Development  

Occasionally, the error can play a significant role in refining the model by eliciting 

the information that may be hidden because of the implicit assumption that the error is 

normally distributed. Different error models have already been proposed previously [32-34]. 

The model that depends on the GMM has been demonstrated to be an efficient model in 

terms of error characterization. Due to the inherent complexity of the granulation process 

with highly nonlinear behaviour of the process and measurement uncertainties, the GMM has 

been selected to provide a deeper insight into the probability density function. Moreover, it 

has the ability to approximate any probability density function with a reasonable accuracy 

using a sufficient number of Gaussian components, which can lead to the optimal model 

refinement [30, 34]. Figure 7 presents a schematic representation of the incorporation of the 

integrated network and the error characterization using GMM. 

 

Figure 7. The incorporation of the integrated network and the error characterization 
framework. 

The GMM, in general, is a stochastic model that can be represented as a linear 

combination of Gaussian components, where each component has its own mean and 

covariance. For a predefined number of Gaussian components (J), the GMM is simply 

presented as follows [35]: 
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where xe is the error data which contain the selected inputs and the error vector. The number 

of inputs that will be included in the error characterisation should be small [34], since the 

main effect of the inputs has been considered in the integrated network. 
e
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The superscript e is used to distinguish the parameters that are defined in the error model. To 

define the optimal values of these parameters, the log likelihood function should be 

maximized [30]. Therefore, the optimal parameters are given by the following set of 
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where ( )djz  is the probability that the dth data point belongs to the jth Gaussian component, 

and zdj is a J-dimensional latent variable, which is equal to 1 when the dth data point is 

covered by the jth component where the other elements are zero. Deriving the analytical 

solution for these equations is a rather ‘tricky’ exercise but suffice to say that one of the most 

common methods for finding a solution for such a set of equations is the Expectation 

Maximization (EM) algorithm [36]. Starting by carefully initializing the parameters using K-

means clustering, ( )djz  value can be estimated using the initialized parameters, the so called 



E-step. Accordingly in the M-step, the ( )djz value is utilized to re-evaluate the parameters. 

The revised parameters are then utilized to update the ( )djz  value. Such a procedure is 

reiterated until the algorithm converges, or alternatively the maximum number of iteration is 

reached [36].   

However, the number of Gaussian components (J) has to be defined. Thus, the EM 

algorithm is utilized to select the number of components. Bayesian information criterion 

(BIC) has been adopted in this paper as a performance criterion for selecting the best number 

of components [37]. Finally, the conditional error mean, which is an indication of the bias 

and its value, and the conditional standard deviation are calculated using numerical methods 

[34]. Generally, these methods are considered to be computationally taxing, however, it 

seems not to be the case in this paper, particularly with a small data set [38]. Adding the 

conditional mean to the predicted output is a compensation for the bias, which can improve 

the prediction performance, whereas the conditional standard deviation is used to set the 

confidence level [34]. Figure 8 summarizes the steps of the error characterization model.  

4.2 Error Modelling Using Gaussian Mixture Model: Results and Discussion  

In order to improve the presented models performance by characterising the error 

employing the GMM, two granulation input variables out of a total of four are included. The 

combination that gives the maximum error compensation (i.e. the minimum RMSE) is finally 

chosen. Following the steps that were summarized in Figure 8, the impeller speed and the 

granulation time are utilized in addition to the error vector that results from the integrated 

network to develop the error model for the binder content. The selection of these parameters 

by the optimisation process was expected, since the effects of these parameters appear to be 

incompatible as reported by previous research [39-40]. This may perhaps relate to the 

interaction among the parameters which may result in the unpredictable behaviour of the 

granulation process. The training data are employed to train the GMM whereas the testing 

data are kept hidden. The best number of Gaussian components for the binder content is 10. 

Figure 9 shows the prediction results after bias compensation for the binder content (710-

1000µm) with a 95% confidence interval. 

 



 

Figure 8. Flowchart of the error characterisation model. 

 



 

Figure 9. The prediction performance using the integrated network for the binder 
content after bias compensation (with a 95% confidence interval). 

 The output predictions with bias compensation presented in Figure 9 elucidates a 

satisfactory performance, where most of the predictions (96%) are laying within the 95% 

confidence interval. The overall improvement that is gained by employing the GMM is of 

approximately 14% in RMSE which is due to the ability of the GMM to capture the inherent 

undetected stochastic behaviour of the granulation process. The GMM for error 

characterization has also been adopted to improve the performance of the single RBF and the 

ensemble model, resulting in a significant improvement for each model, as summarized in 

Table 2. However, it is evident that the proposed integrated network outperforms these 

models, even without bias compensation.  

Table 2 lists the results of the models for all the investigated outputs. It shows that the 

performances for the binder content and porosity are generally worse than the ones for the 

size represented by three diameters (D10, D50, D90). The heterogeneity of the granules from 

the same batch but different size classes has been demonstrated in the previous research [41-

42]. It has also been shown that the same size granules have different values for these 

properties, such differences may be due to the uncertainties in the measurements, the 

heterogeneity of the same size granules or both [43]. Such uncertainties and heterogeneity 

may be the reasons behind the low prediction performances for these properties. Further 



investigations have to be performed to clarify this issue and to consider it in the developed 

model. 

Table 2. The performances of the models represented by RMSE and R2. 

Output Binder content 
(710-1000µm) 

Porosity 
(710-1000µm) 

Size (mm) 

  
D10 D50 D90 

Models   Train Test Train Test Train Test Train Test Train Test 

RBF 
R2 0.54 0.31 0.44 0.27 0.53 0.31 0.64 0.33 0.58 0.41 
RMSE 0.92 0.96 1.83 2.82 0.15 0.21 0.26 0.72 1.12 1.01 
No. BFs 8 4 6 9 8 

RBF with bias 
compensation 

R2 0.64 0.55 0.54 0.15 0.68 0.34 0.72 0.34 0.65 0.37 
RMSE 0.81 0.82 1.67 3.05 0.12 0.19 0.23 0.72 1.03 1.07 
No. GCs 9 8 5 8 9 

Ensemble 

R2 0.59 0.45 0.63 0.43 0.73 0.72 0.77 0.77 0.84 0.78 
RMSE 0.99 0.67 1.71 1.82 0.12 0.08  0.31 0.2  0.81  0.73 

No. BFs 
(10, 5, 1, 4, 1, 3, 

7, 9, 5 and 6) 
(6, 4, 5, 15, 11, 7, 

13, 4, 3 and 6) 
(4, 11, 7, 4, 5, 10, 

9, 13, 3 and 3) 
(15, 13, 10, 15, 7, 6, 

3, 4, 7 and 11) 
(12, 11, 14, 6, 9, 15, 

4, 2, 9 and 3) 

Ensemble with 
bias compensation 

R2 0.63 0.61 0.67 0.29 0.79  0.62 0.76 0.8 0.86 0.79 
RMSE 0.87 0.57 1.57 1.99  0.11  0.11  0.28 0.18  0.68  0.69 
No. GCs 9 8 9 9 5 

Integrated 
network 

R2 0.75 0.74 0.74 0.74 0.86 0.9 0.83 0.87 0.92 0.89 
RMSE 0.62 0.9 1.31 1.91 0.08 0.04 0.23 0.14 0.45 0.67 
No. BFs 
(2) 

10 8 6 6 8 

Integrated 
network with bias 

compensation 

R2 0.82 0.74 0.76 0.74 0.87 0.92 0.86 0.84 0.93 0.89 
RMSE 0.52 0.86 1.26 1.86 0.08 0.04 0.21 0.18 0.41 0.66 
No. GCs 10 6 6 7 8 

1. ‘No. BFs’ stands for the number of basis functions. 
2. ‘No. GCs’ stands for the number of Gaussian Components. 
3. ‘No. BFs (2)’ represents the number of basis function in the second phase of the integrated network where the 
10 models in the first phase have the same structure as the ones in the ensemble model.  

To prove the effectiveness and efficiency of the proposed integrated network in 

dealing with the challenges and difficulties surrounding the granulation process, the network 

has been used to predict the outputs for new granulation data. Thus, 10 new experiments have 

been conducted using different input settings, but within the examined ranges. The prediction 

outputs from the integrated network with error correction have been compared with the 

measured ones. For the binder content (710-1000µm), Figure 10 shows the performance of 

the model for the validation data, where the R2 (=0.76) is comparable to the one for the 

testing set for the same property. Most of the predictions for the validation data fit properly 

within a 95% confidence interval. Similarly for all the outputs, the performance for the 

validation data is close to the one of the testing set. Figure 11 shows an example of the 



predicted and the experimental distributions for all the investigated properties for one of the 

new experiments, where the proposed model has successfully predicted the properties. 

 

Figure 10. The performance for the binder content for the validation data using the 
integrated network: (a) predicted versus target, (b) with 95% confidence interval.  

 

Figure 11. The proposed framework: the predicted (* ) and the experimental (--) 
distributions for the size, binder content and porosity (using impeller type I, speed=4400rpm, 

L/S ratio (w/w)=13.6% and granulation time=12min). 

 

5. Conclusions  

Modelling the granulation process is not a trivial task because of the complex nature 

of such a process and the lack of physical representation of its behaviour, where the 

modelling approaches of the granulation process that have received the most attention have 

hitherto focused on analytical and numerical based techniques in the form of empirical and 

semi-mechanistic models. Moreover, the limited and sparse amount of data is considered as 



another difficulty in modelling the granulation process using data-driven models, especially 

for some industrial applications, including the pharmaceutical industry, where the acquiring 

of such data alone can be an expensive enterprise. In this research work, a new integrated 

modelling framework has been developed to predict the properties of the granules produced 

by HSG. The integrated network predicts the outputs by modelling and training the data in 

two consecutive phases. Such a structure is able to extract relevant information from a 

conservative number of data points, it also has the ability to capture the complex input/output 

relationships in the original data because of the number of basis functions and weights 

involved. Moreover, one of the major obstacles for developing data driven models; defining 

the best structure, has been overcome by using different modelling structures in the first 

phase of the network. The efficiency of the new network has been demonstrated and 

validated by accurately predicting the properties of the granules (size, binder content, and 

porosity). Characterizing the resulted error using GMM has then been integrated in the 

original model structure to deal with any potential bias in the predicted outputs. Such a 

characterization has the ability to reveal the stochastic behaviour which has been utilised for 

further model refinement. It has been shown that most of the output predictions for all the 

properties fit adequately within a 95% confidence interval.  

The framework efficiency, which in our view emanates from the integration of 

deterministic and stochastic modelling, has been successfully demonstrated in this study. 

When compared to the computationally expensive models that have been mentioned 

previously, for example population balance models, this modelling framework has accurately 

predicted the properties of the granules within a reasonable time.  However, there is a strong 

demand for improving the interpretability of the granulation process and for dealing with 

uncertainties. In the future, it would also be worth incorporating the proposed network with 

other models such as neuro-fuzzy models, where the system is described linguistically in a 

transparent way that can easily be understood by users and therefore ‘owned’. In addition, 

these models are capable of dealing with uncertainties more effectively; by uncertainty here 

one means not only uncertainties in the measurements but also uncertainties which result 

from the heterogonous distribution of the binder content and porosity during the granulation 

process. Moreover, the integration between the presented network and other physical based 

models (e.g. population balance models and computational fluid dynamics) will be 

advantageous, particularly for the ill -defined granulation process, where the integrated 

network can circumvent the limitations of such models (e.g. the number of outputs and the 



execution time).  In contrast to data-driven models, physical model can compensate for the 

limited number of data points. Furthermore, incorporating these models would be very 

beneficial for scaling-up processes. 

In summary, the presented framework represents a promising development in the 

granulation process, as it lays the foundation not only for accurate predictions but also for the 

optimal control of the process and the industries, where such a process is crucial to 

determining the quality of the downstream product. Exploiting the model in a ‘reverse-

engineering’ framework would not only lead to process control but also to optimising product 

quality. 
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